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Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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Recap: DTMCs

• Discrete-time Markov chains (DTMCs)
− discrete state space,  transitions are discrete time-steps
− from each state, choice of successor state (i.e. which 

transition) is determined by a discrete probability distribution

• DTMCs are fully probabilistic
− well suited to modelling, for example, simple random 

algorithms or synchronous probabilistic systems where 
components move in lock-step
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Nondeterminism

• But, some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components
− e.g. randomised distributed algorithms - multiple 

probabilistic processes operating asynchronously

• Unknown environments
− e.g. probabilistic security protocols - unknown adversary

• Underspecification - unknown model parameters
− e.g. a probabilistic communication protocol designed for 

message propagation delays of between dmin and dmax
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Probability vs. nondeterminism

• Labelled transition system
− (S,s0,R,L) where R ⊆ S×S
− choice is nondeterministic

• Discrete-time Markov chain
− (S,s0,P,L) where P : S×S→[0,1]
− choice is probabilistic

• How to combine?
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Markov decision processes

• Markov decision processes (MDPs)
− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:
− discrete set of states representing possible configurations of 

the system being modelled
− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism
− in each state, a nondeterministic

choice between several discrete
probability distributions over
successor states
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Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,Steps,L) where: 
− S is a finite set of states (“state space”)
− sinit ∈ S is the initial state
− Steps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S

− L : S → 2AP is a labelling with atomic propositions

• Notes:
− Steps(s) is always non-empty,

i.e. no deadlocks
− the use of actions to label

distributions is optional
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Simple MDP example

• Modification of the simple DTMC communication protocol
− after one step, process starts trying to send a message
− then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message
− if the latter, with probability 0.99 send successfully and stop
− and with probability 0.01, message sending fails, restart
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Simple MDP example 2

• Another simple MDP example with four states
− from state s0, move directly to s1 (action a)
− in state s1, nondeterminstic choice between actions b and c
− action b gives a probabilistic choice: self-loop or return to s0

− action c gives a 0.5/0.5 random choice between heads/tails
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Simple MDP example 2

M = (S,sinit,Steps,L)

S = {s0, s1, s2, s3} 
sinit = s0

Steps(s0) = { (a, s1↦1) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, s2↦1) }
Steps(s3) = { (a, s3↦1) }
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The transition probability function

• It is often useful to think of the function Steps as a matrix
− non-square matrix with |S| columns and Σs∈S |Steps(s)| rows

• Example (for clarity, we omit actions from the matrix)
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Example - Parallel composition
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Paths and probabilities

• A (finite or infinite) path through an MDP
− is a sequence of states and action/distribution pairs
− e.g. s0(a0,μ0)s1(a1,μ1)s2…
− such that (ai,μi) ∈ Steps(si) and μi(si+1) > 0 for all i≥0
− represents an execution (i.e. one possible behaviour) of the 

system which the MDP is modelling
− note that a path resolves both types of choices: 

nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP
− first need to resolve the nondeterministic choices
− …which results in a DTMC
− …for which we can define a probability measure over paths
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Adversaries

• An adversary resolves nondeterministic choice in an MDP
− adversaries are also known as “schedulers” or “policies”

• Formally:
− an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,μ1)s1...sn to an element of Steps(sn)

• For each A can define a probability measure PrA
s over paths

− constructed through an infinite state DTMC (PathA
fin(s),s,PA

s)
− states of the DTMC are the finite paths of A starting in state s
− initial state is s (the path starting in s of length 0)
− PA

s(ω,ω’)=μ(s) if ω’= ω(a, μ)s and A(ω)=(a,μ)
− PA

s(ω,ω’)=0 otherwise
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Adversaries - Examples

• Consider the previous example MDP
− note that s1 is the only state for which |Steps(s)| > 1
− i.e. s1 is the only state for which an adversary makes a choice
− let μb and μc denote the probability distributions associated 

with actions b and c in state s1

• Adversary A1

− picks action c the first time
− A1(s0s1)=(c,μc)

• Adversary A2

− picks action b the first time, then c
− A2(s0s1)=(b,μb),  A2(s0s1s1)=(c,μc),  A2(s0s1s0s1)=(c,μc)
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Adversaries - Examples

• Fragment of DTMC for adversary A1

− A1 picks action c the first time
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Adversaries - Examples

• Fragment of DTMC for adversary A2

− A2 picks action b, then c
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PCTL

• Temporal logic for describing properties of MDPs
− identical syntax to the logic PCTL for DTMCs

