Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 4 - Markov Decision Processes

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
- discrete state space, transitions are discrete time-steps
- from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution

- DTMCs are fully probabilistic
- well suited to modelling, for example, simple random algorithms or synchronous probabilistic systems where components move in lock-step

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency - scheduling of parallel components
- e.g. randomised distributed algorithms - multiple probabilistic processes operating asynchronously
- Unknown environments
- e.g. probabilistic security protocols - unknown adversary
- Underspecification - unknown model parameters
- e.g. a probabilistic communication protocol designed for message propagation delays of between $\mathrm{d}_{\text {min }}$ and $\mathrm{d}_{\text {max }}$

Probability vs. nondeterminism

- Labelled transition system
- $\left(\mathrm{S}, \mathrm{s}_{0}, \mathrm{R}, \mathrm{L}\right)$ where $\mathrm{R} \subseteq \mathrm{S} \times \mathrm{S}$
- choice is nondeterministic

- Discrete-time Markov chain
- $\left(\mathrm{S}, \mathrm{s}_{0}, \mathrm{P}, \mathrm{L}\right)$ where $\mathrm{P}: \mathrm{S} \times \mathrm{S} \rightarrow[0,1]$
- choice is probabilistic

- How to combine?

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Markov decision processes

- Markov decision processes (MDPs)
- extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
- in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple ($\mathrm{S}, \mathrm{s}_{\text {init }}, S t e p s, \mathrm{~L}$) where:
- S is a finite set of states ("state space")
$-s_{\text {init }} \in S$ is the initial state
- Steps : S $\rightarrow 2^{\text {Act } \times \text { Dist(S) }}$ is the transition probability function where Act is a set of actions and $\operatorname{Dist}(S)$ is the set of discrete probability distributions over the set S
$-\mathrm{L}: \mathrm{S} \rightarrow 2^{\mathrm{AP}}$ is a labelling with atomic propositions
- Notes:
- Steps(s) is always non-empty, i.e. no deadlocks
- the use of actions to label distributions is optional

Simple MDP example

- Modification of the simple DTMC communication protocol
- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
- from state s_{0}, move directly to s_{1} (action a)
- in state s_{1}, nondeterminstic choice between actions b and c
- action b gives a probabilistic choice: self-loop or return to s_{0}
- action c gives a $0.5 / 0.5$ random choice between heads/tails

\{tails\}

Simple MDP example 2

$$
\begin{aligned}
& \mathrm{M}=\left(\mathrm{S}, \mathrm{~s}_{\text {init }}, \text { Steps }, \mathrm{L}\right) \\
& \mathrm{S}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \\
& \mathrm{s}_{\text {init }}=\mathrm{s}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{AP}=\{\text { init, heads, tails }\} \\
& \mathrm{L}\left(\mathrm{~s}_{0}\right)=\{\text { init }\}, \\
& \mathrm{L}\left(\mathrm{~s}_{1}\right)=\varnothing, \\
& \left.\mathrm{L} \mathrm{~s}_{2}\right)=\{\text { heads }\}, \\
& \mathrm{L}\left(\mathrm{~s}_{3}\right)=\{\text { tails }\}
\end{aligned}
$$

The transition probability function

- It is often useful to think of the function Steps as a matrix
- non-square matrix with $|S|$ columns and $\Sigma_{\mathrm{s} \in \mathrm{S}} \mid$ Steps(s)| rows
- Example (for clarity, we omit actions from the matrix)

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Paths and probabilities

- A (finite or infinite) path through an MDP
- is a sequence of states and action/distribution pairs
- e.g. $s_{0}\left(a_{0}, \mu_{0}\right) s_{1}\left(a_{1}, \mu_{1}\right) s_{2} \ldots$
- such that $\left(\mathrm{a}_{\mathrm{i}}, \mu_{\mathrm{i}}\right) \in \operatorname{Steps}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mu_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}+1}\right)>0$ for all $\mathrm{i} \geq 0$
- represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- note that a path resolves both types of choices: nondeterministic and probabilistic
- To consider the probability of some behaviour of the MDP
- first need to resolve the nondeterministic choices
- ...which results in a DTMC
- ...for which we can define a probability measure over paths

