Probabilistic Model Checking

Marta Kwiatkowska Gethin Norman Dave Parker

University of Oxford

Part 4 - Markov Decision Processes

Overview

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - discrete state space, transitions are discrete time-steps
 - from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution

DTMCs are fully probabilistic

 well suited to modelling, for example, simple random algorithms or synchronous probabilistic systems where components move in lock-step

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- **Concurrency** scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where $R \subseteq S \times S$
 - choice is nondeterministic

- (S,s₀,P,L) where P : S×S→[0,1]
- choice is probabilistic

 $\{try\}$ s_{0} s_{1} s_{2} s_{2} s_{2} s_{3} $succ\}$

How to combine?

Overview

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - Steps : $S \rightarrow 2^{Act \times Dist(S)}$ is the transition probability function where Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set S
 - L : S \rightarrow 2^{AP} is a labelling with atomic propositions

• Notes:

- Steps(s) is always non-empty,
 i.e. no deadlocks
- the use of actions to label distributions is optional

Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action a)
 - in state s_1 , nondeterminstic choice between actions **b** and **c**
 - action **b** gives a probabilistic choice: self-loop or return to s_0
 - action **c** gives a 0.5/0.5 random choice between heads/tails

Simple MDP example 2

$$S = {s_0, s_1, s_2, s_3}$$

 $s_{init} = s_0$

 $AP = \{init, heads, tails\}$ $L(s_0) = \{init\},$ $L(s_1) = \emptyset,$ $L(s_2) = \{heads\},$ $L(s_3) = \{tails\}$

The transition probability function

- It is often useful to think of the function Steps as a matrix
 - non-square matrix with |S| columns and $\boldsymbol{\Sigma}_{s\in S}\left|\boldsymbol{Steps}(s)\right|$ rows
 - Example (for clarity, we omit actions from the matrix)

Steps(s_0) = { (a, $s_1 \mapsto 1$) } Steps(s_1) = { (b, $[s_0 \mapsto 0.7, s_1 \mapsto 0.3]$), (c, $[s_2 \mapsto 0.5, s_3 \mapsto 0.5]$) } Steps(s_2) = { (a, $s_2 \mapsto 1$) } Steps(s_3) = { (a, $s_3 \mapsto 1$) }

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i,\mu_i)\in \textbf{Steps}(s_i)$ and $\mu_i(s_{i+1})>0$ for all $i{\geq}0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
 - note that a path resolves both types of choices: nondeterministic and probabilistic
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ... for which we can define a probability measure over paths

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - adversaries are also known as "schedulers" or "policies"
- Formally:
 - an adversary A of an MDP M is a function mapping every finite path $\omega = s_0(a_1,\mu_1)s_1...s_n$ to an element of Steps(s_n)
- For each A can define a probability measure Pr^A_s over paths
 - constructed through an infinite state DTMC (Path^A_{fin}(s),s, P^{A}_{s})
 - states of the DTMC are the finite paths of A starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P_{s}^{A}(\omega,\omega')=\mu(s)$ if $\omega'=\omega(a, \mu)s$ and $A(\omega)=(a,\mu)$
 - $\mathbf{P}_{s}^{A}(\omega,\omega')=0$ otherwise

Adversaries – Examples

- Consider the previous example MDP
 - note that s_1 is the only state for which |Steps(s)| > 1
 - i.e. s_1 is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions b and c in state s₁
- Adversary A₁
 - picks action c the first time
 - $A_1(s_0s_1) = (c, \mu_c)$

{heads} {init} a 1 0.5 s_2 a s_0 s_1 c 0.7 b 0.5 s_3 a {tails}

- Adversary A₂
 - picks action b the first time, then c
 - $A_{2}(s_{0}s_{1}) = (b,\mu_{b}), A_{2}(s_{0}s_{1}s_{1}) = (c,\mu_{c}), A_{2}(s_{0}s_{1}s_{0}s_{1}) = (c,\mu_{c})$

Adversaries – Examples

- Fragment of DTMC for adversary A₁
 - A_1 picks action c the first time

Adversaries – Examples

- Fragment of DTMC for adversary A₂
 - $-A_2$ picks action b, then c

Overview

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards

PCTL

• Temporal logic for describing properties of MDPs

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - identical to those for DTMCs
 - for a state s of the MDP (S,s_{init},Steps,L):

$$- s \vDash a \iff a \in L(s)$$

$$- s \models \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \models \varphi_1 \text{ and } s \models \varphi_2$$

 $- s \vDash \neg \varphi \qquad \Leftrightarrow s \vDash \varphi \text{ is false}$