− φ ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ ::=  X φ |    φ U≤k φ |   φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

“until”

ψ is true with 
probability ~p

“bounded 
until”“next”
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PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP
− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:
− identical to those for DTMCs
− for a state s of the MDP (S,sinit,Steps,L):
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples
− s3 ⊨ tails
− s1 ⊨ ¬ heads ∧ ¬tails
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PCTL semantics for MDPs

• Semantics of path formulas identical to DTMCs:
− for a path ω = s0(a1,μ1)s1(a2,μ2)s2… in the MDP:
− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:
− X tails

− ¬heads U tails
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PCTL semantics for MDPs

• Semantics of the probabilistic operator P
− can only define probabilities for a specific adversary A
− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 

true for an outgoing path satisfies ~p for all adversaries A”
− formally  s ⊨ P~p [ ψ ]  ⇔ ProbA(s, ψ) ~ p for all adversaries A
− where ProbA(s, ψ) = PrA

s { ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ ProbA(s, ψ) ~ p
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Minimum and maximum probabilities

• Letting:
− pmax(s, ψ) = supA ProbA(s, ψ)
− pmin(s, ψ) = infA ProbA(s, ψ)

• We have:
− if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ] ⇔ pmin(s, ψ) ~ p 
− if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ] ⇔ pmax(s, ψ) ~ p

• Model checking P~p[ ψ ] reduces to the computation over all 
adversaries of either:
− the minimum probability of ψ holding
− the maximum probability of ψ holding
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Classes of adversary

• A more general semantics for PCTL over MDPs
− parameterise by a class of adversaries Adv

• Only change is:
− s ⊨Adv P~p [ψ]  ⇔ ProbA(s, ψ) ~ p for all adversaries A ∈ Adv

• Original semantics obtained by taking Adv to be the set of 
all adversaries for the MDP

• Alternatively, take Adv to be the set of all fair adversaries
− path fairness: if a state is occurs on a path infinitely often, 

then each non-deterministic choice occurs infinite often
− see e.g. [BK98]



26

PCTL derived operators

• Same equivalences as for DTMCs:

− false ≡ ¬true (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

− F φ ≡ true U φ (eventually)
− F≤k φ ≡ true U≤k φ

− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (always)
− G≤k φ ≡ ¬(F≤k ¬φ)
− P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
− etc.
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Qualitative properties

• PCTL can express qualitative properties of MDPs
− like for DTMCs, can relate these to CTL’s AF and EF operators
− need to be careful with “there exists” and adversaries

• P≥1 [ F φ ] is (similar to but) weaker than AF φ
− P≥1 [ F φ ] ⇔ ProbA(s, F φ) ≥ 1 for all adversaries A
− recall that “probability≥1” is weaker than “for all”

• We can construct the following equivalence for EF φ
− s ⊨ EF φ⇔ there exists a finite path from s to a φ-state

⇔ ProbA(s, F φ) > 0 for some adversary A
⇔ not ProbA (s, F φ) ≤ 0 for all adversaries A
⇔ ¬P≤0 [ F φ ]
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Quantitative properties

• For PCTL properties with P as the outermost operator
− we allow a quantitative form
− for MDPs, there are two types: Pmin=? [ ψ ] and Pmax=? [ ψ ]
− i.e. “what is the minimum/maximum probability (over all 

adversaries) that path formula ψ is true?”
− model checking is no harder since compute the values of 

pmin(s, ψ) or pmax(s, ψ) anyway 
− useful to spot patterns/trends

• Example CSMA/CD protocol
− “min/max probability

that a message is sent
within the deadline”



29

Some real PCTL examples

• Byzantine agreement protocol
− Pmin=? [ F (agreement ∧ rounds≤2) ]
− “what is the minimum probability that agreement is reached 

within two rounds?”

• CSMA/CD communication protocol
− Pmax=? [ F collisions=k ]
− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols 
− Pmin=? [ F≤t stable ]
− “what is the minimum probability of reaching a stable state 

within k steps?”
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PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]
− inputs:  MDP M=(S,sinit,Steps,L),  PCTL formula φ
− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a MDP M to satisfy a formula φ?
− sometimes require s ⊨ φ for all s ∈ S, i.e. Sat(φ) = S
− sometimes sufficient to check sinit ⊨ φ, i.e. if sinit∈ Sat(φ)