Adversaries

- An adversary resolves nondeterministic choice in an MDP
- adversaries are also known as "schedulers" or "policies"
- Formally:
- an adversary A of an MDP M is a function mapping every finite path $\omega=s_{0}\left(a_{1}, \mu_{1}\right) s_{1} \ldots s_{n}$ to an element of Steps $\left(s_{n}\right)$
- For each A can define a probability measure $\operatorname{Pr}^{A}{ }_{s}$ over paths
- constructed through an infinite state DTMC ($\operatorname{Path}_{\text {fin }}(\mathrm{s}), \mathrm{s}, \mathrm{P}_{\mathrm{s}}$)
- states of the DTMC are the finite paths of A starting in state s
- initial state is s (the path starting in s of length 0)
- $P^{A}{ }_{s}\left(\omega, \omega^{\prime}\right)=\mu(s)$ if $\omega^{\prime}=\omega(a, \mu) s$ and $A(\omega)=(a, \mu)$
- $\mathbf{P A}_{s}\left(\omega, \omega^{\prime}\right)=0$ otherwise

Adversaries - Examples

- Consider the previous example MDP
- note that s_{1} is the only state for which \mid Steps(s)| >1
- i.e. s_{1} is the only state for which an adversary makes a choice
- let μ_{b} and μ_{c} denote the probability distributions associated with actions b and c in state s_{1}
- Adversary A_{1}
- picks action c the first time
$-\mathrm{A}_{1}\left(\mathrm{~s}_{0} \mathrm{~s}_{1}\right)=\left(\mathrm{c}, \mu_{\mathrm{c}}\right)$
- Adversary A_{2}

- picks action b the first time, then c
$-\mathrm{A}_{2}\left(\mathrm{~s}_{0} \mathrm{~s}_{1}\right)=\left(\mathrm{b}, \mu_{\mathrm{b}}\right), \mathrm{A}_{2}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{1}\right)=\left(\mathrm{c}, \mu_{\mathrm{c}}\right), \mathrm{A}_{2}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{0} \mathrm{~s}_{1}\right)=\left(\mathrm{c}, \mu_{\mathrm{c}}\right)$

Adversaries - Examples

- Fragment of DTMC for adversary A_{1}
- A_{1} picks action c the first time

Adversaries - Examples

- Fragment of DTMC for adversary A_{2}

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

PCTL

- Temporal logic for describing properties of MDPs
- identical syntax to the logic PCTL for DTMCs
ψ is true with probability ~p
$-\phi::=\operatorname{true}|\mathrm{a}| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim \mathrm{p}}[\psi]$
$-\psi::=X \phi \quad\left|\quad \phi U^{\leq k} \phi \quad\right| \quad \phi U \phi$

(state formulas)
(path formulas)
- where a is an atomic proposition, used to identify states of interest, $p \in[0,1]$ is a probability, $\sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
$-s \vDash \phi$ denotes ϕ is "true in state s " or "satisfied in state s "
- Semantics of (non-probabilistic) state formulas:
- identical to those for DTMCs
- for a state s of the MDP ($\mathrm{S}, \mathrm{s}_{\text {init }}, S t e p s, \mathrm{~L}$):
$-s \vDash a \quad \Leftrightarrow a \in L(s)$
$-s \vDash \phi_{1} \wedge \phi_{2} \quad \Leftrightarrow \quad s \vDash \phi_{1}$ and $s \vDash \phi_{2}$
$-s \vDash \neg \phi \quad \Leftrightarrow s \vDash \phi$ is false
- Examples
$-s_{3}$ ю tails
$-s_{1} \vDash \neg$ heads $\wedge \neg$ tails

