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Overview

• Probability basics

• Discrete-time Markov chains (DTMCs)
− definition, examples, probability measure

• Properties of DTMCs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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Probability basics

• First, need an experiment
− The sample set Ω is the set of possible outcomes
− An event is a subset of Ω, can form events A ∩ B, A ∪ B, Ω ∖ A

• Examples:
− toss a coin: Ω = {H,T},  events: “H”, “T”
− toss two coins: Ω = {(H,H),(H,T),(T,H),(T,T)},

event: “at least one H”
− toss a coin ∞–often: Ω is set of infinite sequences

event: “H in the first 3 throws”
• Probability is:

− P[“H”] = P[“T”] = 1/2,   P[“at least one H”] = 3/4
− P[“H in the first 3 throws”] = 1/2 + 1/4 + 1/8 = 7/8



4

Probability example

• Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao:
− start at 0, toss a coin
− upper branch when H
− lower branch when T
− repeat until value chosen

• Probability of obtaining a 6?
− P[“eventually 6”]
= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

• Obtain as disjoint union of events
− TTH, TTTTH, TTTTTTH, …
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Probability example

• Derive recursive linear equations for P[“eventually 6”] 
− let xi denote the probability for state i = 0,1,2,3,4,5,6
− probability in state where die takes value 6 is 1
− probability in all other final states is 0

x6 = 1/2 · x2 + 1/2 · 1
x2 = 1/2 · x6

x0 = 1/2 · x2

• Yields the unique solution:
x0 = 1/6,  x2 = 1/3 and x6 =2/3

P[“eventually 6”] = x0 = 1/6
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Overview

• Probability basics

• Discrete-time Markov chains (DTMCs)
− definition, examples, probability measure

• Properties of DTMCs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)
− state-transition systems augmented with probabilities

• States
− discrete set of states representing possible configurations of 

the system being modelled
• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities
− probability of making transitions

between states is given by
discrete probability distributions
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Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,P,L) where: 
− S is a finite set of states (“state space”)
− sinit ∈ S is the initial state
− P : S × S → [0,1] is the transition probability matrix

where Σs’∈S P(s,s’) = 1 for all s ∈ S 
− L : S → 2AP is function labelling states with atomic 

propositions

• Note: no deadlock states
− i.e. every state has at least

one outgoing transition
− can add self loops to represent

final/terminating states
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DTMCs: An alternative definition

• Alternative definition: a DTMC is:
− a family of random variables { X(k) | k=0,1,2,… }
− X(k) are observations at discrete time-steps
− i.e. X(k) is the state of the system at time-step k

• Memorylessness (Markov property)
− Pr( X(k)=sk | X(k-1)=sk-1, … , X(0)=s0 )

= Pr( X(k)=sk | X(k-1)=sk-1 )

• We consider homogenous DTMCs
− transition probabilities are independent of time
− P(sk-1,sk) = Pr( X(k)=sk | X(k-1)=sk-1 )
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Simple DTMC example

• Modelling a very simple communication protocol
− after one step, process starts trying to send a message
− with probability 0.01, channel unready so wait a step
− with probability 0.98, send message successfully and stop
− with probability 0.01, message sending fails, restart
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Simple DTMC example
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D = (S,sinit,P,L)

S = {s0, s1, s2, s3} 
sinit = s0
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L(s0)=∅,
L(s1)={try},
L(s2)={fail},
L(s3)={succ}
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Paths and probabilities

• A (finite or infinite) path through a DTMC 
− is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i
− represents an execution (i.e. one possible behaviour) of the 

system which the DTMC is modelling
• To reason (quantitatively) about this system

− need to define a probability space over paths
• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s
− basic events: cylinder sets (or “cones”)
− cylinder set C(ω), for a finite path ω

= set of infinite paths with the common finite prefix ω
− for example: C(ss1s2)

s1 s2s
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Probability spaces

• Let Ω be an arbitrary non-empty set
• A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω

closed under complementation and countable union, i.e.:
− if A ∈ Σ, the complement Ω ∖ A is in Σ
− if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
− the empty set ∅ is in Σ

• Theorem: For any family F of subsets of Ω, there exists a 
unique smallest σ-algebra on Ω containing F

