# **Probabilistic Model Checking**

Marta Kwiatkowska Gethin Norman Dave Parker



University of Oxford

#### Part 2 - Discrete-Time Markov Chains

### Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
  - definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards

# **Probability basics**

- First, need an experiment
  - The sample set  $\Omega$  is the set of possible outcomes
  - An event is a subset of  $\Omega,$  can form events  $A \cap B, A \cup B, \Omega \setminus A$

#### • Examples:

- toss a coin:
- toss two coins:
- toss a coin  $\infty$ -often:

 $\Omega = \{H,T\}, events: "H", "T"$   $\Omega = \{(H,H),(H,T),(T,H),(T,T)\},$ event: "at least one H"  $\Omega$  is set of infinite sequences event: "H in the first 3 throws"

#### • Probability is:

- P["H"] = P["T"] = 1/2, P["at least one H"] = 3/4
- P["H in the first 3 throws"] = 1/2 + 1/4 + 1/8 = 7/8

### Probability example

#### • Modelling a 6-sided die using a fair coin

- algorithm due to Knuth/Yao:
- start at 0, toss a coin
- upper branch when H
- lower branch when T
- repeat until value chosen
- Probability of obtaining a 6?
  - P["eventually 6"]
  - $= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$
- Obtain as disjoint union of events

   TTH, TTTTH, TTTTTH, ...



### Probability example

- Derive recursive linear equations for P["eventually 6"]
  - let  $x_i$  denote the probability for state i = 0,1,2,3,4,5,6
  - probability in state where die takes value 6 is 1
  - probability in all other final states is 0

$$x_6 = 1/2 \cdot x_2 + 1/2 \cdot 1$$
  
 $x_2 = 1/2 \cdot x_6$   
 $x_0 = 1/2 \cdot x_2$ 

• Yields the unique solution:

 $x_0 = 1/6$ ,  $x_2 = 1/3$  and  $x_6 = 2/3$ 

 $P["eventually 6"] = x_0 = 1/6$ 



### Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
   definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards

### Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
  - state-transition systems augmented with probabilities
- States
  - discrete set of states representing possible configurations of the system being modelled
- Transitions
  - transitions between states occur in discrete time-steps
- Probabilities
  - probability of making transitions between states is given by discrete probability distributions



#### Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s<sub>init</sub>,P,L) where:
  - S is a finite set of states ("state space")
  - $\boldsymbol{s}_{init} \in \boldsymbol{S}$  is the initial state
  - − P : S × S → [0,1] is the transition probability matrix where  $\Sigma_{s' \in S}$  P(s,s') = 1 for all s ∈ S
  - L : S  $\rightarrow$  2<sup>AP</sup> is function labelling states with atomic propositions
- Note: no deadlock states
  - i.e. every state has at least one outgoing transition
  - can add self loops to represent final/terminating states



#### DTMCs: An alternative definition

- Alternative definition: a DTMC is:
  - a family of random variables { X(k) | k=0,1,2,... }
  - X(k) are observations at discrete time-steps
  - i.e. X(k) is the state of the system at time-step k

#### Memorylessness (Markov property)

#### We consider homogenous DTMCs

- transition probabilities are independent of time
- $P(s_{k-1},s_k) = Pr(X(k)=s_k | X(k-1)=s_{k-1})$

## Simple DTMC example

Modelling a very simple communication protocol

- after one step, process starts trying to send a message
- with probability 0.01, channel unready so wait a step
- with probability 0.98, send message successfully and stop
- with probability 0.01, message sending fails, restart