• Focus on quantitative results
− e.g. compute result of Pmin=? [ F error ]
− e.g. compute result of Pmax=? [ F≤k error ] for 0≤k≤100
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PCTL model checking for MDPs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For non-probabilistic formulae:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For P~p [ ψ ] formulae 
− need to compute either

pmin(s, ψ) or pmax (s, ψ)
for all states s ∈ S

∧

¬

→

P>0.95 [ · U · ]

¬

fail fail

succtry



33

PCTL model checking for MDPs

• Remains to consider P~p [ ψ ] formulae 
− reduces compute either pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

• Present algorithms for computing pmin(s, ψ)
− the case when ~ ∈ {≥,>}

• Computation of pmin(s, ψ) is dual
− replace “min” with “max” and “for all” with “there exists”
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PCTL next for MDPs

• Computation of probabilities for PCTL next operator
− Sat(P~p[ X φ ]) = { s ∈ S | pmin(s, X φ) ~ p }
− need to compute pmin(s, X φ) for all s ∈ S

• Recall in the DTMC case
− sum outgoing probabilities for

transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• For MDPs perform computation for each distribution
available in s and then take minimum:
− pmin(s, X φ) = min { Σs’∈Sat(φ) μ(s’) | (a,μ)∈Steps(s) }

s

φ
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PCTL next - Example

• Model check: P≥0.5 [ X heads ]
− Sat (heads)= {s2}

• Extracting the minimum for each state yields
− pmin(X heads) = [0, 0, 1, 0] 
− Sat(P≥0.5 [ X heads ]) = {s2}
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PCTL bounded until for MDPs

• Computation of probabilities for PCTL U≤k operator
− Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p }
− need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S

• First identify states where probability is trivially 1 or 0
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• For the remaining states S? = S \ (Syes ∪ Sno) 
− compute pmin(s, φ1 U≤k φ2) through the recursive equations:

If k=0, then pmin(s, φ1 U≤k φ2) equals 0
If k>0, then pmin(s, φ1 U≤k φ2) equals

min{ Σs’∈S μ(s’) ·pmin(s, φ1 U≤k-1 φ2) | (a,μ)∈Steps(s)  }
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PCTL bounded until for MDPs

• Simultaneous computation of vector pmin(φ1 U≤k φ2)
− i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S

• Recursive definition in terms of matrices and vectors
− similar to DTMC case
− requires k matrix-vector multiplications
− in addition requires k minimum operations



38

PCTL bounded until - Example

• Model check: P<0.95 [ F≤3 init ] ≡ P<0.95 [ true U≤3 init ]
− Sat (true) = S and Sat (init) = {s0}
− Syes = {s0}
− Sno = ∅, 
− S? = {s1,s2,s3}

• The vector of probabilities is
computed successively as:
− pmax(true U≤0 init ) = [1,0,0,0]
− pmax(true U≤1 init ) = [1,0.7,0,0]
− pmax(true U≤2 init ) = [1,0.91,0,0]
− pmax(true U≤3 init ) = [1,0.973,0,0]

• Hence, the result is:
− Sat(P<0.95 [ F≤3 init ]) = {s2, s3}
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PCTL until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

• Set of states for which pmin(s, φ1 U φ2)=1 
− for all adversaries the probability of satisfying φ1 U φ2 is 1
− Syes = Sat(P≥1 [ φ1 U φ2 ])

• Set of states for which pmin(s, φ1 U φ2)=0
− there exists an adversary for which the probability of 

satisfying φ1 U φ2 is 0
− not all adversaries satisfy φ1 U φ2 with probability >0
− Sno = Sat(¬ P>0 [ φ1 U φ2 ])
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PCTL until for MDPs

• When computing pmax(s, φ1 U φ2)...

• Set of states for which pmax(s, φ1 U φ2)=1 
− there exists an adversary for which the probability of 

satisfying φ1 U φ2 is 1
− not all adversaries satisfy φ1 U φ2 with probability <1
− Syes = Sat(¬P<1 [ φ1 U φ2 ])

• Set of states for which pmax(s, φ1 U φ2)=0
− for all adversaries the probability of satisfying φ1 U φ2 is 0
− Sno = Sat(P≤0 [ φ1 U φ2 ])
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PCTL until for MDPs

• As for the DTMC refered to as “precomputation” phase
− four precomputation algorithms: 
− for minimum probabilities Prob1A and Prob0E
− for maximum probabilities Prob1E and Prob0A

• Important for several reasons
− reduces the set of states for which probabilities must be 

computed numerically
− for P~p[·] where p is 0 or 1, no further computation required
− gives exact results for the states in Syes and Sno (no round-off)
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PCTL until for MDPs