• Probability space (Ω, Σ, Pr)
− Ω is the sample space
− Σ is the set of events: σ-algebra on Ω
− Pr : Σ → [0,1] is the probability measure:

Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai
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Probability space over paths

• Sample space Ω = Path(s)
set of infinite paths with initial state s

• Event set ΣPath(s)
− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }
− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all 

finite paths ω starting in s
• Probability measure Prs

− define probability Ps(ω) for finite path ω = ss1…sn as:
• Ps(ω) = 1 if ω has length one (i.e. ω = s)
• Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise
• define Prs(C(ω)) = Ps(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details
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Probability space - Example

• Paths where sending fails the first time
− ω = s0s1s2
− C(ω) = all paths starting s0s1s2…
− Ps0(ω) = P(s0,s1) · P(s1,s2)

= 1 · 0.01 = 0.01
− Prs0(C(ω)) = Ps0(ω) = 0.01

• Paths which are eventually successful and with no failures
− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …
− Prs0( C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ … )

= Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …
= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …
= 98/99
= 0.9898989898…

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}



16

Overview

• Probability basics

• Discrete-time Markov chains (DTMCs)
− definition, examples, probability measure

• Properties of DTMCs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards



17

PCTL

• Temporal logic for describing properties of DTMCs
− PCTL = Probabilistic Computation Tree Logic [HJ94]
− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL
− key addition is probabilistic operator P
− quantitative extension of CTL’s A and E operators

• Example
− send → P≥0.95 [ true U≤10 deliver ]
− “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”
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PCTL syntax

• PCTL syntax:

− φ ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ ::=  X φ |    φ U≤k φ |   φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula
− path formulas only occur inside the P operator

“until”

ψ is true with 
probability ~p

“bounded 
until”“next”
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PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC
− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:
− for a state s of the DTMC (S,sinit,P,L):
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples
− s3 ⊨ succ
− s1 ⊨ try ∧ ¬fail
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PCTL semantics for DTMCs

• Semantics of path formulas:
− for a path ω = s0s1s2… in the DTMC:
− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:
− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}
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{try}
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PCTL semantics for DTMCs

• Semantics of the probabilistic operator P
− informal definition:  s ⊨ P~p [ ψ ] means that “the probability, 

from state s, that ψ is true for an outgoing path satisfies ~p”
− example:  s ⊨ P<0.25 [ X fail ] ⇔ “the probability of atomic 

proposition fail being true in the next state of outgoing paths 
from s is less than 0.25”

− formally:  s ⊨ P~p [ψ]  ⇔ Prob(s, ψ) ~ p
− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

s

¬ψ

ψ Prob(s, ψ) ~ p ?
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PCTL derived operators

• Basic logical equivalences:
− false ≡ ¬true (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

• Negation and probabilities
− e.g. ¬P>p [ φ1 U φ2 ] ≡ P≤p [φ1 U φ2 ] 

• The “eventually” path operator
− F φ ≡ true U φ (F = “future”)
− sometimes written as ◊ φ (“diamond”)
− “φ is eventually true”
− bounded version: F≤k φ ≡ true U≤k
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More PCTL

• The “always” path operator
− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (G = “globally”)
− sometimes written as □ φ (“box”)
− “φ is always true”
− bounded version: G≤k φ ≡ ¬(F≤k ¬φ)
− strictly speaking, G φ cannot be derived from the PCTL syntax 

in this way since there is no negation of path formulas)

• F and G represent two useful classes of properties:
− reachability: the probability of reaching a state satisfying φ
− i.e. P~p [ F φ ]
− invariance: the probability of φ always remaining true
− i.e. P~p [ G φ ]
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Derivation of P~p [ G φ ] 

• In fact, we can derive P~p [ G φ ] directly in PCTL, e.g.
− s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p

⇔ Prob(s, ¬(F ¬φ)) > p
⇔ 1 - Prob(s, F ¬φ) > p
⇔ Prob(s, F ¬φ) < 1 - p
⇔ s ⊨ P<1-p [ F ¬φ ]

• Other equivalences:
− P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
− P<p [ G φ ] ≡ P>1-p [ F ¬φ ]
− P>p [ G≤k φ ] ≡ P<1-p [ F≤k ¬φ ]
− etc.
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PCTL and measurability

