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Probability basics

First, need an experiment
— The sample set Q is the set of possible outcomes
— An event is a subset of Q, can form events AN B, AU B, Q\ A

Examples:
— toss a coin: Q = {H,T}, events: “H”, “T”
— toss two coins: Q = {(H,H),H,T),(T,H),(T, D},
event: “at least one H”
— toss a coin co-often: Q is set of infinite sequences
event: “H in the first 3 throws”
Probability is:

— P[*H’] = P[*T"] = 1/2, P["at least one H"] = 3/4
— P[*H in the first 3 throws”] =1/2 +1/4+1/8=7/8




Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:
— start at 0, toss a coin
— upper branch when H
— lower branch when T
— repeat until value chosen

Probability of obtaining a 6?
— P[“eventually 6”]
=(1/2)3+0/2)>+0/2)"+...=1/6

- Obtain as disjoint union of events
— TTH, TTTTH, TTTTTTH, ...




Probability example

Derive recursive linear equations for P[“eventually 6”]
— let x; denote the probability for state i = 0,1,2,3,4,5,6
— probability in state where die takes value 6 is 1
— probability in all other final states is O

Xe=1/2 %X, +1/2 -1
X, =1/2 - Xg
Xo=1/2 - %,

- Yields the unique solution:
Xo=1/6, X, =1/3 and x; =2/3

P["eventually 6"] = x, = 1/6
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- Transitions

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

States

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions




Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s;...,P,L) where:
— Sis a finite set of states (“state space”)
— S € Sis the initial state
— P:S XS — [0,1]is the transition probability matrix
where 2. . P(s,s’) =1 foralls €S

— L:S — 2APjs function labelling states with atomic
propositions

inity

s’eS

Note: no deadlock states
— i.e. every state has at least
one outgoing transition

— can add self loops to represent
final/terminating states



DTMCs: An alternative definition

- Alternative definition: a DTMC is:

— a family of random variables { X(k) | k=0,1,2,... }
— X(k) are observations at discrete time-steps
— j.e. X(k) is the state of the system at time-step k

- Memorylessness (Markov property)
— Pr(X(K)=s, | X(k-1)=s,_;, ... , X(0)=s, )
= Pr( X(k)=s, | X(k-T)=s,_;)

- We consider homogenous DTMCs

— transition probabilities are independent of time
— P(s,_,S,) = Pr( X(k)=s, | X(k-1)=s,_,)



Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart
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Simple DTMC example

D = (S,s,,,P,L) f(‘;;:{gy, fail, succ}
L(s,)={try},

S — ’ y ’ 1 .

- {:505051 S5, S3} Ls))—tfall}

L(s3)={succ}

0 1 0 0]

> _|0 0.01 0.01 0.98
1 0 0 0
0o 0 0 1
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Paths and probabilities

. A (finite or infinite) path through a DTMC
— is a sequence of states s,s,5,5;... such that P(s;,s,.;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths
Intuitively: e

_____

— sample space: Path(s) = set of all f:’jlilil

infinite paths from a state s
— events: sets of infinite paths froms 7
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)
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Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € 3, the complement Q \ Aisin 2
— if A, € 2 fori € N, the union U; A, is in X
— the empty set @ is in 2

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, 2, Pr)
— Q is the sample space
— 2 is the set of events: o-algebra on Q
— Pr: % — [0,1] is the probability measure:
Pr(QQ) = 1 and Pr(u, A) = Z, Pr(A) for countable disjoint A,
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Probability space over paths

- Sample space Q = Path(s)
set of infinite paths with initial state s
Event set 2p,,
— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpanes 1S the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P ,(w) for finite path w = ss,...s,, as:
- P, (w) = 1 if w has length one (i.e. w = 5)
- P,(w) = P(s,sy) - ... - P(s,,_1,5,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths w
— Pr, extends uniquely to a probability measure Pr 2, —[0,1]

- See [KSK76] for further details
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Probability space - Example

