Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 2 - Discrete-Time Markov Chains

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Probability basics

- First, need an experiment
- The sample set Ω is the set of possible outcomes
- An event is a subset of Ω, can form events $A \cap B, A \cup B, \Omega \backslash A$
- Examples:
- toss a coin:
$\Omega=\{\mathrm{H}, \mathrm{T}\}$, events: "H", "T"
- toss two coins:
$\Omega=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$,
event: "at least one H^{\prime}
- toss a coin ∞-often:
Ω is set of infinite sequences event: "H in the first 3 throws"
- Probability is:
$-P[" H "]=P[" T "]=1 / 2, \quad P\left[\right.$ "at least one $\left.H^{\prime \prime}\right]=3 / 4$
- P["H in the first 3 throws"] $=1 / 2+1 / 4+1 / 8=7 / 8$

Probability example

- Modelling a 6-sided die using a fair coin
- algorithm due to Knuth/Yao:
- start at 0, toss a coin
- upper branch when H
- lower branch when T
- repeat until value chosen
- Probability of obtaining a 6 ?
- P["eventually 6"]
$=(1 / 2)^{3}+(1 / 2)^{5}+(1 / 2)^{7}+\ldots=1 / 6$
- Obtain as disjoint union of events

- TTH, TTTTH, TTTTTTH, ...

Probability example

- Derive recursive linear equations for P["eventually 6"]
- let x_{i} denote the probability for state $i=0,1,2,3,4,5,6$
- probability in state where die takes value 6 is 1
- probability in all other final states is 0

$$
\begin{aligned}
& x_{6}=1 / 2 \cdot x_{2}+1 / 2 \cdot 1 \\
& x_{2}=1 / 2 \cdot x_{6} \\
& x_{0}=1 / 2 \cdot x_{2}
\end{aligned}
$$

- Yields the unique solution:

$$
\begin{aligned}
& x_{0}=1 / 6, x_{2}=1 / 3 \text { and } x_{6}=2 / 3 \\
& P[\text { "eventually } 6 "]=x_{0}=1 / 6
\end{aligned}
$$

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
- state-transition systems augmented with probabilities
- States
- discrete set of states representing possible configurations of the system being modelled
- Transitions
- transitions between states occur in discrete time-steps
- Probabilities
- probability of making transitions between states is given by
 discrete probability distributions

Discrete-time Markov chains

- Formally, a DTMC D is a tuple $\left(S, s_{\text {init }}, P, L\right)$ where:
- S is a finite set of states ("state space")
$-s_{\text {init }} \in S$ is the initial state
- $\mathbf{P}: S \times S \rightarrow[0,1]$ is the transition probability matrix where $\Sigma_{s^{\prime} \in S} P\left(s, s^{\prime}\right)=1$ for all $s \in S$
$-L: S \rightarrow 2^{\text {AP }}$ is function labelling states with atomic propositions
- Note: no deadlock states
- i.e. every state has at least one outgoing transition
- can add self loops to represent final/terminating states

DTMCs: An alternative definition

- Alternative definition: a DTMC is:
- a family of random variables $\{\mathrm{X}(\mathrm{k}) \mid \mathrm{k}=0,1,2, \ldots\}$
- X(k) are observations at discrete time-steps
- i.e. $X(k)$ is the state of the system at time-step k
- Memorylessness (Markov property)

$$
\begin{aligned}
& -\operatorname{Pr}\left(X(k)=s_{k} \mid X(k-1)=s_{k-1}, \ldots, X(0)=s_{0}\right) \\
& \quad=\operatorname{Pr}\left(X(k)=s_{k} \mid X(k-1)=s_{k-1}\right)
\end{aligned}
$$

- We consider homogenous DTMCs
- transition probabilities are independent of time
$-\mathrm{P}\left(\mathrm{s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right)=\operatorname{Pr}\left(\mathrm{X}(\mathrm{k})=\mathrm{s}_{\mathrm{k}} \mid \mathrm{X}(\mathrm{k}-1)=\mathrm{s}_{\mathrm{k}-1}\right)$

Simple DTMC example

- Modelling a very simple communication protocol
- after one step, process starts trying to send a message
- with probability 0.01 , channel unready so wait a step
- with probability 0.98 , send message successfully and stop
- with probability 0.01 , message sending fails, restart