PCTL semantics for MDPs

- Semantics of path formulas identical to DTMCs:
- for a path $\omega=s_{0}\left(a_{1}, \mu_{1}\right) s_{1}\left(a_{2}, \mu_{2}\right) s_{2} \ldots$ in the MDP:
$-\omega \vDash X \phi \quad \Leftrightarrow s_{1} \vDash \phi$
$-\omega \vDash \phi_{1} U \leq k \phi_{2} \Leftrightarrow \exists i \leq k$ such that $\mathrm{s}_{\mathrm{i}} \vDash \phi_{2}$ and $\forall \mathrm{j}<\mathrm{i}, \mathrm{s}_{\mathrm{j}} \vDash \phi_{1}$
$-\omega \vDash \phi_{1} \cup \phi_{2} \Leftrightarrow \exists \mathrm{k} \geq 0$ such that $\omega \vDash \phi_{1} \mathrm{U} \leqslant \mathrm{k} \phi_{2}$
- Some examples of satisfying paths:
- X tails

- \neg heads U tails

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
- can only define probabilities for a specific adversary A
$-s \vDash P_{\sim p}[\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries A"
- formally $s \vDash P_{\sim p}[\psi] \Leftrightarrow \operatorname{Prob}^{A}(s, \psi) \sim p$ for all adversaries A
- where $\operatorname{Prob}^{A}(\mathrm{~s}, \psi)=\operatorname{Pr}_{\mathrm{s}}\left\{\omega \in \operatorname{Path}^{\mathrm{A}}(\mathrm{s}) \mid \omega \vDash \psi\right\}$

Minimum and maximum probabilities

- Letting:
$-p_{\text {max }}(s, \psi)=\sup _{A} \operatorname{Prob}^{A}(s, \psi)$
$-p_{\text {min }}(s, \psi)=\inf _{A} \operatorname{Prob}^{A}(s, \psi)$
- We have:
- if $\sim \in\{\geq,>\}$, then $s \vDash P_{\sim p}[\Psi] \Leftrightarrow p_{\text {min }}(s, \psi) \sim p$
- if $\sim \in\{<, \leq\}$, then $s \vDash P_{\sim p}[\Psi] \Leftrightarrow p_{\max }(s, \Psi) \sim p$
- Model checking $\mathrm{P}_{\sim p}[\Psi]$ reduces to the computation over all adversaries of either:
- the minimum probability of ψ holding
- the maximum probability of ψ holding

Classes of adversary

- A more general semantics for PCTL over MDPs
- parameterise by a class of adversaries Adv
- Only change is:
$-\mathrm{s} \vDash_{\mathrm{Adv}} \mathrm{P}_{\sim \mathrm{p}}[\psi] \Leftrightarrow \operatorname{Prob}^{\mathrm{A}}(\mathrm{s}, \psi) \sim \mathrm{p}$ for all adversaries $\mathrm{A} \in \mathrm{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
- path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
- see e.g. [BK98]

PCTL derived operators

- Same equivalences as for DTMCs:

> - false $\equiv \neg$ true
> $-\phi_{1} \vee \phi_{2} \equiv \neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right)$
> $-\phi_{1} \rightarrow \phi_{2} \equiv \neg \phi_{1} \vee \phi_{2}$
(false)
(disjunction)
(implication)

- $\mathrm{F} \phi \equiv$ true $\mathrm{U} \phi$
(eventually)
- $F \leq k \equiv$ true $U \leq k \phi$
$-\mathrm{G} \phi \equiv \neg(\mathrm{F} \neg \phi) \equiv \neg($ true $\mathrm{U} \neg \phi)$
(always)
$-\mathrm{G} \leq \mathrm{k} \phi \equiv \neg(\mathrm{F} \leq \mathrm{k} \neg \phi)$
$-P_{\geq p}[G \phi] \equiv P_{\leq 1-p}[F \neg \phi]$
- etc.