#### Simple DTMC example

$$\mathsf{D} = (\mathsf{S}, \mathsf{s}_{\mathsf{init}}, \mathsf{P}, \mathsf{L})$$

$$S = \{s_0, s_1, s_2, s_3\}$$
  
 $s_{init} = s_0$ 

$$AP = \{try, fail, succ\}$$

$$L(s_0) = \emptyset,$$

$$L(s_1) = \{try\},$$

$$L(s_2) = \{fail\},$$

$$L(s_3) = \{succ\}$$



# Paths and probabilities

- A (finite or infinite) path through a DTMC
  - is a sequence of states  $s_0s_1s_2s_3...$  such that  $P(s_i,s_{i+1}) > 0 \forall i$
  - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
  - need to define a probability space over paths
- Intuitively:
  - sample space: Path(s) = set of all infinite paths from a state s
  - events: sets of infinite paths from s
  - basic events: cylinder sets (or "cones")
  - cylinder set C( $\omega$ ), for a finite path  $\omega$ 
    - = set of infinite paths with the common finite prefix  $\omega$
  - for example: C(ss<sub>1</sub>s<sub>2</sub>)

## Probability spaces

- Let  $\Omega$  be an arbitrary non-empty set
- A  $\sigma$ -algebra (or  $\sigma$ -field) on  $\Omega$  is a family  $\Sigma$  of subsets of  $\Omega$  closed under complementation and countable union, i.e.:
  - if  $A\in \Sigma,$  the complement  $\Omega\setminus A$  is in  $\Sigma$
  - if  $A_i \in \Sigma$  for  $i \in \mathbb{N},$  the union  $\cup_i A_i$  is in  $\Sigma$
  - the empty set  $\varnothing$  is in  $\Sigma$
- Theorem: For any family F of subsets of  $\Omega,$  there exists a unique smallest  $\sigma\text{-algebra}$  on  $\Omega$  containing F
- Probability space ( $\Omega$ ,  $\Sigma$ , Pr)
  - $-\ \Omega$  is the sample space
  - $\Sigma$  is the set of events:  $\sigma\text{-algebra}$  on  $\Omega$
  - Pr :  $\Sigma \rightarrow [0,1]$  is the probability measure:

 $Pr(\Omega) = 1$  and  $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$  for countable disjoint  $A_i$ 

## Probability space over paths

- Sample space Ω = Path(s)
   set of infinite paths with initial state s
- Event set  $\Sigma_{Path(s)}$ 
  - the cylinder set  $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
  - $\Sigma_{Path(s)}$  is the least  $\sigma\text{-algebra}$  on Path(s) containing C(w) for all finite paths  $\omega$  starting in s
- Probability measure Pr<sub>s</sub>
  - define probability  $P_s(\omega)$  for finite path  $\omega = ss_1...s_n$  as:
    - ·  $P_s(\omega) = 1$  if  $\omega$  has length one (i.e.  $\omega = s$ )
    - $\mathbf{P}_{s}(\omega) = \mathbf{P}(s,s_{1}) \cdot \ldots \cdot \mathbf{P}(s_{n-1},s_{n})$  otherwise
    - · define  $Pr_s(C(\omega)) = P_s(\omega)$  for all finite paths  $\omega$
  - $Pr_s$  extends uniquely to a probability measure  $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

#### Probability space – Example

· Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

- $C(\omega) = all paths starting s_0 s_1 s_2 \dots$
- $P_{s0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2)$ = 1 \cdot 0.01 = 0.01

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$



Paths which are eventually successful and with no failures

$$- \mathsf{C}(\mathsf{s}_0\mathsf{s}_1\mathsf{s}_3) \cup \mathsf{C}(\mathsf{s}_0\mathsf{s}_1\mathsf{s}_1\mathsf{s}_3) \cup \mathsf{C}(\mathsf{s}_0\mathsf{s}_1\mathsf{s}_1\mathsf{s}_1\mathsf{s}_3) \cup \dots$$

$$- \Pr_{s0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \dots)$$

- $= \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_3) + \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_1\mathbf{s}_3) + \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_1\mathbf{s}_1\mathbf{s}_3) + \dots$
- $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \dots$
- = 98/99
- = 0.9898989898...

## Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
   definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards

# PCTL

- Temporal logic for describing properties of DTMCs
  - PCTL = Probabilistic Computation Tree Logic [HJ94]
  - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
  - key addition is probabilistic operator P
  - quantitative extension of CTL's A and E operators

#### • Example

- send →  $P_{\geq 0.95}$  [ true U<sup>≤10</sup> deliver ]
- "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"



- where a is an atomic proposition, used to identify states of interest,  $p \in [0,1]$  is a probability,  $\sim \in \{<,>,\leq,\geq\}$ ,  $k \in \mathbb{N}$
- A PCTL formula is always a state formula
  - path formulas only occur inside the P operator

## PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC -  $s \models \phi$  denotes  $\phi$  is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
  - for a state s of the DTMC ( $S, s_{init}, P, L$ ):
  - $s \vDash a \iff a \in L(s)$
  - $\ s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \ \text{and} \ s \vDash \varphi_2$
  - $s \models \neg \varphi \qquad \Leftrightarrow s \models \varphi \text{ is false}$
- $\Leftrightarrow s \models \phi_1 \text{ and } s \models \phi \text{ is false}$

- Examples
  - $s_3 \models succ$
  - $s_1 \models try \land \neg fail$



## PCTL semantics for DTMCs

Semantics of path formulas:

- for a path  $\omega = s_0 s_1 s_2 \dots$  in the DTMC:
- $\omega \models X \varphi \qquad \Leftrightarrow s_1 \models \varphi$
- $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
- $\omega \vDash \varphi_1 \cup \varphi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\leq k} \varphi_2$
- Some examples of satisfying paths:
  - X succ  $\{try\} \{succ\} \{succ\} \{succ\}$  $s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$
  - ¬fail U succ

{try} {try} {succ} {succ}  $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$ 



## PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
  - informal definition:  $s \models P_{\sim p} [\psi]$  means that "the probability, from state s, that  $\psi$  is true for an outgoing path satisfies  $\sim p$ "
  - example:  $s \models P_{<0.25}$  [X fail]  $\Leftrightarrow$  "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
  - formally:  $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
  - where: Prob(s,  $\psi$ ) = Pr<sub>s</sub> {  $\omega \in Path(s) \mid \omega \vDash \psi$  }



### PCTL derived operators

- Basic logical equivalences:
  - false ≡ ¬true

$$- \phi_1 \lor \phi_2 \equiv \neg (\neg \phi_1 \land \neg \phi_2)$$

 $- \ \varphi_1 \ \rightarrow \ \varphi_2 \equiv \neg \ \varphi_1 \ \lor \ \varphi_2$ 

- (false) (disjunction) (implication)
- Negation and probabilities - e.g.  $\neg P_{>p} [ \varphi_1 \cup \varphi_2 ] \equiv P_{\leq p} [ \varphi_1 \cup \varphi_2 ]$
- The "eventually" path operator
  - $F \varphi \equiv true U \varphi$
  - sometimes written as  $\diamond \ \varphi$
  - "¢ is eventually true"
  - bounded version:  $F^{\leq k}\;\varphi \equiv true\; U^{\leq k}$

(F = "future") ("diamond")

# More PCTL

- The "always" path operator
  - $G \varphi \equiv \neg(F \neg \varphi) \equiv \neg(true U \neg \varphi)$
  - sometimes written as  $\Box \phi$
  - "φ is always true"
  - bounded version: G<sup>≤k</sup> φ ≡ ¬(F<sup>≤k</sup> ¬φ)
  - strictly speaking, G  $\phi$  cannot be derived from the PCTL syntax in this way since there is no negation of path formulas)
- F and G represent two useful classes of properties:
  - reachability: the probability of reaching a state satisfying  $\boldsymbol{\varphi}$
  - i.e.  $P_{\sim p}$  [ F  $\varphi$  ]
  - invariance: the probability of  $\varphi$  always remaining true
  - i.e.  $P_{\sim p}$  [ G  $\varphi$  ]

(G = "globally")

("box")