Simple DTMC example

Paths and probabilities

- A (finite or infinite) path through a DTMC
- is a sequence of states $\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \ldots$ such that $\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right)>0 \forall \mathrm{i}$
- represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
- need to define a probability space over paths
- Intuitively:
- sample space: Path(s) = set of all infinite paths from a state s
- events: sets of infinite paths from s
- basic events: cylinder sets (or "cones")
- cylinder set $C(\omega)$, for a finite path ω $=$ set of infinite paths with the common finite prefix ω
- for example: $\mathrm{C}\left(\mathrm{ss}_{1} \mathrm{~s}_{2}\right)$

Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
- if $A \in \Sigma$, the complement $\Omega \backslash A$ is in Σ
- if $A_{i} \in \Sigma$ for $i \in \mathbb{N}$, the union $\cup_{i} A_{i}$ is in Σ
- the empty set \varnothing is in Σ
- Theorem: For any family F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F
- Probability space ($\Omega, \Sigma, \operatorname{Pr}$)
$-\Omega$ is the sample space
$-\Sigma$ is the set of events: σ-algebra on Ω
$-\operatorname{Pr}: \Sigma \rightarrow[0,1]$ is the probability measure: $\operatorname{Pr}(\Omega)=1$ and $\operatorname{Pr}\left(\cup_{i} A_{i}\right)=\Sigma_{i} \operatorname{Pr}\left(A_{i}\right)$ for countable disjoint A_{i}

Probability space over paths

- Sample space $\Omega=$ Path(s) set of infinite paths with initial state s
- Event set $\Sigma_{\text {Path(s) }}$
- the cylinder set $\mathrm{C}(\omega)=\left\{\omega^{\prime} \in \operatorname{Path}(\mathrm{s}) \mid \omega\right.$ is prefix of $\left.\omega^{\prime}\right\}$
- $\Sigma_{\text {Path(s) }}$ is the least σ-algebra on Path(s) containing $\mathrm{C}(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_{s}
- define probability $P_{s}(\omega)$ for finite path $\omega=s s_{1} \ldots s_{n}$ as:
- $P_{s}(\omega)=1$ if ω has length one (i.e. $\omega=s$)
- $P_{s}(\omega)=P\left(s, s_{1}\right) \cdot \ldots \cdot P\left(s_{n-1}, s_{n}\right)$ otherwise
- define $\operatorname{Pr}_{s}(C(\omega))=P_{s}(\omega)$ for all finite paths ω
- Pr_{s} extends uniquely to a probability measure $\operatorname{Pr}_{s}: \Sigma_{\text {Path }(s)} \rightarrow[0,1]$
- See [KSK76] for further details

Probability space - Example

- Paths where sending fails the first time
$-\omega=s_{0} s_{1} s_{2}$
$-C(\omega)=$ all paths starting $s_{0} s_{1} s_{2} \ldots$
$-P_{s 0}(\omega)=P\left(s_{0}, s_{1}\right) \cdot P\left(s_{1}, s_{2}\right)$

$$
=1 \cdot 0.01=0.01
$$

$-\operatorname{Pr}_{\mathrm{s} 0}(\mathrm{C}(\omega))=\mathrm{P}_{\mathrm{s} 0}(\omega)=0.01$

- Paths which are eventually successful and with no failures

$$
\begin{aligned}
- & C\left(s_{0} s_{1} s_{3}\right) \cup C\left(s_{0} s_{1} s_{1} s_{3}\right) \cup C\left(s_{0} s_{1} s_{1} s_{1} s_{3}\right) \cup \ldots \\
- & \operatorname{Pr}_{50}\left(C\left(s_{0} s_{1} s_{3}\right) \cup C\left(s_{0} s_{1} s_{1} s_{3}\right) \cup C\left(s_{0} s_{1} s_{1} s_{1} s_{3}\right) \cup \ldots\right) \\
& =P_{s 0}\left(s_{0} s_{1} s_{3}\right)+P_{s 0}\left(s_{0} s_{1} s_{1} s_{3}\right)+P_{s 0}\left(s_{0} s_{1} s_{1} s_{1} s_{3}\right)+\ldots \\
& =1 \cdot 0.98+1 \cdot 0.01 \cdot 0.98+1 \cdot 0.01 \cdot 0.01 \cdot 0.98+\ldots \\
& =98 / 99 \\
& =0.9898989898 \ldots
\end{aligned}
$$