Qualitative properties

- PCTL can express qualitative properties of MDPs
- like for DTMCs, can relate these to CTL's AF and EF operators
- need to be careful with "there exists" and adversaries
- $P_{\geq 1}[F \phi]$ is (similar to but) weaker than AF ϕ
$-P_{\geq 1}[F \phi] \Leftrightarrow \operatorname{Prob}^{A}(s, F \phi) \geq 1$ for all adversaries A
- recall that "probability ≥ 1 " is weaker than "for all"
- We can construct the following equivalence for EF ϕ
$-\mathrm{s} \vDash \mathrm{EF} \phi \Leftrightarrow$ there exists a finite path from s to a ϕ-state
$\Leftrightarrow \operatorname{Prob}^{A}(s, F \phi)>0$ for some adversary A
$\Leftrightarrow \operatorname{not} \operatorname{Prob}^{A}(\mathrm{~s}, \mathrm{~F} \phi) \leq 0$ for all adversaries A
$\Leftrightarrow \neg P \leq 0[F \phi]$

Quantitative properties

- For PCTL properties with P as the outermost operator
- we allow a quantitative form
- for MDPs, there are two types: $\mathrm{Pmin}_{=\text {? }}\left[\psi\right.$] and $\mathrm{Pmax}_{=\text {? }}[\psi]$
- i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
- model checking is no harder since compute the values of $p_{\text {min }}(s, \psi)$ or $p_{\text {max }}(s, \psi)$ anyway
- useful to spot patterns/trends
- Example CSMA/CD protocol
- "min/max probability that a message is sent within the deadline"

Some real PCTL examples

- Byzantine agreement protocol
- Pmin $_{=\text {? }}[F($ agreement \wedge rounds $\leq 2)]$
- "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
- $\mathrm{Pmax}_{=\text {? }}$ [F collisions $=\mathrm{k}$]
- "what is the maximum probability of k collisions?"
- Self-stabilisation protocols
- $\mathrm{Pmin}_{=?}$ [F st stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
- inputs: MDP M=(S, $\mathrm{s}_{\text {init }}$ Steps,L), PCTL formula ϕ
- output: $\operatorname{Sat}(\phi)=\{s \in S \mid s \vDash \phi\}=$ set of states satisfying ϕ
- What does it mean for a MDP M to satisfy a formula ϕ ?
- sometimes require $s \vDash \phi$ for all $s \in S$, i.e. $\operatorname{Sat}(\phi)=S$
- sometimes sufficient to check $s_{\text {init }} \vDash \phi$, i.e. if $s_{\text {init }} \in \operatorname{Sat}(\phi)$
- Focus on quantitative results
- e.g. compute result of Pmin=? [F error]
- e.g. compute result of Pmax $=$? [$F \leq k$ error] for $0 \leq k \leq 100$

PCTL model checking for MDPs

- Basic algorithm proceeds by induction on parse tree of ϕ
- example: $\phi=(\neg$ fail \wedge try $) \rightarrow \mathrm{P}_{>0.95}[\neg$ fail U succ]
- For non-probabilistic formulae:
- Sat(true) = S
$-\operatorname{Sat}(\mathrm{a})=\{\mathrm{s} \in \mathrm{S} \mid \mathrm{a} \in \mathrm{L}(\mathrm{s})\}$
$-\operatorname{Sat}(\neg \phi)=S \backslash \operatorname{Sat}(\phi)$
$-\operatorname{Sat}\left(\phi_{1} \wedge \phi_{2}\right)=\operatorname{Sat}\left(\phi_{1}\right) \cap \operatorname{Sat}\left(\phi_{2}\right)$
- For $\mathrm{P}_{\sim \mathrm{p}}[\psi]$ formulae
- need to compute either $\mathrm{p}_{\text {min }}(\mathrm{s}, \psi)$ or $\mathrm{p}_{\text {max }}(\mathrm{s}, \psi)$ for all states $s \in S$

PCTL model checking for MDPs

- Remains to consider $\mathrm{P}_{\sim \mathrm{p}}[\Psi$] formulae
- reduces compute either $p_{\text {min }}(s, \psi)$ or $p_{\max }(s, \psi)$ for all $s \in S$
- dependent on whether $\sim \in\{\geq,>\}$ or $\sim \in\{<, \leq\}$
- Present algorithms for computing $\mathrm{p}_{\text {min }}(\mathrm{s}, \Psi)$
- the case when $\sim \in\{\geq,>\}$
- Computation of $\mathrm{p}_{\text {min }}(\mathrm{s}, \psi)$ is dual
- replace "min" with "max" and "for all" with "there exists"