# Derivation of $P_{-p}$ [ G $\varphi$ ]

- In fact, we can derive  $P_{-p}$  [ G  $\phi$  ] directly in PCTL, e.g.
  - $s \vDash P_{>p} [G \varphi] \iff \operatorname{Prob}(s, G \varphi) > p$  $\Leftrightarrow \operatorname{Prob}(s, \neg(F \neg \varphi)) > p$  $\Leftrightarrow 1 - \operatorname{Prob}(s, F \neg \varphi) > p$  $\Leftrightarrow \operatorname{Prob}(s, F \neg \varphi) < 1 - p$

$$\Leftrightarrow s \models P_{<1-p} [F \neg \varphi]$$

#### • Other equivalences:

$$\begin{array}{lll} & - & P_{\geq p} \left[ \begin{array}{cc} G \end{array} \varphi \end{array} \right] & \equiv & P_{\leq 1-p} \left[ \begin{array}{cc} F \end{array} \neg \varphi \end{array} \right] \\ & - & P_{< p} \left[ \begin{array}{cc} G \end{array} \varphi \end{array} \right] & \equiv & P_{>1-p} \left[ \begin{array}{cc} F \end{array} \neg \varphi \end{array} \right] \\ & - & P_{> p} \left[ \begin{array}{cc} G^{\leq k} \end{array} \varphi \end{array} \right] \equiv & P_{< 1-p} \left[ \begin{array}{cc} F^{\leq k} \end{array} \neg \varphi \end{array} \right] \\ & - & \text{etc.} \end{array}$$

# PCTL and measurability

- All the sets of paths expressed by PCTL are measurable
  - i.e. are elements of the  $\sigma$ -algebra  $\Sigma_{Path(s)}$
  - see for example [Var85] (for a stronger result in fact)
- Recall: probability space (Path(s),  $\Sigma_{Path(s)}$ , Pr<sub>s</sub>)
  - $\Sigma_{Path(s)}$  contains cylinder sets C( $\omega$ ) for all finite paths  $\omega$  starting in s and is closed under complementation, countable union
- Next (Х ф)
  - cylinder sets constructed from paths of length one
- Bounded until ( $\phi_1 U^{\leq k} \phi_2$ )
  - (finite number of) cylinder sets from paths of length at most  $\boldsymbol{k}$
- Until ( $\phi_1 \cup \phi_2$ )
  - countable union of paths satisfying  $\varphi_1 \: U^{\leq k} \: \varphi_2$  for all  $k {\geq} 0$

## Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- Qualitative PCTL properties
  - $-P_{\sim p}$  [  $\psi$  ] where p is either 0 or 1
- Quantitative PCTL properties
  - $P_{\sim p}$  [  $\psi$  ] where p is in the range (0,1)
- +  $P_{>0}$  [ F  $\varphi$  ] is identical to EF  $\varphi$ 
  - there exists a finite path to a  $\varphi\text{-state}$
- +  $P_{\geq 1}$  [ F  $\varphi$  ] is (similar to but) weaker than AF  $\varphi$ 
  - see next slide...

# Example: Qualitative/quantitative

- Toss a coin repeatedly until "tails" is thrown
- Is "tails" always eventually thrown?
  - CTL: AF "tails"
  - Result: false
  - Counterexample:  $s_0s_1s_0s_1s_0s_1...$
- Does the probability of eventually throwing "tails" equal one?
  - PCTL:  $P_{\geq 1}$  [F "tails"]
  - Result: true
  - Infinite path  $s_0s_1s_0s_1s_0s_1...$  has zero probability



#### Quantitative properties

- Consider a PCTL formula  $P_{-p}$  [  $\psi$  ]
  - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
  - we allow the form  $P_{=?}$  [  $\psi$  ]
  - "what is the probability that path formula  $\boldsymbol{\psi}$  is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
  - P=? [F err/total>0.1]
  - "what is the probability that 10% of the NAND gate outputs are erroneous?"



### Some real PCTL examples

- NAND multiplexing system
  - $P_{=?} [F err/total > 0.1]$
  - "what is the probability that 10% of the NAND gate outputs are erroneous?"
- Bluetooth wireless communication protocol
  - $P_{=?} [F^{\leq t} reply_count=k]$
  - "what is the probability that the sender has received k acknowledgements within t clock-ticks?"
- Security: EGL contract signing protocol
  - $P_{=?} [F (pairs_a=0 \& pairs_b>0)]$
  - "what is the probability that the party B gains an unfair advantage during the execution of the protocol?"

## Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
   definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards

## PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
  - inputs: DTMC D=(S,s<sub>init</sub>,P,L), PCTL formula  $\phi$
  - output: Sat( $\phi$ ) = { s  $\in$  S | s  $\models \phi$  } = set of states satisfying  $\phi$
- What does it mean for a DTMC D to satisfy a formula  $\varphi?$ 
  - sometimes, want to check that  $s \models \phi \forall s \in S$ , i.e.  $Sat(\phi) = S$
  - sometimes, just want to know if  $s_{init} \models \varphi$ , i.e. if  $s_{init} \in Sat(\varphi)$
- Sometimes, focus on quantitative results
  - e.g. compute result of P=? [ F error ]
  - e.g. compute result of P=? [  $F^{\leq k}$  error ] for  $0 \leq k \leq 100$

# PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of  $\boldsymbol{\varphi}$ 
  - − example:  $φ = (¬fail ∧ try) → P_{>0.95} [ ¬fail U succ ]$
- For the non-probabilistic operators:
  - Sat(true) = S
  - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
  - $\operatorname{Sat}(\neg \varphi) = S \setminus \operatorname{Sat}(\varphi)$
  - $\operatorname{Sat}(\varphi_1 \land \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the  $P_{\sim p}$  [  $\psi$  ] operator
  - need to compute the probabilities  $Prob(s, \psi)$  for all states  $s \in S$



## PCTL next for DTMCs

Computation of probabilities for PCTL next operator

- $\ Sat(P_{\sim p}[ \ X \ \varphi \ ]) = \{ \ s \in S \ | \ Prob(s, \ X \ \varphi) \sim p \ \}$
- need to compute Prob(s, X  $\phi$ ) for all s  $\in$  S
- Sum outgoing probabilities for transitions to φ-states

- Prob(s, X 
$$\phi$$
) =  $\Sigma_{s' \in Sat(\phi)} P(s,s')$ 

- Compute vector <u>Prob</u>(X φ) of probabilities for all states s
  - $\underline{\operatorname{Prob}}(X \, \varphi) = \mathbf{P} \, \cdot \, \underline{\varphi}$
  - where  $\underline{\Phi}$  is a 0-1 vector over S with  $\underline{\Phi}(s) = 1$  iff  $s \models \Phi$
  - computation requires a single matrix-vector multiplication



#### PCTL next – Example

- Model check:  $P_{\geq 0.9}$  [ X ( $\neg$ try  $\lor$  succ) ]
  - Sat  $(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ)$ =  $(\{s_0, s_1, s_2, s_3\} \setminus \{s_1\}) \cup \{s_3\} = \{s_0, s_2, s_3\}$
  - $\underline{Prob}(X (\neg try \lor succ)) = \mathbf{P} \cdot \underline{(\neg try \lor succ)} = \dots$





- Results:
  - <u>Prob</u>(X ( $\neg$ try  $\lor$  succ)) = [0, 0.99, 1, 1]
  - Sat(P<sub> $\geq 0.9$ </sub> [ X ( $\neg$ try  $\lor$  succ) ]) = {s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>}

## PCTL bounded until for DTMCs

- Computation of probabilities for PCTL  $U^{\leq k}$  operator
  - $\ Sat(P_{\sim p}[\ \varphi_1 \ U^{\leq k} \ \varphi_2 \ ]) = \{ \ s \in S \ | \ Prob(s, \ \varphi_1 \ U^{\leq k} \ \varphi_2) \thicksim p \ \}$
  - need to compute  $Prob(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$  for all  $s\in S$
- First identify states where probability is trivially 1 or 0

$$- S^{yes} = Sat(\phi_2)$$

- $\ S^{no} = S \ \backslash \ (Sat(\varphi_1) \ \cup \ Sat(\varphi_2))$
- Letting S? = S \ (S<sup>yes</sup> U S<sup>no</sup>), compute solution of recursive equations:

$$Prob(s, \varphi_1 \cup U^{\leq k}, \varphi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } k = 0 \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \varphi_1 \cup U^{\leq k-1}, \varphi_2) & \text{if } s \in S^? \text{ and } k > 0 \end{cases}$$