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

PCTL

- Temporal logic for describing properties of DTMCs
- PCTL = Probabilistic Computation Tree Logic [HJ94]
- essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
- key addition is probabilistic operator P
- quantitative extension of CTL's A and E operators
- Example
- send $\rightarrow P_{\geq 0.95}$ [true $U \leq 10$ deliver]
- "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95 "

PCTL syntax

- PCTL syntax:

$-\phi::=\operatorname{true}|\mathrm{a}| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim \mathfrak{p}}[\psi]$
(state formulas)
$-\psi::=X \phi \quad\left|\quad \phi U^{\leq k} \phi \quad\right| \quad \phi U \phi$

(path formulas)
- where a is an atomic proposition, used to identify states of interest, $p \in[0,1]$ is a probability, $\sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$
- A PCTL formula is always a state formula
- path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
$-s \vDash \phi$ denotes ϕ is "true in state s " or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
- for a state s of the DTMC ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}$):

$$
\begin{array}{ll}
-s \vDash a & \Leftrightarrow a \in L(s) \\
-s \vDash \phi_{1} \wedge \phi_{2} & \Leftrightarrow s \vDash \phi_{1} \text { and } s \vDash \phi_{2} \\
-s \vDash \neg \phi & \Leftrightarrow s \vDash \phi \text { is false }
\end{array}
$$

- Examples
$-\mathrm{S}_{3} \vDash$ succ
$-s_{1} \vDash$ try $\wedge \neg$ fail

PCTL semantics for DTMCs

- Semantics of path formulas:
- for a path $\omega=s_{0} s_{1} s_{2} \ldots$ in the DTMC:
$-\omega \vDash \mathrm{X} \phi$
$\Leftrightarrow s_{1} \vDash \phi$
$-\omega \vDash \phi_{1} U \leq k \phi_{2} \Leftrightarrow \exists i \leq k$ such that $\mathrm{s}_{\mathrm{i}} \vDash \phi_{2}$ and $\forall \mathrm{j}<\mathrm{i}, \mathrm{s}_{\mathrm{j}} \vDash \phi_{1}$
$-\omega \vDash \phi_{1} \cup \phi_{2} \Leftrightarrow \exists \mathrm{k} \geq 0$ such that $\omega \vDash \phi_{1} \mathrm{U} \leqslant \mathrm{k} \phi_{2}$
- Some examples of satisfying paths:
- X succ $\{$ try\} \{succ\} \{succ\} \{succ\}

- \neg fail U succ

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
- informal definition: $s \vDash P_{\sim p}[\psi]$ means that "the probability, from state s , that ψ is true for an outgoing path satisfies $\sim \mathrm{p} "$
- example: $s \vDash P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25 "
- formally: $s \vDash P_{\sim p}[\psi] \Leftrightarrow \operatorname{Prob}(s, \psi) \sim p$
- where: $\operatorname{Prob}(\mathrm{s}, \Psi)=\operatorname{Pr}_{\mathrm{s}}\{\omega \in \operatorname{Path}(\mathrm{s}) \mid \omega \vDash \psi\}$

$\psi \quad \operatorname{Prob}(\mathrm{s}, \psi) \sim \mathrm{p}$?

PCTL derived operators

- Basic logical equivalences:
- false $\equiv \neg$ true
$-\phi_{1} \vee \phi_{2} \equiv \neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right)$
$-\phi_{1} \rightarrow \phi_{2} \equiv \neg \phi_{1} \vee \phi_{2}$
(false)
(disjunction)
(implication)
- Negation and probabilities
- e.g. $\neg P_{>p}\left[\phi_{1} \cup \phi_{2}\right] \equiv P_{\leq p}\left[\phi_{1} \cup \phi_{2}\right]$
- The "eventually" path operator
- F ϕ 三 true U ϕ
($\mathrm{F}=$ "future")
- sometimes written as $\diamond \phi$
- " ϕ is eventually true"
- bounded version: $F \leq k \phi \equiv$ true $U \leq k$

More PCTL

- The "always" path operator
$-\mathrm{G} \phi \equiv \neg(\mathrm{F} \neg \phi) \equiv \neg($ true $\mathrm{U} \neg \phi)$
($\mathrm{G}=$ " globally")
- sometimes written as $\square \phi$
("box")
- " ϕ is always true"
- bounded version: $\mathrm{G} \leq \mathrm{k} \phi \equiv \neg(\mathrm{F} \leq \mathrm{k} \neg \phi)$
- strictly speaking, G ϕ cannot be derived from the PCTL syntax in this way since there is no negation of path formulas)
- F and G represent two useful classes of properties:
- reachability: the probability of reaching a state satisfying ϕ
- i.e. $\mathrm{P}_{\sim \mathrm{p}}$ [F ϕ]
- invariance: the probability of ϕ always remaining true
- i.e. $P_{\sim p}[G \phi]$