Paths where sending fails the first time
— W = 5,55,
— C(w) = all paths starting s,5;5,...
— Po(w) = P(sy,s,) - P(s;,S,)
=1-0.01 =0.01
— Pr((C(w)) = P,(w) = 0.01

Paths which are eventually successful and with no failures
— C(s45753) U C(s45;5;53) U C(545,5;5{53) U ...
— Pro( C(syS5,53) U C(545,5;53) U C(5,5;5;5;S3) U ...)
= P.y(505:S3) + P.o(505:5153) + P.(S¢S715:5:S3) + ...
=1-0.98 +1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 98/99
= 0.9898989898...
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PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_, o5 [ true U=10 deliver ]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

17



PCTL syntax

------------------------------------------------

P is true with
PCTL syntax: . probability ~p
— ¢ i=true|aldAdP| | P., RUN (state formulas)
- =X | odUskd | dUD (path formulas)
T S A | T

.“ ............. ; .’ ..... “bou nded .“ ”._

: “next” | i ountil” i

until S

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- A PCTL formula is always a state formula
— path formulas only occur inside the P operator
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- Examples

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s E ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the DTMC (§,s;,;,P,L):

- SkEa < a€L(s)

- SE®, Ab, < SE ¢, and s = ¢,
— s E —¢ < s E ¢ is false

— S3 = succ
— s, E try A —fail
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PCTL semantics for DTMCs

- Semantics of path formulas:
— for a path w = s4s,5,... in the DTMC:
- wkEX$ S S E¢
- wkE ¢, Uskdp, <« Fi<ksuchthats, = ¢, and Vj<i, s E ¢,
- wkE ¢, Ud, < dk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

20




PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s &= P, [ @ ] means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s = P_,,s [ X fail ] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [@] < Prob(s, ) ~p
— where: Prob(s, ¢) = Pr.{ w € Path(s) | w E @ }

21



PCTL derived operators

- Basic logical equivalences:
— false = —true

- CI)] 4 cbz = _'(_'431 A _'d)z)
— ¢~ =7 VP,

- Negation and probabilities
— €.0. _'P>p [, U, ] = Psp (b, U b, ]

- The “eventually” path operator

—Fd=trueUd

— sometimes written as ¢ ¢

— “¢ is eventually true”

— bounded version: F=k ¢ = true Usk

(false)
(disjunction)
(implication)

(F = “future”)
(“diamond”)
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More PCTL

- The “always” path operator

— G =—~(F —p) = —(true U —¢) (G = “globally”)
— sometimes written as O ¢ (“box”)

— “¢ is always true”

— bounded version: G=k ¢ = —(F=k =)

— strictly speaking, G ¢ cannot be derived from the PCTL syntax
in this way since there is no negation of path formulas)

F and G represent two useful classes of properties:
— reachability: the probability of reaching a state satisfying ¢

—i.e.P,[F¢]
— invariance: the probability of ¢ always remaining true

—ie. P, [Go]

23



Derivation of P_, [ G ¢ ]

- In fact, we can derive P_, [ G ¢ ] directly in PCTL, e.qg.

0

-s=EP ,[CGo] Prob(s, G ¢) > p

Prob(s, —(F —=¢)) > p
1 - Prob(s, F =) > p
Prob(s, F =) <1 -p

sE=P_,_, [F-d]

I

- Other equivalences:

_PZP[GCID] = PS]_p[F—.cb]
_P<p[G¢] = P>]_p[F_'¢]
P, [GHGl= P, [F* -]
— etc.
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PCTL and measurability

. All the sets of paths expressed by PCTL are measurable
— i.e. are elements of the og-algebra X,
— see for example [Var85] (for a stronger result in fact)

Recall: probability space (Path(s), 2p.in), Prs)
— Zpathis) CONtains cylinder sets C(w) for all finite paths w starting

in s and is closed under complementation, countable union

Next (X ¢)
— cylinder sets constructed from paths of length one
Bounded until (¢, U=k d,)
— (finite number of) cylinder sets from paths of length at most k

Until (¢, U b,)

— countable union of paths satisfying ¢, U=k ¢, for all k=0

25



Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

+ Qualitative PCTL properties
— P_, [ W] where pis either 0 or 1

- Quantitative PCTL properties

— P_ [ W] where pis in the range (0,1)

.+ P.o [F & ]isidentical to EF ¢
— there exists a finite path to a ¢-state

. P_, [F ¢ ]is (similar to but) weaker than AF ¢
— see next slide...
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Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown

Is “tails” always eventually thrown? 1 {heads}
— CTL: AF “tails”
— Result: false
— Counterexample: s,5,5,5;5¢S;---

Does the probability of eventually
throwing “tails” equal one?