## PCTL bounded until for DTMCs

- Simultaneous computation of vector Prob( $\phi_1 U^{\leq k} \phi_2$ )
  - i.e. probabilities  $Prob(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$  for all  $s\in S$
- Iteratively define in terms of matrices and vectors
  - define matrix P' as follows: P'(s,s') = P(s,s') if  $s \in S^{?}$ , P'(s,s') = 1 if  $s \in S^{yes}$  and s=s', P'(s,s') = 0 otherwise
  - $\underline{\operatorname{Prob}}(\varphi_1 \ U^{\leq 0} \ \varphi_2) = \underline{\varphi}_2$
  - $\underline{\operatorname{Prob}}(\varphi_1 \ U^{\leq k} \ \varphi_2) = \mathbf{P'} \cdot \underline{\operatorname{Prob}}(\varphi_1 \ U^{\leq k-1} \ \varphi_2)$
  - requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
  - $\underline{Prob}(\phi_1 U^{\leq k} \phi_2) = (\mathbf{P'})^k \cdot \underline{\phi}_2$  and compute  $(\mathbf{P'})^k$  in  $\log_2 k$  steps
  - but this is actually inefficient:  $(\mathbf{P'})^k$  is much less sparse than  $\mathbf{P'}$

#### PCTL bounded until – Example

- Model check:  $P_{>0.98}$  [  $F^{\leq 2}$  succ ]  $\equiv P_{>0.98}$  [ true U<sup> $\leq 2$ </sup> succ ]
  - Sat (true) = S =  $\{s_0, s_1, s_2, s_3\}$ , Sat(succ) =  $\{s_3\}$
  - $S^{yes} = \{s_3\}, S^{no} = \emptyset, S^{?} = \{s_0, s_1, s_2\}, P' = P$
  - <u>Prob</u>(true U<sup>≤0</sup> succ) = <u>succ</u> = [0, 0, 0, 1]

$$\underline{\operatorname{Prob}}(\operatorname{true} \ U^{\leq 1} \operatorname{succ}) = \mathbf{P}' \cdot \underline{\operatorname{Prob}}(\operatorname{true} \ U^{\leq 0} \operatorname{succ}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$
$$\underbrace{\operatorname{Prob}}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\underbrace{\operatorname{Prob}}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- Sat( $P_{>0.98}$  [  $F^{\le 2}$  succ ]) = {s<sub>1</sub>, s<sub>3</sub>}

# PCTL until for DTMCs

- + Computation of probabilities Prob(s,  $\varphi_1$  U  $\varphi_2)$  for all s  $\in$  S
- Similar to the bounded until operator, we first identify all states where the probability is 1 or 0
  - $S^{yes} = Sat(P_{\geq 1} [ \varphi_1 U \varphi_2 ])$
  - $\ S^{no} = Sat(P_{\leq 0} \ [ \ \varphi_1 \ U \ \varphi_2 \ ])$
- We refer to this as the "precomputation" phase
  - two precomputation algorithms: Prob0 and Prob1
- Important for several reasons
  - reduces the set of states for which probabilities must be computed numerically
  - for  $P_{-p}[\cdot]$  where p is 0 or 1, no further computation required
  - gives exact results for the states in Syes and Sno (no round-off)

#### Precomputation algorithms

- Prob0 algorithm to compute  $S^{no} = Sat(P_{\leq 0} [ \varphi_1 \cup \varphi_2 ])$ :
  - first compute Sat( $P_{>0}$  [  $\varphi_1 \cup \varphi_2$  ])
  - i.e. find all states which can, with non-zero probability, reach a  $\phi_2$ -state without leaving  $\phi_1$ -states
  - i.e. find all states from which there is a finite path through  $\phi_1$ -states to a  $\phi_2$ -state: simple graph-based computation
  - subtract the resulting set from S
- Prob1 algorithm to compute  $S^{yes} = Sat(P_{\geq 1} [ \varphi_1 \cup \varphi_2 ])$ :
  - first compute Sat(P<sub><1</sub> [  $\varphi_1$  U  $\varphi_2$  ]), reusing S<sup>no</sup>
  - this is equivalent to the set of states which have a non-zero probability of reaching S<sup>no</sup>, passing only through  $\phi_1$ -states
  - again, this is a simple graph-based computation
  - subtract the resulting set from S