Derivation of $\mathrm{P}_{\sim \mathrm{p}}$ [G ${ }^{\text {] }}$

- In fact, we can derive $\mathrm{P}_{\sim \mathfrak{p}}[G \phi$] directly in PCTL, e.g.

$$
\begin{aligned}
-s \vDash P_{>p}[G \phi] & \Leftrightarrow \operatorname{Prob}(s, G \phi)>p \\
& \Leftrightarrow \operatorname{Prob}(s, \neg(F \neg \phi))>p \\
& \Leftrightarrow 1-\operatorname{Prob}(s, F \neg \phi)>p \\
& \Leftrightarrow \operatorname{Prob}(s, F \neg \phi)<1-p \\
& \Leftrightarrow s \vDash P_{<1-p}[F \neg \phi]
\end{aligned}
$$

- Other equivalences:
$-P_{\geq p}[G \phi] \equiv P_{\leq 1-p}[F \neg \phi]$
$-P_{<p}[G \phi] \equiv P_{>1-p}[F \neg \phi]$
$-P_{>p}[G \leq k \phi] \equiv P_{<1-p}[F \leq k \neg \phi]$
- etc.

PCTL and measurability

- All the sets of paths expressed by PCTL are measurable
- i.e. are elements of the σ-algebra $\Sigma_{\text {Path(s) }}$
- see for example [Var85] (for a stronger result in fact)
- Recall: probability space (Path(s), $\Sigma_{\text {Path(s) }}, \operatorname{Pr}_{s}$)
- $\Sigma_{\text {Path(s) }}$ contains cylinder sets $C(\omega)$ for all finite paths ω starting in s and is closed under complementation, countable union
- Next (X ϕ)
- cylinder sets constructed from paths of length one
- Bounded until ($\phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}$)
- (finite number of) cylinder sets from paths of length at most k
- Until $\left(\phi_{1} \cup \phi_{2}\right)$
- countable union of paths satisfying $\phi_{1} U \leq k \phi_{2}$ for all $k \geq 0$

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- Qualitative PCTL properties
$-P_{\sim p}[\psi]$ where p is either 0 or 1
- Quantitative PCTL properties
$-P_{\sim p}[\psi]$ where p is in the range $(0,1)$
- $\mathrm{P}_{>0}[\mathrm{~F} \phi$] is identical to EF ϕ
- there exists a finite path to a ϕ-state
- $P_{\geq 1}[F \phi]$ is (similar to but) weaker than AF ϕ
- see next slide...

Example: Qualitative/quantitative

- Toss a coin repeatedly until "tails" is thrown
- Is "tails" always eventually thrown?
- CTL: AF "tails"
- Result: false
- Counterexample: $s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} \ldots$
- Does the probability of eventually throwing "tails" equal one?
- PCTL: $\mathrm{P}_{\geq 1}$ [F "tails"]

- Result: true
- Infinite path $\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{0} \mathrm{~s}_{1} \ldots$ has zero probability

Quantitative properties

- Consider a PCTL formula $\mathrm{P}_{\sim \mathrm{p}}[\Psi$]
- if the probability is unknown, how to choose the bound p ?
- When the outermost operator of a PTCL formula is P
- we allow the form $P_{=?}[\psi]$
- "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
- $\mathrm{P}=$? [F err/total>0.1]
- "what is the probability that 10\% of the NAND gate outputs are erroneous?"

Some real PCTL examples

- NAND multiplexing system
$-P_{=?}$ [F err/total>0.1]
- "what is the probability that 10% of the NAND gate outputs are erroneous?"
- Bluetooth wireless communication protocol
- $P_{=?}$ [$F \leq t$ reply_count=k]
- "what is the probability that the sender has received k acknowledgements within t clock-ticks?"
- Security: EGL contract signing protocol
$-P_{=?}[F($ pairs_a=0 \& pairs_b>0)]
- "what is the probability that the party B gains an unfair advantage during the execution of the protocol?"