PCTL next for MDPs

- Computation of probabilities for PCTL next operator
$-\operatorname{Sat}\left(P_{\sim p}[X \phi]\right)=\left\{s \in S \mid p_{\text {min }}(s, X \phi) \sim p\right\}$
- need to compute $p_{\min }(s, X \phi)$ for all $s \in S$
- Recall in the DTMC case
- sum outgoing probabilities for transitions to ϕ-states
$-\operatorname{Prob}(\mathrm{s}, \mathrm{X} \phi)=\Sigma_{\mathrm{s}^{\prime} \in \operatorname{Sat}(\phi)} \mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$

ϕ
- For MDPs perform computation for each distribution available in s and then take minimum:
$-p_{\text {min }}(\mathrm{s}, \mathrm{X} \phi)=\min \left\{\Sigma_{\mathrm{s}^{\prime} \in \operatorname{Sat}(\phi)} \mu\left(\mathrm{s}^{\prime}\right) \mid(\mathrm{a}, \mu) \in \operatorname{Steps}(\mathrm{s})\right\}$

PCTL next - Example

- Model check: $\mathrm{P}_{\geq 0.5}$ [X heads]
- Sat (heads) $=\left\{\mathrm{s}_{2}\right\}$

$$
\text { Steps } \underline{\text { heads }}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\hline 0.7 & 0.3 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\frac{0.5}{\frac{1}{0}}
\end{array}\right]
$$

- Extracting the minimum for each state yields
\{heads\}
$-\underline{p}_{\text {min }}(X$ heads $)=[0,0,1,0]$
$-\operatorname{Sat}\left(\mathrm{P}_{\geq 0.5}[\mathrm{X}\right.$ heads $\left.]\right)=\left\{\mathrm{s}_{2}\right\}$

PCTL bounded until for MDPs

- Computation of probabilities for PCTL $U \leq k$ operator
$-\operatorname{Sat}\left(P_{\sim p}\left[\phi_{1} U \leq k \phi_{2}\right]\right)=\left\{s \in S \mid p_{\min }\left(s, \phi_{1} U \leq k \phi_{2}\right) \sim p\right\}$
- need to compute $p_{\text {min }}\left(s, \phi_{1} U \leq k \phi_{2}\right)$ for all $s \in S$
- First identify states where probability is trivially 1 or 0
- Syes $=\operatorname{Sat}\left(\phi_{2}\right)$
$-\operatorname{Sno}^{\text {no }}=\mathrm{S} \backslash\left(\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)\right)$
- For the remaining states $S^{?}=S \backslash\left(S^{\text {yes }} \cup S^{\text {no }}\right)$
- compute $\mathrm{p}_{\text {min }}\left(\mathrm{s}, \phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right)$ through the recursive equations: If $\mathrm{k}=0$, then $\mathrm{p}_{\text {min }}\left(\mathrm{s}, \phi_{1} \mathrm{U} \leq \mathrm{k} \phi_{2}\right)$ equals 0 If $k>0$, then $p_{\text {min }}\left(s, \phi_{1} U \leq k \phi_{2}\right)$ equals $\min \left\{\Sigma_{s^{\prime} \in S} \mu\left(s^{\prime}\right) \cdot p_{\text {min }}\left(s, \phi_{1} U \leq k-1 \phi_{2}\right) \mid(a, \mu) \in \operatorname{Steps}(\mathrm{s})\right\}$

PCTL bounded until for MDPs

- Simultaneous computation of vector $\underline{p}_{\min }\left(\phi_{1} U \leq \mathrm{k} \phi_{2}\right)$
- i.e. probabilities $p_{\min }\left(s, \phi_{1} U \leq k \phi_{2}\right)$ for all $s \in S$
- Recursive definition in terms of matrices and vectors
- similar to DTMC case
- requires k matrix-vector multiplications
- in addition requires k minimum operations