# PCTL until for DTMCs

• Probabilities Prob(s,  $\phi_1 \cup \phi_2$ ) can now be obtained as the unique solution of the following set of linear equations:

$$Prob(s, \varphi_1 \cup \varphi_2) = \begin{cases} 1 & \text{if } s \in S^{ves} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \varphi_1 \cup \varphi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in |S'| unknowns instead of |S|  $S^{?}$  = S  $\setminus$  (S^{yes}  $\cup$  S^{no})

This can be solved with (a variety of) standard techniques

- direct methods, e.g. Gaussian elimination
- iterative methods, e.g. Jacobi, Gauss-Seidel, ...

### PCTL until – Example

- Model check: P<sub>>0.99</sub> [ try U succ ]
  - Sat(try) =  $\{s_1\}$ , Sat(succ) =  $\{s_3\}$
  - $S^{no} = Sat(P_{\leq 0} [ try U succ ]) = \{s_0, s_2\}$
  - $S^{yes} = Sat(P_{\geq 1} [ try U succ ]) = \{s_3\}$

$$- S^{?} = \{s_{1}\}$$

• Linear equation system:

$$-x_0 = 0$$

 $- x_1 = 0.01 \cdot x_1 + 0.01 \cdot x_2 + 0.98 \cdot x_3$ 

$$- x_2 = 0$$

- $-x_{3} = 1$
- Which yields:
  - <u>Prob</u>(try U succ) = <u>x</u> = [0, 98/99, 0, 1]
  - $\text{ Sat}(P_{>0.99} \text{ [ try U succ ]}) = \{s_3\}$



# Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
  - essentially: probability of reaching states in X, passing only through states in Y, and within k time-steps
- More expressive logics can be used, for example:
  - LTL, the non-probabilistic linear-time temporal logic
  - PCTL\* [ASB+95,BdA95] which subsumes both PCTL and LTL
- These both allow combinations of temporal operators - e.g. for liveness:  $P_{p}$  [ G F  $\phi$  ] - "always eventually  $\phi$ "
- Model checking algorithms for DTMCs and PCTL\* exist but are more expensive to implement (higher complexity)

## Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
   definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards

### Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
  - real-valued quantities assigned to states and/or transitions
  - these can have a wide range of possible interpretations

#### • Some examples:

 elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

#### Costs? or rewards?

- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

### Reward-based properties

- Properties of DTMCs augmented with rewards
  - allow a wide range of quantitative measures of the system
  - basic notion: expected value of rewards
  - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...

#### Instantaneous properties

- the expected value of the reward at some time point
- Cumulative properties
  - the expected cumulated reward over some period

#### DTMC reward structures

- For a DTMC (S,  $s_{init}$ , P, L), a reward structure is a pair ( $\rho$ ,  $\iota$ )
  - $-\underline{\rho}: S \rightarrow \mathbb{R}_{\geq 0}$  is the state reward function (vector)
  - $-\iota: S \times S \rightarrow \mathbb{R}_{\geq 0}$  is the transition reward function (matrix)
- Example (for use with instantaneous properties)
  - "size of message queue":  $\underline{\rho}$  maps each state to the number of jobs in the queue in that state,  $\iota$  is not used
- Examples (for use with cumulative properties)
  - "time-steps":  $\underline{\rho}$  returns 1 for all states and  $\iota$  is zero (equivalently,  $\underline{\rho}$  is zero and  $\iota$  returns 1 for all transitions)
  - "number of messages lost": <u>ρ</u> is zero and ι maps transitions corresponding to a message loss to 1
  - "power consumption": <u>ρ</u> is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

### PCTL and rewards

- Extend PCTL to incorporate reward-based properties
  - add an R operator, which is similar to the existing P operator