— PCTL: P, [ F “tails” ]
— Result: true

— Infinite path s;5,5,5,5,5;... has zero probability

27



Quantitative properties

Consider a PCTL formula P_, [ @ ]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— we allow the form P_, [ @ ]
— “what is the probability that path formula ¢ is true?”
Model checking is no harder: compute the values anyway
Useful to spot patterns, trends -

Example
— P=?[F err/total>0.1]

— “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

PRISM [21]

—e— A =0.01
—e— L =0.02
—&— 3, =0.03
—4— 1. =0.04
Analytical [7]
-e- A=00
-8- A=002
-4- 3 =003
-4~ L=004

Probability

1 2 3 4 5 5] i
Mumber of restorative stages

28




Some real PCTL examples

NAND multiplexing system
— P_, [ F err/total>0.1 ]

— “what is the probability that 10% of the NAND gate outputs are
erroneous?”

Bluetooth wireless communication protocol
— P_, [ F=t reply_count=k ]

— “what is the probability that the sender has received k
acknowledgements within t clock-ticks?”

- Security: EGL contract signing protocol

— P_, [ F (pairs_a=0 & pairs_b>0) ]

— “what is the probability that the party B gains an unfair
advantage during the execution of the protocol?”
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PCTL model checking for DTMCs

. Algorithm for PCTL model checking [CY88,HJ94,CY95]
— inputs: DTMC D=(S,s,,;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check thats = ¢ V s € S, i.e. Sat(d) = S
— sometimes, just want to know if s;_.. = ¢, i.e. if s, . € Sat(d)

init init
- Sometimes, focus on quantitative results
— e.g. compute result of P=? [ F error ]

— e.g. compute result of P=? [ Fsk error ] for 0<k<100
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PCTL model checking for DTMCs

.- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) = P_, 4 [ —fail U succ]

- For the non-probabilistic operators:
— Sat(true) =S
— Sat(@a) ={seS|ael(s)}

— Sat(—¢) = S\ Sat(d) / ‘\

—

— Sat(d, A b,) = Sat(d,) N Sat(d,) A Pooosl-U-]

- For the P_, [ @ ] operator N %D - é@

— need to compute the

probabilities Prob(s, ) © ©
for all states s € S fail fail

32




PCTL next for DTMCs

- Computation of probabilities for PCTL next operator

— Sat(P_[Xd]) ={s €S| Prob(s,Xp)~p}
— need to compute Prob(s, X ¢) forall s € S

- Sum outgoing probabilities for
transitions to ¢-states

— Prob(s, X $) = 2, c5ayq) P(5,S") O

- Compute vector Prob(X ¢) of _______________
probabilities for all states s

— Prob(X ¢) =P - ¢
— where ¢ is a 0-1 vector over S with ¢(s) = 1 iff s = ¢
— computation requires a single matrix-vector multiplication
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PCTL next - Example

- Model check: P_yq4 [ X (—=try Vv succ) ]

— Sat (—try Vv succ) = (S \ Sat(try)) U Sat(succ)
= ({S¢,571,55,S3} \ {s{}) U {s3} = {s(,5,,55}

— Prob(X (—try Vv succ)) = P - (=try V succ) = ...