• Probabilities pmin(s, φ1 U φ2) are obtained as the unique 
solution of the following linear optimisation problem:

• Simple case of a more general problem known as the 
stochastic shortest path problem [BT91]

• This can be solved with (a variety of) standard techniques
− direct methods, e.g. Simplex, ellipsoid method
− iterative methods, e.g. policy, value iteration
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PCTL until for MDPs

• In the case of maximum probabilities

• Probabilities pmax(s, φ1 U φ2) are obtained as the unique 
solution of the following linear optimisation problem:
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PCTL until - Example

• Model check: P≥ 0.5 [ true U (tails ∨ init) ]
− Sat(tails ∨ init) = {s0,s3}
− Sno = Sat(¬P>0 [true U (tails ∨ init)]) = {s2}
− Syes = Sat(P≥1 [true U (tails ∨ init)]) = {s0,s3}

• Linear optimisation problem:
− maximize x1 subject to the constraints

x1 ≤ 0.3 · x1 + 0.7
x1 ≤ 0.5

• Which yields:
− pmin(true U (tails ∨ init)) = [1, 0.5, 0, 1]
− Sat(P≥0.5 [ try U succ ]) = {s0 , s1, s3}

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a
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Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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Costs and rewards

• We can augment MDPs with rewards (or costs)
− real-valued quantities assigned to states and/or actions
− different from the DTMC case where transition rewards 

assigned to individual transitions

• For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι)
− ρ : S → ℝ≥0 is the state reward function
− ι : S × Act → ℝ≥0 is transition reward function

• As for DTMCs these can be used to compute:
− elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, …
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PCTL and rewards

• Augment PCTL with rewards based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ ::=  … |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r for all 
adversaries”

“reachability”

expected reward is ~r

“cumulative”“instantaneous”
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Types of reward formulas

• Instantaneous: R~r [ I=k ]
− the expected value of the reward at time-step k is ~r for all 

adversaries
− “the minimum expected queue size after exactly 90 seconds”

• Cumulative: R~r [ C≤k ]
− the expected reward cumulated up to time-step k is ~r for all 

adversaries
− “the maximum expected power consumption over one hour”

• Reachability: R~r [ F φ ]
− the expected reward cumulated before reaching a state 

satisfying φ is ~r for all adversaries
− the maximum expected time for the algorithm to terminate
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Reward formula semantics

• Formal semantics of the three reward operators:
− for a state s in the MDP:
− s ⊨ R~r [ I=k ]  ⇔ ExpA(s, XI=k) ~ r for all adversaries A
− s ⊨ R~r [ C≤k ]  ⇔ ExpA(s, XC≤k) ~ r for all adversaries A
− s ⊨ R~r [ F Φ ]  ⇔ ExpA(s, XFΦ) ~ r for all adversaries A

ExpA(s, X) denotes the expectation of the random variable
X : PathA (s) → ℝ≥0 with respect to the probability measure PrA

s
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Reward formula semantics

• For an infinite path ω= s0(a0,μ0)s1(a1,μ1)s2…

where kφ =min{ i | si ⊨ φ }

 otherwise
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Model checking reward formulas

• Instantaneous: R~r [ I=k ]
− similar the to computation of bounded until probabilities
− solution of recursive equations

• Cumulative: R~r [ C≤k ]
− extension of bounded until computation
− solution of recursive equations

• Reachability: R~r [ F φ ]
− similar to the case for until
− solve a linear optimization problem
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Model checking summary

• Atomic propositions and logical connectives: trivial

• Probabilistic operator P:
− X Φ : one matrix-vector multiplications
− Φ1 U≤k Φ2 : k matrix-vector multiplications
− Φ1 U Φ2 : linear optimisation problem in at most |S| variables

• Expected reward operator R
− I=k : k matrix-vector multiplications
− C≤k : k iterations of matrix-vector multiplication + summation
− F Φ : linear optimisation problem in at most |S| variables
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Model checking complexity

• For model checking of an MDP (S,sinit,Steps,L) and PCTL 
formula φ (including reward operators)
− complexity is linear in |Φ| and polynomial in |S|

• Size |φ| of φ is defined as number of logical connectives 
and temporal operators plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operators are P~p [ φ1 U φ2 ] and R~r [ F φ ]
− main task: solution of linear optimization problem of size |S|
− can be solved with ellipsoid method (polynomial in |S|)
− and also precomputation algorithms (max |S| steps)
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Summing up…

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards
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