- where  $r \in \mathbb{R}_{\geq 0}$ , ~  $\thicksim \in \{<,>,\leq,\geq\}$ ,  $k \in \mathbb{N}$
- R<sub>~r</sub> [ · ] means "the expected value of · satisfies ~r"

# Types of reward formulas

- Instantaneous:  $R_{-r}$  [I<sup>=k</sup>]
  - "the expected value of the state reward at time-step k is  $\sim$ r"
  - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative:  $R_{-r}$  [  $C^{\leq k}$  ]
  - "the expected reward cumulated up to time-step k is ~r"
  - e.g. "the expected power consumption over one hour"
- Reachability:  $R_{r}$  [ F  $\phi$  ]
  - "the expected reward cumulated before reaching a state satisfying  $\varphi$  is  ${\sim}r"$
  - e.g. "the expected time for the algorithm to terminate"

#### Reward formula semantics

• Formal semantics of the three reward operators:

- for a state s in the DTMC:

$$- s \models R_{r} [I^{=k}] \iff Exp(s, X_{I=k}) \sim r$$

- $s \models R_{r} [C^{\leq k}] \iff Exp(s, X_{C \leq k}) \sim r$
- $s \models R_{\sim r} [F \Phi] \iff Exp(s, X_{F\Phi}) \sim r$

where: Exp(s,X) denotes the expectation of the random variable X : Path(s)  $\rightarrow \mathbb{R}_{\geq 0}$  with respect to the probability measure  $Pr_s$ 

### Reward formula semantics

- Definition of random variables:
  - for an infinite path  $\omega = s_0 s_1 s_2 \dots$

$$X_{l=k}(\omega) = \underline{\rho}(s_k)$$

and the

$$X_{C \le k}(\omega) = \begin{cases} 0 & \text{if } k = 0\\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \\ \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where  $k_{\varphi} = min\{ j \mid s_j \vDash \varphi \}$ 

#### • Instantaneous: $R_{\sim r}$ [I<sup>=k</sup>]

- reduces to computation of bounded until probabilities
- solution of recursive equations

#### • Cumulative: $R_{-r}$ [ $C^{\leq t}$ ]

- variant of the method for computing bounded until probabilities
- solution of recursive equations

#### • Reachability: $R_{r}$ [ F $\phi$ ]

- similar to computing until probabilities
- reduces to solving a system of linear equation

# Model checking summary

Atomic propositions and logical connectives: trivial

#### • Probabilistic operator P:

- X  $\Phi$  : one matrix-vector multiplications
- $\Phi_1 U^{\leq k} \Phi_2$ : k matrix-vector multiplications
- $\Phi_1 U \Phi_2$ : linear equation system in at most |S| variables

#### • Expected reward operator R

- $I^{=k}$ : k matrix-vector multiplications
- $C^{\leq k}$ : k iterations of matrix-vector multiplication + summation
- F  $\Phi$  : linear equation system in at most |S| variables
- details for the reward operators are in [KNP07a]

# Model checking complexity

- Model checking of DTMC (S,s<sub>init</sub>, P,L) against PCTL formula Φ (including reward operators)
  - complexity is linear in  $|\Phi|$  and polynomial in |S|
- Size  $|\Phi|$  of  $\Phi$  is defined as number of logical connectives and temporal operators plus sizes of temporal operators
  - model checking is performed for each operator
- Worst-case operators are  $P_{-p}$  [  $\Phi_1$  U  $\Phi_2$  ] and  $R_{-r}$  [ F  $\Phi$  ]
  - main task: solution of linear equation system of size |S|
  - can be solved with Gaussian elimination: cubic in |S|
  - and also precomputation algorithms (max  $\left|S\right|$  steps)
- Strictly speaking,  $U^{\leq k}$  could be worse than U for large k
  - but in practice k is usually small

### Summing up...

- Discrete-time Markov chains (DTMCs)
  - definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
  - syntax, semantics, equivalences, ...
- PCTL model checking
  - algorithms, examples, ...
- Costs and rewards