Examples

- $-s_3 \models tails$
- $-s_1 \models \neg$ heads $\land \neg$ tails

PCTL semantics for MDPs

• Semantics of path formulas identical to DTMCs:

- for a path $\omega = s_0(a_1,\mu_1)s_1(a_2,\mu_2)s_2...$ in the MDP:
- $\omega \models X \varphi \qquad \Leftrightarrow s_1 \models \varphi$
- $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
- $\omega \vDash \varphi_1 \cup \varphi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\leq k} \varphi_2$
- Some examples of satisfying paths:

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific adversary A
 - $s \models P_{p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies ~p for all adversaries A"
 - formally $s \models P_{p} [\psi] \iff Prob^{A}(s, \psi) \sim p$ for all adversaries A
 - where $Prob^{A}(s, \psi) = Pr^{A}_{s} \{ \omega \in Path^{A}(s) \mid \omega \vDash \psi \}$

Minimum and maximum probabilities

• Letting:

- $p_{max}(s, \psi) = sup_A \operatorname{Prob}^A(s, \psi)$
- $p_{min}(s, \psi) = inf_A Prob^A(s, \psi)$
- We have:
 - $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash \textbf{P}_{\sim p} \left[\ \psi \ \right] \quad \Leftrightarrow \quad \textbf{p}_{min}(\textbf{s}, \ \psi) \thicksim \textbf{p}$
 - $\text{ if } \textbf{\sim} \in \{<,\leq\}\text{, then } \textbf{s} \vDash \textbf{P}_{\sim p} \left[\ \psi \ \right] \quad \Leftrightarrow \ \textbf{p}_{max}(\textbf{s}, \ \psi) \thicksim \textbf{p}$
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of $\boldsymbol{\psi}$ holding
 - the maximum probability of $\boldsymbol{\psi}$ holding

Classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv
- Only change is:
 - $\ s \vDash_{\mathsf{Adv}} P_{\sim p} \left[\psi \right] \ \Leftrightarrow \ \mathsf{Prob}^{\mathsf{A}}(s, \, \psi) \sim p \text{ for all adversaries } \mathsf{A} \in \mathsf{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]

PCTL derived operators

• Same equivalences as for DTMCs:

- false =
$$\neg$$
true(false)- $\phi_1 \lor \phi_2 \equiv \neg(\neg \phi_1 \land \neg \phi_2)$ (disjunction)- $\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$ (implication)

$$- F φ ≡ true U φ$$
$$- F^{≤k} φ ≡ true U^{≤k} φ$$

(eventually)

$$\begin{array}{ll} - \ G \ \varphi \equiv \neg (F \ \neg \varphi) \equiv \neg (true \ U \ \neg \varphi) & (always) \\ - \ G^{\leq k} \ \varphi \equiv \neg (F^{\leq k} \ \neg \varphi) \\ - \ P_{\geq p} \left[\ G \ \varphi \ \right] & \equiv P_{\leq 1-p} \left[\ F \ \neg \varphi \ \right] \\ - \ etc. \end{array}$$

Qualitative properties

- PCTL can express qualitative properties of MDPs
 - like for DTMCs, can relate these to CTL's AF and EF operators
 - need to be careful with "there exists" and adversaries
- $P_{\geq 1}$ [$F \varphi$] is (similar to but) weaker than AF φ - $P_{\geq 1}$ [$F \varphi$] \Leftrightarrow Prob^A(s, $F \varphi$) \geq 1 for all adversaries A - recall that "probability \geq 1" is weaker than "for all"
- We can construct the following equivalence for EF φ
 s ⊨ EF φ ⇔ there exists a finite path from s to a φ-state
 ⇔ Prob^A(s, F φ) > 0 for some adversary A
 ⇔ not Prob^A (s, F φ) ≤ 0 for all adversaries A
 ⇔ ¬P≤0 [F φ]

Quantitative properties

• For PCTL properties with P as the outermost operator

- we allow a quantitative form
- for MDPs, there are two types: $Pmin_{=?} [\psi]$ and $Pmax_{=?} [\psi]$
- i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
- model checking is no harder since compute the values of $p_{min}(s, \psi)$ or $p_{max}(s, \psi)$ anyway
- useful to spot patterns/trends

Example CSMA/CD protocol

 "min/max probability that a message is sent within the deadline"

Some real PCTL examples

Byzantine agreement protocol

- $Pmin_{=?}$ [F (agreement \land rounds \leq 2)]
- "what is the minimum probability that agreement is reached within two rounds?"