PCTL bounded until - Example

- Model check: $\mathrm{P}_{<0.95}$ [$\mathrm{F} \leq 3$ init] $\equiv \mathrm{P}_{<0.95}$ [true $\mathrm{U} \leq 3$ init]
- Sat (true) $=S$ and Sat (init) $=\left\{\mathrm{s}_{0}\right\}$
- Syes $=\left\{\mathrm{s}_{0}\right\}$
$-S^{n o}=\varnothing$,

- The vector of probabilities is computed successively as:
$-p_{\max }($ true $U \leq 0$ init $)=[1,0,0,0]$
- $\mathrm{p}_{\max }($ true $\mathrm{U} \leq 1$ init $)=[1,0.7,0,0]$
- $\mathrm{p}_{\max }($ true $\mathrm{U} \leq 2$ init $)=[1,0.91,0,0]$
$-\underline{p}_{\max }($ true $U \leq 3$ init $)=[1,0.973,0,0]$
- Hence, the result is:
$-\operatorname{Sat}\left(\mathrm{P}_{<0.95}[\mathrm{~F} \leq 3\right.$ init $\left.]\right)=\left\{\mathrm{s}_{2}, \mathrm{~s}_{3}\right\}$

PCTL until for MDPs

- Computation of probabilities $\mathrm{p}_{\min }\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right)$ for all $\mathrm{s} \in \mathrm{S}$
- First identify all states where the probability is 1 or 0
- Set of states for which $\mathrm{p}_{\text {min }}\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right)=1$
- for all adversaries the probability of satisfying $\phi_{1} \cup \phi_{2}$ is 1
- Syes $=\operatorname{Sat}\left(\mathrm{P}_{\geq 1}\left[\phi_{1} \cup \phi_{2}\right]\right)$
- Set of states for which $\mathrm{p}_{\text {min }}\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right)=0$
- there exists an adversary for which the probability of satisfying $\phi_{1} U \phi_{2}$ is 0
- not all adversaries satisfy $\phi_{1} \cup \phi_{2}$ with probability >0
$-S^{n o}=\operatorname{Sat}\left(\neg P_{>0}\left[\phi_{1} U \phi_{2}\right]\right)$

PCTL until for MDPs

- When computing $\mathrm{p}_{\max }\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right) \ldots$
- Set of states for which $\mathrm{p}_{\max }\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right)=1$
- there exists an adversary for which the probability of satisfying $\phi_{1} \cup \phi_{2}$ is 1
- not all adversaries satisfy $\phi_{1} \cup \phi_{2}$ with probability <1
- Syes $=\operatorname{Sat}\left(\neg \mathrm{P}_{<1}\left[\begin{array}{lll}\phi_{1} & U & \phi_{2}\end{array}\right]\right)$
- Set of states for which $\mathrm{p}_{\max }\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right)=0$
- for all adversaries the probability of satisfying $\phi_{1} U \phi_{2}$ is 0
$-S^{n o}=\operatorname{Sat}\left(P_{\leq 0}\left[\phi_{1} \cup \phi_{2}\right]\right)$

PCTL until for MDPs

- As for the DTMC refered to as "precomputation" phase
- four precomputation algorithms:
- for minimum probabilities Prob1A and Prob0E
- for maximum probabilities Prob1E and Prob0A
- Important for several reasons
- reduces the set of states for which probabilities must be computed numerically
- for $P_{\sim p}[\cdot]$ where p is 0 or 1 , no further computation required
- gives exact results for the states in Syes and Sno $^{\text {no }}$ (no round-off)

PCTL until for MDPs

- Probabilities $\mathrm{p}_{\min }\left(\mathrm{s}, \phi_{1} \mathrm{U} \phi_{2}\right)$ are obtained as the unique solution of the following linear optimisation problem:

$$
\begin{aligned}
& \text { maximize } \sum_{s_{s} \in s^{3}} x_{s} \text { subject to the constraint } s: \\
& x_{s} \leq \sum_{s^{\prime} \in s^{3}} \mu\left(s^{\prime}\right) \cdot x_{s^{\prime}}+\sum_{s^{\prime} \in y^{\text {yes }}} \mu\left(s^{\prime}\right) \\
& \text { for all } s \in S^{?} \text { and for all }(a, \mu) \in \operatorname{Steps}(s)
\end{aligned}
$$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with (a variety of) standard techniques
- direct methods, e.g. Simplex, ellipsoid method
- iterative methods, e.g. policy, value iteration