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
- inputs: DTMC D=(S, $\left.\mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}\right), \mathrm{PCTL}$ formula ϕ
- output: $\operatorname{Sat}(\phi)=\{s \in S \mid s \vDash \phi\}=$ set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula ϕ ?
- sometimes, want to check that $s \vDash \phi \forall s \in S$, i.e. Sat $(\phi)=S$
- sometimes, just want to know if $\mathrm{s}_{\text {init }} \vDash \phi$, i.e. if $\mathrm{s}_{\text {init }} \in \operatorname{Sat}(\phi)$
- Sometimes, focus on quantitative results
- e.g. compute result of $P=$? [F error]
- e.g. compute result of $P=$? [$F \leq k$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ
- example: $\phi=(\neg$ fail \wedge try $) \rightarrow \mathrm{P}_{>0.95}[\neg$ fail U succ $]$
- For the non-probabilistic operators:
- Sat(true) = S
$-\operatorname{Sat}(\mathrm{a})=\{\mathrm{s} \in \mathrm{S} \mid a \in \mathrm{~L}(\mathrm{~s})\}$
$-\operatorname{Sat}(\neg \phi)=\mathrm{S} \backslash \operatorname{Sat}(\phi)$
$-\operatorname{Sat}\left(\phi_{1} \wedge \phi_{2}\right)=\operatorname{Sat}\left(\phi_{1}\right) \cap \operatorname{Sat}\left(\phi_{2}\right)$
- For the $\mathrm{P}_{\sim \mathrm{p}}[\Psi$] operator
- need to compute the probabilities $\operatorname{Prob}(s, \psi)$ for all states $s \in S$

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
$-\operatorname{Sat}\left(P_{\sim p}[X \phi]\right)=\{s \in S \mid \operatorname{Prob}(s, X \phi) \sim p\}$
- need to compute $\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)$ for all $\mathrm{s} \in \mathrm{S}$
- Sum outgoing probabilities for transitions to ϕ-states
$-\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)=\Sigma_{\mathrm{s}^{\prime} \in \operatorname{Sat}(\phi)} \mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$
- Compute vector $\operatorname{Prob}(X \phi)$ of
 probabilities for all states s
$-\underline{\operatorname{Prob}}(X \phi)=P \cdot \Phi$
- where ϕ is a $0-1$ vector over S with $\phi(s)=1$ iff $s \vDash \phi$
- computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: $\mathrm{P}_{\geq 0.9}$ [X(\neg try \vee succ) $]$
- Sat (\neg try \vee succ) $=(S \backslash$ Sat(try)) \cup Sat(succ) $=\left(\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \backslash\left\{\mathrm{s}_{1}\right\}\right) \cup\left\{\mathrm{s}_{3}\right\}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$
$-\underline{\operatorname{Prob}}(X(\neg$ try \vee succ $))=P \cdot(\neg$ try \vee succ $)=\ldots$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0.01 & 0.01 & 0.98 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.99 \\
1 \\
1
\end{array}\right]
$$

- Results:

$-\underline{\operatorname{Prob}}(\mathrm{X}(\neg$ try \vee succ $))=[0,0.99,1,1]$
$-\operatorname{Sat}\left(P_{\geq 0.9}[X(\neg\right.$ try \vee succ $\left.)]\right)=\left\{s_{1}, s_{2}, s_{3}\right\}$

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL $U \leq k$ operator
$-\operatorname{Sat}\left(P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]\right)=\left\{s \in S \mid \operatorname{Prob}\left(s, \phi_{1} U \leq k \phi_{2}\right) \sim p\right\}$
- need to compute $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right.$) for all $\mathrm{s} \in \mathrm{S}$
- First identify states where probability is trivially 1 or 0

```
- Syes \(=\operatorname{Sat}\left(\phi_{2}\right)\)
\(-S^{\text {no }}=S \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)\)
```