• All the sets of paths expressed by PCTL are measurable
− i.e. are elements of the σ-algebra ΣPath(s)
− see for example [Var85] (for a stronger result in fact)

• Recall: probability space (Path(s), ΣPath(s), Prs)
− ΣPath(s) contains cylinder sets C(ω) for all finite paths ω starting 

in s and is closed under complementation, countable union

• Next (X φ)
− cylinder sets constructed from paths of length one

• Bounded until (φ1 U≤k φ2)
− (finite number of) cylinder sets from paths of length at most k

• Until (φ1 U φ2)
− countable union of paths satisfying φ1 U≤k φ2 for all k≥0



26

Qualitative vs. quantitative properties

• P operator of PCTL can be seen as a quantitative analogue 
of the CTL operators A (for all) and E (there exists)

• Qualitative PCTL properties
− P~p [ ψ ] where p is either 0 or 1

• Quantitative PCTL properties
− P~p [ ψ ] where p is in the range (0,1)

• P>0 [ F φ ] is identical to EF φ
− there exists a finite path to a φ-state

• P≥1 [ F φ ] is (similar to but) weaker than AF φ
− see next slide…



27

Example: Qualitative/quantitative

• Toss a coin repeatedly until “tails” is thrown

• Is “tails” always eventually thrown?
− CTL:  AF “tails”
− Result:  false
− Counterexample: s0s1s0s1s0s1…

• Does the probability of eventually
throwing “tails” equal one?
− PCTL:  P≥1 [ F “tails” ]
− Result:  true
− Infinite path s0s1s0s1s0s1… has zero probability

s0
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s2

0.5

0.5

1

1

{heads}

{tails}
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Quantitative properties

• Consider a PCTL formula P~p [ ψ ]
− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P
− we allow the form P=? [ ψ ]
− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway
• Useful to spot patterns, trends
• Example

− P=? [ F err/total>0.1 ]
− “what is the probability

that 10% of the NAND
gate outputs are erroneous?”
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Some real PCTL examples

• NAND multiplexing system
− P=? [ F err/total>0.1 ]
− “what is the probability that 10% of the NAND gate outputs are 

erroneous?”

• Bluetooth wireless communication protocol
− P=? [ F≤t reply_count=k ]
− “what is the probability that the sender has received k 

acknowledgements within t clock-ticks?”

• Security: EGL contract signing protocol
− P=? [ F (pairs_a=0 & pairs_b>0) ]
− “what is the probability that the party B gains an unfair 

advantage during the execution of the protocol?”
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PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]
− inputs:  DTMC D=(S,sinit,P,L),  PCTL formula φ
− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?
− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S
− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit∈ Sat(φ)

• Sometimes, focus on quantitative results
− e.g. compute result of P=? [ F error ]
− e.g. compute result of P=? [ F≤k error ] for 0≤k≤100
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PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ ψ ] operator 
− need to compute the

probabilities Prob(s, ψ)
for all states s ∈ S

∧

¬

→

P>0.95 [ · U · ]

¬

fail fail

succtry
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PCTL next for DTMCs

• Computation of probabilities for PCTL next operator
− Sat(P~p[ X φ ]) = { s ∈ S | Prob(s, X φ) ~ p }
− need to compute Prob(s, X φ) for all s ∈ S

• Sum outgoing probabilities for
transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• Compute vector Prob(X φ) of
probabilities for all states s
− Prob(X φ) = P · φ
− where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ
− computation requires a single matrix-vector multiplication

s

φ
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PCTL next - Example

• Model check: P≥0.9 [ X (¬try ∨ succ) ]
− Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)

= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

− Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

• Results:
− Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]
− Sat(P≥0.9 [ X (¬try ∨ succ) ]) = {s1, s2, s3}
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PCTL bounded until for DTMCs

• Computation of probabilities for PCTL U≤k operator
− Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | Prob(s, φ1 U≤k φ2) ~ p }
− need to compute Prob(s, φ1 U≤k φ2) for all s ∈ S

• First identify states where probability is trivially 1 or 0
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• Letting S? = S \ (Syes ∪ Sno), compute solution of recursive 
equations:

0k and Ss if
0k and Ss if

Ss if
Ss if

)φ U φ ,Prob(s')s'P(s,
0
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1

    )φ U φ Prob(s,

?
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∈
∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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∑
∈
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PCTL bounded until for DTMCs