PCTL until for MDPs

- In the case of maximum probabilities
- Probabilities $\mathrm{p}_{\max }\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right)$ are obtained as the unique solution of the following linear optimisation problem:
minimize $\sum_{s \in s^{7}} \mathrm{x}_{\mathrm{s}}$ subject to the constraint s :

$$
\mathrm{x}_{\mathrm{s}} \geq \sum_{\mathrm{s}^{\prime} \in \mathrm{S}^{?}} \mu\left(\mathrm{~s}^{\prime}\right) \cdot \mathrm{x}_{\mathrm{s}^{\prime}}+\sum_{\mathrm{s}^{\prime} \in \mathrm{S}^{\text {yes }}} \mu\left(\mathrm{s}^{\prime}\right)
$$

for all $s \in S^{?}$ and for all $(a, \mu) \in \operatorname{Steps}(s)$

PCTL until - Example

- Model check: $\mathrm{P}_{\geq 0.5}$ [true U (tails \vee init)]
- Sat(tails \vee init) $=\left\{\mathrm{s}_{0}, \mathrm{~S}_{3}\right\}$
- Sno $^{\text {no }}=\operatorname{Sat}\left(\neg P_{>0}[\right.$ true U (tails \vee init $\left.\left.)\right]\right)=\left\{s_{2}\right\}$
- Syes $^{\text {y }} \operatorname{Sat}\left(\mathrm{P}_{\geq 1}\right.$ [true U (tails \vee init) $\left.]\right)=\left\{\mathrm{s}_{0}, \mathrm{~S}_{3}\right\}$
- Linear optimisation problem:
- maximize x_{1} subject to the constraints

$$
\begin{aligned}
& x_{1} \leq 0.3 \cdot x_{1}+0.7 \\
& x_{1} \leq 0.5
\end{aligned}
$$

- Which yields:
$-\underline{p}_{\text {min }}($ true $U($ tails \vee init $))=[1,0.5,0,1]$
\{heads\}

$-\operatorname{Sat}\left(\mathrm{P}_{\geq 0.5}[\operatorname{try} U \operatorname{succ}]\right)=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{3}\right\}$

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

Costs and rewards

- We can augment MDPs with rewards (or costs)
- real-valued quantities assigned to states and/or actions
- different from the DTMC case where transition rewards assigned to individual transitions
- For a MDP $\left(\mathrm{S}, \mathrm{s}_{\text {init }}\right.$, Steps, L$)$, a reward structure is a pair (ρ, L)
$-\rho: S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function
$-\mathrm{l}: \mathrm{S} \times \mathrm{Act} \rightarrow \mathbb{R}_{\geq 0}$ is transition reward function
- As for DTMCs these can be used to compute:
- elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

PCTL and rewards

- Augment PCTL with rewards based properties
- allow a wide range of quantitative measures of the system
- basic notion: expected value of rewards

where $r \in \mathbb{R}_{\geq 0}, \sim \in\{<,>, \leq, \geq\}, k \in \mathbb{N}$
- $R_{\sim r}$ [•] means "the expected value of \cdot satisfies $\sim r$ for all adversaries"

Types of reward formulas

- Instantaneous: $\mathrm{R}_{\sim r}$ [I^{k}]
- the expected value of the reward at time-step k is $\sim r$ for all adversaries
- "the minimum expected queue size after exactly 90 seconds"
- Cumulative: $\mathrm{R}_{\sim r}[\mathrm{C} \leq \mathrm{k}]$
- the expected reward cumulated up to time-step k is $\sim r$ for all adversaries
- "the maximum expected power consumption over one hour"
- Reachability: $\mathrm{R}_{\sim r}$ [F \$]
- the expected reward cumulated before reaching a state satisfying ϕ is $\sim r$ for all adversaries
- the maximum expected time for the algorithm to terminate