CSMA/CD communication protocol

- Pmax_{=?} [F collisions=k]
- "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $Pmin_{=?}$ [$F^{\leq t}$ stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init},Steps,L), PCTL formula ϕ
 - output: Sat(φ) = { s \in S | s $\models \varphi$ } = set of states satisfying φ
- What does it mean for a MDP M to satisfy a formula $\varphi?$
 - sometimes require $s \vDash \varphi$ for all $s \in S,$ i.e. $Sat(\varphi) = S$
 - sometimes sufficient to check $s_{init} \vDash \varphi$, i.e. if $s_{init} \in Sat(\varphi)$
- Focus on quantitative results
 - e.g. compute result of Pmin=? [F error]
 - e.g. compute result of Pmax=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for MDPs

- Basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95} [\neg fail U succ]$
- For non-probabilistic formulae:
 - Sat(true) = S
 - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
 - $\operatorname{Sat}(\neg \varphi) = S \setminus \operatorname{Sat}(\varphi)$
 - $\ Sat(\varphi_1 \ \land \ \varphi_2) = Sat(\varphi_1) \ \cap \ Sat(\varphi_2)$
- For P_{-p} [ψ] formulae
 - need to compute either $p_{min}(s, \psi)$ or $p_{max}(s, \psi)$ for all states $s \in S$

PCTL model checking for MDPs

- Remains to consider P_{-p} [ψ] formulae
 - reduces compute either $p_{min}(s,\,\psi)$ or $p_{max}\left(s,\,\psi\right)$ for all $s\in S$
 - dependent on whether $\sim \in \{\geq,>\}$ or $\sim \in \{<,\leq\}$
- Present algorithms for computing $p_{min}(s, \psi)$
 - the case when $\sim \in \{\geq, >\}$
- Computation of $p_{min}(s, \psi)$ is dual
 - replace "min" with "max" and "for all" with "there exists"

PCTL next for MDPs

Computation of probabilities for PCTL next operator

- Sat(P_{~p}[X φ]) = { s \in S | p_{min}(s, X φ) ~ p }
- need to compute $p_{min}(s,\,X\,\varphi)$ for all $s\in S$
- Recall in the DTMC case
 - sum outgoing probabilities for transitions to φ-states
 - Prob(s, X φ) = $\Sigma_{s' \in Sat(\varphi)} P(s,s')$

 For MDPs perform computation for each distribution available in s and then take minimum:

 $- p_{min}(s, X \varphi) = min \{ \Sigma_{s' \in Sat(\varphi)} \mu(s') \mid (a,\mu) \in Steps(s) \}$

PCTL next - Example

- Model check: $P_{\geq 0.5}$ [X heads]
 - Sat (heads) = $\{s_2\}$

$$\mathbf{Steps} \cdot \underline{\mathbf{heads}} = \begin{bmatrix} \frac{0 & 1 & 0 & 0}{0.7 & 0.3 & 0 & 0} \\ \frac{0 & 0 & 0.5 & 0.5}{0 & 0 & 1 & 0} \\ \frac{0 & 0 & 0 & 1 & 0}{0 & 0 & 0 & 1} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{0}{0} \\ \frac{0.5}{1} \\ \frac{1}{0} \end{bmatrix}$$

- Extracting the minimum for each state yields _{{he}
 - $\underline{p}_{min}(X \text{ heads}) = [0, 0, 1, 0]$
 - Sat(P_{\geq 0.5} [X heads]) = {s_2}

PCTL bounded until for MDPs

- Computation of probabilities for PCTL $U^{\leq k}$ operator
 - $\text{ Sat}(P_{\sim p}[\ \varphi_1 \ U^{\leq k} \ \varphi_2 \]) = \{ \ s \in S \ | \ p_{min}(s, \ \varphi_1 \ U^{\leq k} \ \varphi_2) \thicksim p \ \}$
 - need to compute $p_{min}(s, \varphi_1 \cup U^{\leq k} \varphi_2)$ for all $s \in S$
- First identify states where probability is trivially 1 or 0
 - $S^{yes} = Sat(\varphi_2)$
 - $\ S^{no} = S \ \backslash \ (Sat(\varphi_1) \ \cup \ Sat(\varphi_2))$
- For the remaining states $S^? = S \setminus (S^{yes} \cup S^{no})$