0 1 0o o017 To
0 0.01 0.01 0.98| |0| |0.99
110 0 0 ||1] ] 1
o o o 1 |[1] |1

- Results:
— Prob(X (—try Vv succ)) = [0, 0.99, 1, 1]
— Sat(P.gq [ X (—try Vv succ) ) = {s,, S,, S5}
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PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U=k operator

— Sat(P_,[ &, Uskd, ]) ={s €S | Prob(s, ¢, Usk ;) ~p}

— need to compute Prob(s, ¢, Usk ¢,) forall s € S

- First identify states where probability is trivially 1 or O
— Sves = Sat(¢,)

— Sno =5\ (Sat(d,) U Sat(d,))

.+ Letting S” = S\ (S¥&s U S"°), compute solution of recursive
equations:

1 if s S
0 ifseS™
Prob(sg, U* &,) = "
(seh U™ d,) = < 0 . ifseSandk=0
gP(s,s')-Prob(s: G U D) ifses andk>0

35



PCTL bounded until for DTMCs

- Simultaneous computation of vector Prob(d, U=k ¢,)
— i.e. probabilities Prob(s, ¢, Usk ¢,) forall s € S

Iteratively define in terms of matrices and vectors

— define matrix P’ as follows: P’(s,s’) = P(s,s’) if s € S?,
P’(s,s’) = 1 if s € Syes and s=s’, P’(s,s’) = O otherwise

— PI‘_Ob(CI)] u=0 ¢2) = Qz
- PI‘_Ob(Cb1 U=k d)z) =P - PI’_Ob(CI)] U=k-1 Cbz)
— requires k matrix-vector multiplications

Note that we could express this in terms of matrix powers
— Prob(¢, U=k ¢,) = (P’)k - ¢, and compute (P’)k in log,k steps
— but this is actually inefficient: (P’)k is much less sparse than P’
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PCTL bounded until - Example

Model check: P_j 45 [ F52 succ ] = P_, 45 [ true U=2 succ ]

— Sat (true) = S = {s,,5;,5,,53}, Sat(succ) = {s;}
— Sves = {s;}, Sno=(J, §'={s,s;,S,}, PP =P

— Prob(true U=0 succ) = succ = [0, O, O, 1]
0 1 0 0

0
0O 0.01 0.01 0.98| |0
1 0 0 0 0

Prob(true U' succ) = P'-Prob(true U*° succ) =

o o o 1 |[1]]
o 1 0 071[o0
0 0.01 0.01 0.98]0.98
1 0 0o 0| o

0 0 0 1 1

Prob(true U** succ) = P'-Prob(true U*' succ) =

— Sat(P. 45 [ F=? succ ]) = {s,, s3}
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PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) forall s € S

- Similar to the bounded until operator, we first identify all
states where the probability is 1 or 0

— Sves = Sat(P_, [d, U, ]
— Sno = Sat(PSo [ &, U, ])

- We refer to this as the “precomputation” phase
— two precomputation algorithms: ProbO and Prob]1
Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically

— for PNp[-] where p is 0 or 1, no further computation required

— gives exact results for the states in S¥es and S"° (no round-off)
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Precomputation algorithms

Prob0 algorithm to compute S" = Sat(P_,[ ¢, U ¢, ]):
— first compute Sat(P.,[ ¢, U ¢, ])

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢,-states

— i.e. find all states from which there is a finite path through
¢, -states to a ¢,-state: simple graph-based computation

— subtract the resulting set from S

Prob1 algorithm to compute S¥¢s = Sat(P., [ ¢, U, ]):
— first compute Sat(P_, [ ¢, U ¢, ]), reusing Sno

— this is equivalent to the set of states which have a non-zero
probability of reaching S"°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

39



PCTL until for DTMCs

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

] if se S

Prob(s, d, Ud,) = - 0 if s eS™
> P(s,s")-Prob(s', d, Ud,) otherwise

L s'eS

— can be reduced to a system in |S’| unknowns instead of |S|
S? =S \ (Syes U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination
— iterative methods, e.g. Jacobi, Gauss-Seidel, ...
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- Linear equation system:

PCTL until - Example

- Model check: P_j o9 [ try U succ ]