Reward formula semantics

- Formal semantics of the three reward operators:
- for a state s in the MDP:
$-s \vDash R_{\sim r}[I=k] \Leftrightarrow \operatorname{Exp}^{A}\left(s, X_{l=k}\right) \sim r$ for all adversaries A
$-s \vDash R_{\sim r}[C \leq k] \Leftrightarrow \operatorname{Exp}^{A}\left(s, X_{C \leq k}\right) \sim r$ for all adversaries A
$-s \vDash R_{\sim r}[F \Phi] \Leftrightarrow \operatorname{Exp}^{A}\left(s, X_{F \phi}\right) \sim r$ for all adversaries A
$\operatorname{Exp}^{A}(s, X)$ denotes the expectation of the random variable $\mathrm{X}: \operatorname{Path}^{\mathrm{A}}(\mathrm{s}) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure PrA_{s}

Reward formula semantics

- For an infinite path $\omega=s_{0}\left(a_{0}, \mu_{0}\right) s_{1}\left(a_{1}, \mu_{1}\right) s_{2} \ldots$

$$
\begin{aligned}
& X_{I=k}(\omega)=\underline{\rho}\left(S_{k}\right) \\
& X_{C \leq k}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } k=0 \\
\sum_{i=0}^{k-1} \underline{\rho}\left(s_{i}\right)+\mathbf{l}\left(a_{i}\right) & \text { otherwise }
\end{array}\right. \\
& X_{F \phi}(\omega)=\left\{\begin{array}{cl}
0 & \text { if } s_{0} \in \operatorname{Sat}(\phi) \\
\infty & \text { if } s_{i} \notin \operatorname{Sat}(\phi) \text { for all } i \geq 0 \\
\sum_{i=0}^{k_{\phi}-1} \underline{\rho}\left(s_{i}\right)+\mathbf{l}\left(a_{i}\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $\mathrm{k}_{\phi}=\min \left\{\mathrm{i} \mid \mathrm{s}_{\mathrm{i}} \vDash \phi\right\}$

Model checking reward formulas

- Instantaneous: $\mathrm{R}_{\sim r}$ [$\mathrm{I}=\mathrm{k}$]
- similar the to computation of bounded until probabilities
- solution of recursive equations
- Cumulative: $\mathrm{R}_{\sim r}$ [$\mathrm{C}^{\leq k}$]
- extension of bounded until computation
- solution of recursive equations
- Reachability: $\mathrm{R}_{\sim r}[\mathrm{~F} \phi$]
- similar to the case for until
- solve a linear optimization problem

Model checking summary

- Atomic propositions and logical connectives: trivial
- Probabilistic operator P:
- X Φ : one matrix-vector multiplications
- $\Phi_{1} \mathrm{U} \leq \mathrm{k} \Phi_{2}$: k matrix-vector multiplications
$-\Phi_{1} U \Phi_{2}$: linear optimisation problem in at most $|\mathrm{S}|$ variables
- Expected reward operator R
- I=k: k matrix-vector multiplications
$-\mathrm{C} \leq \mathrm{k}$: k iterations of matrix-vector multiplication + summation
- F Φ : linear optimisation problem in at most $|\mathrm{S}|$ variables

Model checking complexity

- For model checking of an MDP $\left(\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{Steps}, \mathrm{L}\right)$ and PCTL formula ϕ (including reward operators)
- complexity is linear in $|\Phi|$ and polynomial in $|S|$
- Size $|\phi|$ of ϕ is defined as number of logical connectives and temporal operators plus sizes of temporal operators
- model checking is performed for each operator
- Worst-case operators are $P_{\sim p}\left[\phi_{1} U \phi_{2}\right]$ and $R_{\sim r}[F \phi]$
- main task: solution of linear optimization problem of size |S|
- can be solved with ellipsoid method (polynomial in |S|)
- and also precomputation algorithms (max |S| steps)

Summing up...

- Nondeterminism
- Markov decision processes (MDPs)
- definition, examples, adversaries, probabilities
- Properties of MDPs: The logic PCTL
- syntax, semantics, equivalences, ...
- PCTL model checking
- algorithms, examples, ...
- Costs and rewards