• Simultaneous computation of vector Prob(φ1 U≤k φ2)
− i.e. probabilities Prob(s, φ1 U≤k φ2) for all s ∈ S

• Iteratively define in terms of matrices and vectors
− define matrix P’ as follows: P’(s,s’) = P(s,s’) if s ∈ S?,

P’(s,s’) = 1 if s ∈ Syes and s=s’,  P’(s,s’) = 0 otherwise
− Prob(φ1 U≤0 φ2) = φ2

− Prob(φ1 U≤k φ2) = P’ · Prob(φ1 U≤k-1 φ2)
− requires k matrix-vector multiplications

• Note that we could express this in terms of matrix powers
− Prob(φ1 U≤k φ2) = (P’)k · φ2 and compute (P’)k in log2k steps
− but this is actually inefficient: (P’)k is much less sparse than P’
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PCTL bounded until - Example

• Model check: P>0.98 [ F≤2 succ ] ≡ P>0.98 [ true U≤2 succ ]
− Sat (true) = S = {s0,s1,s2,s3},  Sat(succ) = {s3}
− Syes = {s3},  Sno = ∅,  S? = {s0,s1,s2},  P’ = P
− Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

− Sat(P>0.98 [ F≤2 succ ]) = {s1, s3}
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PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
• Similar to the bounded until operator, we first identify all 

states where the probability is 1 or 0
− Syes = Sat(P≥1 [ φ1 U φ2 ])
− Sno = Sat(P≤0 [ φ1 U φ2 ])

• We refer to this as the “precomputation” phase
− two precomputation algorithms: Prob0 and Prob1

• Important for several reasons
− reduces the set of states for which probabilities must be 

computed numerically
− for P~p[·] where p is 0 or 1, no further computation required
− gives exact results for the states in Syes and Sno (no round-off)
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Precomputation algorithms

• Prob0 algorithm to compute Sno = Sat(P≤0 [ φ1 U φ2 ]) :
− first compute Sat(P>0 [ φ1 U φ2 ])
− i.e. find all states which can, with non-zero probability, reach 

a φ2-state without leaving φ1-states
− i.e. find all states from which there is a finite path through 
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

• Prob1 algorithm to compute Syes = Sat(P≥1 [ φ1 U φ2 ]) :
− first compute Sat(P<1 [ φ1 U φ2 ]), reusing Sno

− this is equivalent to the set of states which have a non-zero 
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation
− subtract the resulting set from S
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PCTL until for DTMCs

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the 
unique solution of the following set of linear equations:

− can be reduced to a system in |S’| unknowns instead of |S|
S? = S \ (Syes ∪ Sno)

• This can be solved with (a variety of) standard techniques
− direct methods, e.g. Gaussian elimination
− iterative methods, e.g. Jacobi, Gauss-Seidel, …

otherwise

Ss if

Ss if

)φ U φ ,Prob(s')s'P(s,

0

1

    )φ U φ Prob(s, no

yes

Ss'
21

21 ∈

∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅

=

∑
∈
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PCTL until - Example

• Model check: P>0.99 [ try U succ ]
− Sat(try) = {s1},  Sat(succ) = {s3}
− Sno = Sat(P≤0 [ try U succ ]) = {s0,s2}
− Syes = Sat(P≥1 [ try U succ ]) = {s3}
− S? = {s1}

• Linear equation system:
− x0 = 0
− x1 = 0.01 · x1 + 0.01 · x2 + 0.98 · x3

− x2 = 0
− x3 = 1 

• Which yields:
− Prob(try U succ) = x = [0, 98/99, 0, 1]
− Sat(P>0.99 [ try U succ ]) = {s3}

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}
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Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity
− essentially: probability of reaching states in X, passing only 

through states in Y, and within k time-steps

• More expressive logics can be used, for example:
− LTL, the non-probabilistic linear-time temporal logic
− PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

• These both allow combinations of temporal operators
− e.g. for liveness: P~p [ G F φ ] - “always eventually φ”

• Model checking algorithms for DTMCs and PCTL* exist but 
are more expensive to implement (higher complexity)
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Overview

• Probability basics

• Discrete-time Markov chains (DTMCs)
− definition, examples, probability measure