- Letting S ? $=S \backslash\left(S^{\text {yes }} \cup S^{\text {no }}\right)$, compute solution of recursive equations:
$\operatorname{Prob}\left(s, \phi_{1} U^{\forall k} \phi_{2}\right)=\left\{\begin{array}{cl}1 & \text { if } s \in S^{\text {yes }} \\ 0 & \text { if } s \in S^{\text {no }} \\ 0 & \text { if } s \in S^{?} \text { andk }=0 \\ \sum_{s^{\prime} \in S} P\left(s, s^{\prime}\right) \cdot \operatorname{Prob}\left(s^{\prime}, \phi_{1} U^{\forall k-1} \phi_{2}\right) & \text { if } s \in S^{?} \text { andk }>0\end{array}\right.$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\operatorname{Prob}\left(\phi_{1} U \leq k \phi_{2}\right)$
- i.e. probabilities $\operatorname{Prob}\left(s, \phi_{1} U \leq k \phi_{2}\right)$ for all $s \in S$
- Iteratively define in terms of matrices and vectors
- define matrix P^{\prime} as follows: $P^{\prime}\left(s, s^{\prime}\right)=P\left(s, s^{\prime}\right)$ if $s \in S^{\prime}$, $P^{\prime}\left(s, s^{\prime}\right)=1$ if $s \in$ Syes and $s=s^{\prime}, P^{\prime}\left(s, s^{\prime}\right)=0$ otherwise
$-\operatorname{Prob}\left(\phi_{1} \mathrm{U} \leq 0 \phi_{2}\right)=\Phi_{2}$
$-\operatorname{Prob}\left(\phi_{1} U \leq k \phi_{2}\right)=P^{\prime} \cdot \operatorname{Prob}\left(\phi_{1} U \leq k-1 \phi_{2}\right)$
- requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
$-\operatorname{Prob}\left(\phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right)=\left(\mathrm{P}^{\prime}\right)^{\mathrm{k}} \cdot \Phi_{2}$ and compute $\left(\mathrm{P}^{\prime}\right)^{\mathrm{k}}$ in $\log _{2} \mathrm{k}$ steps
- but this is actually inefficient: ($\left.P^{\prime}\right)^{k}$ is much less sparse than P^{\prime}

PCTL bounded until - Example

- Model check: $\mathrm{P}_{>0.98}$ [$\mathrm{F}^{\leq 2}$ succ] $\equiv \mathrm{P}_{>0.98}$ [true $\mathrm{U}^{\leq 2}$ succ]
- Sat (true) $=\mathrm{S}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$, Sat(succ) $=\left\{\mathrm{s}_{3}\right\}$
- Syes $=\left\{s_{3}\right\}, S^{n o}=\varnothing, S^{?}=\left\{s_{0}, s_{1}, S_{2}\right\}, P^{\prime}=P$
$-\underline{\text { Prob }}($ true $U \leq 0$ succ) $=\underline{\text { succ }}=[0,0,0,1]$
$\underline{\operatorname{Prob}(t r u e} U^{\leq 1}$ succ) $=\mathbf{P}^{\prime} \cdot \underline{P r o b}\left(\right.$ (true $U^{\leq 0}$ succ) $=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0.98 \\ 0 \\ 1\end{array}\right]$
$\underline{\text { Prob }}\left(\right.$ true $U^{\leq 2}$ succ) $=\mathbf{P}^{\prime} \cdot \underline{P r o b}\left(\right.$ true $U^{\leq 1}$ succ $)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 0.98 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0.98 \\ 0.9898 \\ 0 \\ 1\end{array}\right]$
$-\operatorname{Sat}\left(\mathrm{P}_{>0.98}\left[\mathrm{~F}^{\leq 2}\right.\right.$ succ $\left.]\right)=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}$

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\left.\phi_{1} U \phi_{2}\right)$ for all $s \in S$
- Similar to the bounded until operator, we first identify all states where the probability is 1 or 0

$$
\begin{aligned}
& - \text { S yes }^{\text {S Sat }\left(P_{\geq 1}\left[\phi_{1} \cup \phi_{2}\right]\right)} \\
& -\operatorname{Sno}_{\text {no }}=\operatorname{Sat}\left(P_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)
\end{aligned}
$$

- We refer to this as the "precomputation" phase
- two precomputation algorithms: Prob0 and Prob1
- Important for several reasons
- reduces the set of states for which probabilities must be computed numerically
- for $\mathrm{P}_{\sim p}[\cdot]$ where p is 0 or 1 , no further computation required
- gives exact results for the states in Syes and Sno (no round-off)

Precomputation algorithms

- Prob0 algorithm to compute $\mathrm{S}^{\mathrm{no}}=\operatorname{Sat}\left(\mathrm{P}_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{>0}\left[\phi_{1} \cup \phi_{2}\right]\right)$
- i.e. find all states which can, with non-zero probability, reach a ϕ_{2}-state without leaving ϕ_{1}-states
- i.e. find all states from which there is a finite path through ϕ_{1}-states to a ϕ_{2}-state: simple graph-based computation
- subtract the resulting set from S
- Probl algorithm to compute Syes $^{\text {yen }}=\operatorname{Sat}\left(P_{\geq 1}\left[\phi_{1} \cup \phi_{2}\right]\right)$:
- first compute $\operatorname{Sat}\left(\mathrm{P}_{<1}\left[\phi_{1} \cup \phi_{2}\right]\right)$, reusing Sno
- this is equivalent to the set of states which have a non-zero probability of reaching $S^{n o}$, passing only through ϕ_{1}-states
- again, this is a simple graph-based computation
- subtract the resulting set from S