- compute $p_{min}(s, \phi_1 | U^{\leq k} | \phi_2)$ through the recursive equations: If k=0, then $p_{min}(s, \phi_1 | U^{\leq k} | \phi_2)$ equals 0 If k>0, then $p_{min}(s, \phi_1 | U^{\leq k} | \phi_2)$ equals $min\{ \Sigma_{s' \in S} \mu(s') \cdot p_{min}(s, \phi_1 | U^{\leq k-1} | \phi_2) \mid (a,\mu) \in Steps(s) \}$

PCTL bounded until for MDPs

- Simultaneous computation of vector $\underline{p}_{min}(\phi_1 | U^{\leq k} | \phi_2)$
 - i.e. probabilities $p_{min}(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$ for all $s\in S$
- Recursive definition in terms of matrices and vectors
 - similar to DTMC case
 - requires k matrix-vector multiplications
 - in addition requires k minimum operations

PCTL bounded until – Example

• Model check: $P_{<0.95}$ [$F^{\leq 3}$ init] $\equiv P_{<0.95}$ [true $U^{\leq 3}$ init]

- Sat (true) = S and Sat (init) = $\{s_0\}$
- $S^{yes} = \{s_0\}$
- $S^{no} = \emptyset$,

$$- S^{?} = \{s_{1}, s_{2}, s_{3}\}$$

- The vector of probabilities is computed successively as:
 - \underline{p}_{max} (true U^{≤ 0} init) = [1,0,0,0]
 - \underline{p}_{max} (true U^{≤ 1} init) = [1,0.7,0,0]
 - \underline{p}_{max} (true U^{≤ 2} init) = [1,0.91,0,0]
 - \underline{p}_{max} (true U^{≤3} init) = [1,0.973,0,0]
- Hence, the result is:

- Sat(P_{<0.95} [F^{\leq 3} init]) = {s₂, s₃}

- + Computation of probabilities $p_{min}(s,\,\varphi_1\;U\;\varphi_2)$ for all $s\in S$
- First identify all states where the probability is 1 or 0
- Set of states for which $p_{min}(s, \phi_1 \cup \phi_2) = 1$
 - for all adversaries the probability of satisfying φ_1 U φ_2 is 1
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
- Set of states for which $p_{min}(s, \phi_1 \cup \phi_2)=0$
 - there exists an adversary for which the probability of satisfying φ_1 U φ_2 is 0
 - not all adversaries satisfy $\phi_1 \cup \phi_2$ with probability >0
 - $S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$

- When computing $p_{max}(s, \phi_1 \cup \phi_2)$...
- Set of states for which $p_{max}(s, \phi_1 \cup \phi_2) = 1$
 - there exists an adversary for which the probability of satisfying φ_1 U φ_2 is 1
 - not all adversaries satisfy $\phi_1 \cup \phi_2$ with probability <1
 - $S^{yes} = Sat(\neg P_{<1} [\varphi_1 U \varphi_2])$

• Set of states for which $p_{max}(s, \phi_1 \cup \phi_2)=0$

- for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 0
- $\ S^{no} = Sat(P_{\leq 0} \left[\ \varphi_1 \ U \ \varphi_2 \ \right])$

As for the DTMC refered to as "precomputation" phase

- four precomputation algorithms:
- for minimum probabilities Prob1A and Prob0E
- for maximum probabilities Prob1E and Prob0A
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically
 - for $P_{\sim p}[\cdot]$ where p is 0 or 1, no further computation required
 - gives exact results for the states in Syes and Sno (no round-off)

• Probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ are obtained as the unique solution of the following linear optimisation problem:

maximize $\sum_{s \in S^?} x_s$ subject to the constraint s : $x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$ for all $s \in S^?$ and for all $(a, \mu) \in$ Steps (s)

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Simplex, ellipsoid method
 - iterative methods, e.g. policy, value iteration

- In the case of maximum probabilities
- Probabilities $p_{max}(s, \phi_1 \cup \phi_2)$ are obtained as the unique solution of the following linear optimisation problem:

minimize $\sum_{s \in S^?} x_s$ subject to the constraint s : $x_s \ge \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$ for all $s \in S^?$ and for all $(a, \mu) \in$ Steps (s)

PCTL until – Example

• Model check: $P_{\geq 0.5}$ [true U (tails \lor init)]

- Sat(tails \lor init) = {s₀,s₃}
- $S^{no} = Sat(\neg P_{>0} [true U (tails \lor init)]) = \{s_2\}$
- $S^{yes} = Sat(P_{\geq 1} [true U (tails \lor init)]) = \{s_0, s_3\}$

Linear optimisation problem:

- maximize x_1 subject to the constraints

 $x_1 \le 0.3 \cdot x_1 + 0.7$

 $x_1 \le 0.5$

{init} a 1 0.5 **S**₁ 0.7 0.5 0.3 {tails}

{heads}

- Which yields:
 - \underline{p}_{min} (true U (tails \vee init)) = [1, 0.5, 0, 1]
 - Sat($P_{\geq 0.5}$ [try U succ]) = {s₀, s₁, s₃}

Overview

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards

Costs and rewards

- We can augment MDPs with rewards (or costs)
 - real-valued quantities assigned to states and/or actions
 - different from the DTMC case where transition rewards assigned to individual transitions
- For a MDP (S,s_{init},Steps,L), a reward structure is a pair ($\underline{\rho},\iota$) - $\underline{\rho}: S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function
 - $-\iota:S\times Act \to \mathbb{R}_{\geq 0}$ is transition reward function
- As for DTMCs these can be used to compute:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

PCTL and rewards

- Augment PCTL with rewards based properties
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards

where $r \in \mathbb{R}_{\geq 0}$, ~ $\thicksim \in \{<,>,\leq,\geq\},~k \in \mathbb{N}$

• R_{-r} [•] means "the expected value of • satisfies ~r for all adversaries"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - the expected value of the reward at time-step k is ~r for all adversaries
 - "the minimum expected queue size after exactly 90 seconds"
- Cumulative: R_{-r} [$C^{\leq k}$]
 - the expected reward cumulated up to time-step k is ~r for all adversaries
 - "the maximum expected power consumption over one hour"
- Reachability: R_{r} [F ϕ]
 - the expected reward cumulated before reaching a state satisfying φ is ~r for all adversaries
 - the maximum expected time for the algorithm to terminate

Reward formula semantics

• Formal semantics of the three reward operators:

- for a state s in the MDP:

$$- s \models R_{r} [I^{=k}] \iff Exp^{A}(s, X_{I=k}) \sim r \text{ for all adversaries A}$$

- $s \models R_{\sim r} [C^{\leq k}] \iff Exp^A(s, X_{C \leq k}) \sim r \text{ for all adversaries } A$
- $s \models R_{r} [F \Phi] \iff Exp^A(s, X_{F\Phi}) \sim r \text{ for all adversaries A}$

Exp^A(s, X) denotes the expectation of the random variable X : Path^A (s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr^A_s

Reward formula semantics

• For an infinite path $\omega = s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$

$$\begin{split} X_{I=k}(\omega) &= \underline{\rho}(s_k) \\ X_{C \le k}(\omega) &= \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(a_i) & \text{otherwise} \end{cases} \\ X_{F\varphi}(\omega) &= \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\varphi) \\ \infty & \text{if } s_i \notin \text{Sat}(\varphi) \text{ for all } i \ge 0 \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(a_i) & \text{otherwise} \end{cases} \end{split}$$

where $k_{\phi} = \min\{i \mid s_i \vDash \phi\}$

and the

Model checking reward formulas

- Instantaneous: R_{-r} [I^{=k}]
 - similar the to computation of bounded until probabilities
 - solution of recursive equations
- Cumulative: $R_{-r} [C^{\leq k}]$
 - extension of bounded until computation
 - solution of recursive equations
- Reachability: R_{r} [F ϕ]
 - similar to the case for until
 - solve a linear optimization problem

Model checking summary

- Atomic propositions and logical connectives: trivial
- Probabilistic operator P:
 - X Φ : one matrix-vector multiplications
 - $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications
 - $\Phi_1 \cup \Phi_2$: linear optimisation problem in at most |S| variables

• Expected reward operator R

- $I^{=k}$: k matrix-vector multiplications
- $C^{\leq k}$: k iterations of matrix-vector multiplication + summation
- F Φ : linear optimisation problem in at most |S| variables

Model checking complexity

- For model checking of an MDP (S,s_{init},Steps,L) and PCTL formula φ (including reward operators)
 - complexity is linear in $|\Phi|$ and polynomial in |S|
- Size |φ| of φ is defined as number of logical connectives and temporal operators plus sizes of temporal operators

 model checking is performed for each operator
- Worst-case operators are P_{-p} [$\phi_1 \cup \phi_2$] and R_{-r} [F ϕ]
 - main task: solution of linear optimization problem of size |S|
 - can be solved with ellipsoid method (polynomial in |S|)
 - and also precomputation algorithms (max |S| steps)

Summing up...

- Nondeterminism
- Markov decision processes (MDPs)
 - definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
 - syntax, semantics, equivalences, ...
- PCTL model checking
 - algorithms, examples, ...
- Costs and rewards