— Sat(try) = {s;}, Sat(succ) = {s5}

— Sno = Sat(P_, [ try U succ ]) = {s,s,}
— Sves = Sat(P_, [ try U succ ]) = {s5}
- S = s}

— Xy =
— X; = 0.01 - x; + 0.01 - x, + 0.98 - x4
— X, =
— X3 =1

- Which yields:

— Prob(try U succ) = x = [0, 98/99, 0, 1]
— Sat(P. g 99 [ try U succ ]) = {ss}

41



Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y, and within k time-steps

More expressive logics can be used, for example:
— LTL, the non-probabilistic linear-time temporal logic
— PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL

- These both allow combinations of temporal operators
— e.g. for liveness: P_ [ G F ¢ | - “always eventually ¢”

Model checking algorithms for DTMCs and PCTL* exist but
are more expensive to implement (higher complexity)
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Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

- Some examples:
— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

- Costs? or rewards?
— mathematically, no distinction between rewards and costs

— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless
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Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period
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DTMC reward structures

For a DTMC (S,s,,;,P,L), a reward structure is a pair (p,u)
- p:S— R, is the state reward function (vector)
—1:S XS — R_,is the transition reward function (matrix)
Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and L is zero
(equivalently, p is zero and L returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and u as the energy cost of
each transition
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PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

:  expected
. reward is ~r

-------------------------------------------

................................................... I

. “instantaneous” | | “cumulative” | i “reachability”

— wherer € R, ~ € {<,>,<,2}, k € N

R.. [ - ] means “the expected value of - satisfies ~r”

47




Types of reward formulas

Instantaneous: R_, [ 17K ]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

Cumulative: R_ [ C=k]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

Reachability: R_, [F ¢ ]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”

— e.g. “the expected time for the algorithm to terminate”
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Reward formula semantics

Formal semantics of the three reward operators:
— for a state s in the DTMC:
—sER_[IFK] < Exp(s, X_) ~r
—sER_ [Ck] & Exp(s, Xco) ~ 1
—sER_,[F®] & Exp(s, Xpp) ~r

where: Exp(s,X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,
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Reward formula semantics

- Definition of random variables:

— for an infinite path w= s;s;s,...

X|:k (U.)) = E(Sk )

Xea (W) :{ Z

XF¢(UU) =

3

k-]
i=0

k-1
i=0

0 ifk=0
E(Si)+l'(silsi+]) otherwise

0 if s, € Sat(¢)
0 if s, ¢ Sat(¢p) foralli>0

p(s)+1(s,s,,) otherwise

— where ky, =min{j [ s; = ¢ }
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- Instantaneous: R_, [ I7¢]
— reduces to computation of bounded until probabilities
— solution of recursive equations

- Cumulative: R_, [ C=t]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

- Reachability: R_. [ F ¢ ]
— similar to computing until probabilities
— reduces to solving a system of linear equation
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Model checking summary

Atomic propositions and logical connectives: trivial

Probabilistic operator P:
— X @ : one matrix-vector multiplications
— &, U=k @, : k matrix-vector multiplications
— &, U &, : linear equation system in at most |S| variables

Expected reward operator R
— I=k : k matrix-vector multiplications
— C=k: k iterations of matrix-vector multiplication + summation
— F @ : linear equation system in at most |S| variables
— details for the reward operators are in [KNPO7a]
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Model checking complexity

Model checking of DTMC (S,s,,,P,L) against PCTL formula ¢
(including reward operators)

— complexity is linear in |®| and polynomial in |S]

- Size |®| of @ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operators are P_, [®, U®d, Jand R [F® ]
— main task: solution of linear equation system of size |S|
— can be solved with Gaussian elimination: cubic in |S|

— and also precomputation algorithms (max |S| steps)

- Strictly speaking, U=k could be worse than U for large k
— but in practice k is usually small
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Summing up...

- Discrete-time Markov chains (DTMCs)

— definition, examples, probability measure

. Properties of DTMCs: The logic PCTL

— syntax, semantics, equivalences, ...

- PCTL model checking

— algorithms, examples, ...

- Costs and rewards
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