PCTL until for DTMCs

- Probabilities $\operatorname{Prob}\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right)$ can now be obtained as the unique solution of the following set of linear equations:

$$
\operatorname{Prob}\left(s, \phi_{1} \cup \phi_{2}\right)=\left\{\begin{array}{cl}
1 & \text { if } s \in S^{y e s} \\
0 & \text { if } s \in S^{n o} \\
\sum_{s \in s} \mathrm{P}\left(s, s^{\prime}\right) \cdot \operatorname{Prob}\left(s^{\prime}, \phi_{1} \cup \phi_{2}\right) & \text { otherwise }
\end{array}\right.
$$

- can be reduced to a system in $\left|S^{\prime}\right|$ unknowns instead of $|S|$

$$
S ?=S \backslash\left(\text { Syes } \cup S^{\text {no }}\right)
$$

- This can be solved with (a variety of) standard techniques
- direct methods, e.g. Gaussian elimination
- iterative methods, e.g. Jacobi, Gauss-Seidel, ...

PCTL until - Example

- Model check: $\mathrm{P}_{>0.99}$ [try U succ]
- Sat(try) $=\left\{\mathrm{s}_{1}\right\}$, Sat(succ) $=\left\{\mathrm{s}_{3}\right\}$
- Sno $^{\text {no }} \operatorname{Sat}\left(\mathrm{P}_{\leq 0}[\right.$ try U succ $\left.]\right)=\left\{\mathrm{s}_{0}, \mathrm{~S}_{2}\right\}$
$-S^{\text {yes }}=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}[\right.$ try U succ $\left.]\right)=\left\{\mathrm{s}_{3}\right\}$
$-\mathrm{S} ?=\left\{\mathrm{s}_{1}\right\}$
- Linear equation system:
$-x_{0}=0$
$-x_{1}=0.01 \cdot x_{1}+0.01 \cdot x_{2}+0.98 \cdot x_{3}$

$-x_{2}=0$
$-x_{3}=1$
- Which yields:
- $\underline{\text { Prob }}(t r y ~ U ~ s u c c) ~=\underline{x}=[0,98 / 99,0,1]$
$-\operatorname{Sat}\left(\mathrm{P}_{>0.99}[\right.$ try U succ $\left.]\right)=\left\{\mathrm{s}_{3}\right\}$

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
- essentially: probability of reaching states in X , passing only through states in Y , and within k time-steps
- More expressive logics can be used, for example:
- LTL, the non-probabilistic linear-time temporal logic
- PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
- These both allow combinations of temporal operators
- e.g. for liveness: $\mathrm{P}_{\sim \mathfrak{p}}$ [GF ϕ] - "always eventually ϕ "
- Model checking algorithms for DTMCs and PCTL* exist but are more expensive to implement (higher complexity)

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
- real-valued quantities assigned to states and/or transitions
- these can have a wide range of possible interpretations
- Some examples:
- elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
- allow a wide range of quantitative measures of the system
- basic notion: expected value of rewards
- formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
- the expected value of the reward at some time point
- Cumulative properties
- the expected cumulated reward over some period

DTMC reward structures

- For a DTMC $\left(\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}\right)$, a reward structure is a pair $(\underline{\rho}, \mathrm{l})$
$-\rho: S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function (vector)
$-\mathrm{\imath}: \mathrm{S} \times \mathrm{S} \rightarrow \mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
- "size of message queue": ρ maps each state to the number of jobs in the queue in that state, t is not used
- Examples (for use with cumulative properties)
- "time-steps": ρ returns 1 for all states and t is zero (equivalently, ρ is zero and $\mathrm{\imath}$ returns 1 for all transitions)
- "number of messages lost": ρ is zero and t maps transitions corresponding to a message loss to 1
- "power consumption": ρ is defined as the per-time-step energy consumption in each state and t as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
- add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0} \sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$
- $\mathrm{R}_{\sim r}[\cdot]$ means "the expected value of \cdot satisfies $\sim \mathrm{r}$ "