• Properties of DTMCs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)
− real-valued quantities assigned to states and/or transitions
− these can have a wide range of possible interpretations

• Some examples:
− elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, …

• Costs? or rewards?
− mathematically, no distinction between rewards and costs
− when interpreted, we assume that it is desirable to minimise 

costs and to maximise rewards 
− we will consistently use the terminology “rewards” regardless
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Reward-based properties

• Properties of DTMCs augmented with rewards
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards
− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties
− the expected value of the reward at some time point

• Cumulative properties
− the expected cumulated reward over some period
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DTMC reward structures

• For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)
− ρ : S → ℝ≥0 is the state reward function (vector)
− ι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)
− “size of message queue”: ρ maps each state to the number of 

jobs in the queue in that state, ι is not used
• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ι is zero 
(equivalently, ρ is zero and ι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ι maps transitions
corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step
energy consumption in each state and ι as the energy cost of
each transition
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PCTL and rewards

• Extend PCTL to incorporate reward-based properties
− add an R operator, which is similar to the existing P operator

− φ ::=  … |  P~p [ ψ ]  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected 
reward is ~r

“cumulative”“instantaneous”
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Types of reward formulas

• Instantaneous: R~r [ I=k ]
− “the expected value of the state reward at time-step k is ~r”
− e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [ C≤k ]
− “the expected reward cumulated up to time-step k is ~r”
− e.g. “the expected power consumption over one hour”

• Reachability: R~r [ F φ ]
− “the expected reward cumulated before reaching a state 

satisfying φ is ~r”
− e.g. “the expected time for the algorithm to terminate”
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Reward formula semantics

• Formal semantics of the three reward operators:
− for a state s in the DTMC:
− s ⊨ R~r [ I=k ]  ⇔ Exp(s, XI=k) ~ r
− s ⊨ R~r [ C≤k ]  ⇔ Exp(s, XC≤k) ~ r
− s ⊨ R~r [ F Φ ]  ⇔ Exp(s, XFΦ) ~ r

where: Exp(s,X) denotes the expectation of the random variable
X : Path(s) → ℝ≥0 with respect to the probability measure Prs
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Reward formula semantics

• Definition of random variables:
− for an infinite path ω= s0s1s2…

− where kφ =min{ j | sj ⊨ φ }

 otherwise
0k if

)s,s()s(ρ 
0

   )ω(X 1k 
0i 1iii

kC
=

+⎩
⎨
⎧

= ∑ −

= +
≤ ι

)s(ρ  )ω(X kkI ==

otherwise

 0i all for )φSat( s if

)φSat(s if

)s,s()s(ρ 

0

   )ω(X i

0

1-k 
0i 1iii

φF

φ

≥∉

∈

+

∞

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

∑ = +ι



51

• Instantaneous: R~r [ I=k ]
− reduces to computation of bounded until probabilities
− solution of recursive equations

• Cumulative: R~r [ C≤t ]
− variant of the method for computing bounded until 

probabilities 
− solution of recursive equations

• Reachability: R~r [ F φ ] 
− similar to computing until probabilities
− reduces to solving a system of linear equation
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Model checking summary

• Atomic propositions and logical connectives: trivial

• Probabilistic operator P:
− X Φ : one matrix-vector multiplications
− Φ1 U≤k Φ2 : k matrix-vector multiplications
− Φ1 U Φ2 : linear equation system in at most |S| variables

• Expected reward operator R
− I=k : k matrix-vector multiplications
− C≤k : k iterations of matrix-vector multiplication + summation
− F Φ : linear equation system in at most |S| variables
− details for the reward operators are in [KNP07a]
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Model checking complexity

• Model checking of DTMC (S,sinit,P,L) against PCTL formula Φ
(including reward operators)
− complexity is linear in |Φ| and polynomial in |S|

• Size |Φ| of Φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operators are P~p [ Φ1 U Φ2 ] and R~r [ F Φ ]
− main task: solution of linear equation system of size |S|
− can be solved with Gaussian elimination: cubic in |S|
− and also precomputation algorithms (max |S| steps)

• Strictly speaking, U≤k could be worse than U for large k
− but in practice k is usually small
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Summing up…

• Discrete-time Markov chains (DTMCs)
− definition, examples, probability measure

• Properties of DTMCs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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