Types of reward formulas

- Instantaneous: $\mathrm{R}_{\sim r}$ [$\mathrm{I}=\mathrm{k}$]
- "the expected value of the state reward at time-step k is $\sim r$ "
- e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: $\mathrm{R}_{\sim r}$ [$\mathrm{C} \leq \mathrm{k}$]
- "the expected reward cumulated up to time-step k is $\sim r$ "
- e.g. "the expected power consumption over one hour"
- Reachability: $\mathrm{R}_{\sim r}[\mathrm{~F} \phi$]
- "the expected reward cumulated before reaching a state satisfying ϕ is $\sim r^{\prime \prime}$
- e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators:
- for a state s in the DTMC:
$-s \vDash R_{\sim r}[I=k] \Leftrightarrow \operatorname{Exp}\left(s, X_{I=k}\right) \sim r$
$-s \vDash R_{\sim r}[C \leq k] \Leftrightarrow \operatorname{Exp}\left(s, X_{C \leq k}\right) \sim r$
$-s \vDash R_{\sim r}[F \Phi] \Leftrightarrow \operatorname{Exp}\left(s, X_{F \phi}\right) \sim r$
where: $\operatorname{Exp}(s, X)$ denotes the expectation of the random variable $X: \operatorname{Path}(\mathrm{s}) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_{s}

Reward formula semantics

- Definition of random variables:
- for an infinite path $\omega=s_{0} s_{1} s_{2} \ldots$

$$
\begin{aligned}
& X_{l-k}(\omega)=\underline{\rho}\left(s_{k}\right) \\
& X_{C \leq k}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } k=0 \\
\sum_{i=0}^{k-1} \underline{\rho}\left(s_{i}\right)+\mathrm{l}\left(s_{i}, s_{i+1}\right) & \text { otherwise }
\end{array}\right. \\
& X_{\mathrm{F} \phi}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } s_{0} \in \operatorname{Sat}(\phi) \\
0 & \text { if } s_{i} \notin \operatorname{Sat}(\phi) \text { for alli } \geq 0 \\
\sum_{i=0}^{k_{\phi}-1} \underline{\rho}\left(s_{i}\right)+\mathrm{l}\left(s_{i} ; s_{i+1}\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- where $\mathrm{k}_{\phi}=\min \left\{\mathrm{j} \mid \mathrm{s}_{\mathrm{j}} \vDash \phi\right\}$
- Instantaneous: $\mathrm{R}_{\sim r}$ [$\mathrm{I}=\mathrm{k}$]
- reduces to computation of bounded until probabilities
- solution of recursive equations
- Cumulative: $\mathrm{R}_{\sim r}$ [$\mathrm{C} \leq \mathrm{t}$]
- variant of the method for computing bounded until probabilities
- solution of recursive equations
- Reachability: $\mathrm{R}_{\sim r}$ [F ф]
- similar to computing until probabilities
- reduces to solving a system of linear equation

Model checking summary

- Atomic propositions and logical connectives: trivial
- Probabilistic operator P:
- X Φ : one matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \leq \mathrm{k} \Phi_{2}$: k matrix-vector multiplications
- $\Phi_{1} \cup \Phi_{2}$: linear equation system in at most $|\mathrm{S}|$ variables
- Expected reward operator R
- I=k: k matrix-vector multiplications
- $\mathrm{C} \leq \mathrm{k}$: k iterations of matrix-vector multiplication + summation
- F Φ : linear equation system in at most $|\mathrm{S}|$ variables
- details for the reward operators are in [KNP07a]

Model checking complexity

- Model checking of DTMC ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}$) against PCTL formula Φ (including reward operators)
- complexity is linear in $|\Phi|$ and polynomial in $|S|$
- Size $|\Phi|$ of Φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
- model checking is performed for each operator
- Worst-case operators are $\mathrm{P}_{\sim p}\left[\Phi_{1} U \Phi_{2}\right.$] and $\mathrm{R}_{\sim r}[\mathrm{~F} \Phi$]
- main task: solution of linear equation system of size |S|
- can be solved with Gaussian elimination: cubic in |S|
- and also precomputation algorithms (max |S| steps)
- Strictly speaking, $\mathrm{U}^{\leq \mathrm{k}}$ could be worse than U for large k
- but in practice k is usually small

Summing up...

- Discrete-time Markov chains (DTMCs)
- definition, examples, probability measure
- Properties of DTMCs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

