
Probabilistic Model CheckingProbabilistic Model Checking

Part 4 Part 4 -- Markov Decision ProcessesMarkov Decision Processes

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of University of OxfordOxford

2

Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

3

Recap: DTMCs

• Discrete-time Markov chains (DTMCs)
− discrete state space, transitions are discrete time-steps
− from each state, choice of successor state (i.e. which

transition) is determined by a discrete probability distribution

• DTMCs are fully probabilistic
− well suited to modelling, for example, simple random

algorithms or synchronous probabilistic systems where
components move in lock-step

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

4

Nondeterminism

• But, some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components
− e.g. randomised distributed algorithms - multiple

probabilistic processes operating asynchronously

• Unknown environments
− e.g. probabilistic security protocols - unknown adversary

• Underspecification - unknown model parameters
− e.g. a probabilistic communication protocol designed for

message propagation delays of between dmin and dmax

5

Probability vs. nondeterminism

• Labelled transition system
− (S,s0,R,L) where R ⊆ S×S
− choice is nondeterministic

• Discrete-time Markov chain
− (S,s0,P,L) where P : S×S→[0,1]
− choice is probabilistic

• How to combine?

s1s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1s0

s2

s3

{fail}

{succ}

{try}

6

Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

7

Markov decision processes

• Markov decision processes (MDPs)
− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:
− discrete set of states representing possible configurations of

the system being modelled
− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism
− in each state, a nondeterministic

choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

8

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,Steps,L) where:
− S is a finite set of states (“state space”)
− sinit ∈ S is the initial state
− Steps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

− L : S → 2AP is a labelling with atomic propositions

• Notes:
− Steps(s) is always non-empty,

i.e. no deadlocks
− the use of actions to label

distributions is optional

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

9

Simple MDP example

• Modification of the simple DTMC communication protocol
− after one step, process starts trying to send a message
− then, a nondeterministic choice between: (a) waiting a step

because the channel is unready; (b) sending the message
− if the latter, with probability 0.99 send successfully and stop
− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{try}

{succ}

start send

wait

restart

stop

10

Simple MDP example 2

• Another simple MDP example with four states
− from state s0, move directly to s1 (action a)
− in state s1, nondeterminstic choice between actions b and c
− action b gives a probabilistic choice: self-loop or return to s0

− action c gives a 0.5/0.5 random choice between heads/tails

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

11

Simple MDP example 2

M = (S,sinit,Steps,L)

S = {s0, s1, s2, s3}
sinit = s0

Steps(s0) = { (a, s1↦1) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, s2↦1) }
Steps(s3) = { (a, s3↦1) }

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

AP = {init,heads,tails}
L(s0)={init},
L(s1)=∅,
L(s2)={heads},
L(s3)={tails}

12

The transition probability function

• It is often useful to think of the function Steps as a matrix
− non-square matrix with |S| columns and Σs∈S |Steps(s)| rows

• Example (for clarity, we omit actions from the matrix)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
5.05.000

003.07.0
0010

 Steps

Steps(s0) = { (a, s1↦1) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, s2↦1) }
Steps(s3) = { (a, s3↦1) }

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

13

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two
3-state DTMCs

Action labels
omitted here

14

Paths and probabilities

• A (finite or infinite) path through an MDP
− is a sequence of states and action/distribution pairs
− e.g. s0(a0,μ0)s1(a1,μ1)s2…
− such that (ai,μi) ∈ Steps(si) and μi(si+1) > 0 for all i≥0
− represents an execution (i.e. one possible behaviour) of the

system which the MDP is modelling
− note that a path resolves both types of choices:

nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP
− first need to resolve the nondeterministic choices
− …which results in a DTMC
− …for which we can define a probability measure over paths

15

Adversaries

• An adversary resolves nondeterministic choice in an MDP
− adversaries are also known as “schedulers” or “policies”

• Formally:
− an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,μ1)s1...sn to an element of Steps(sn)

• For each A can define a probability measure PrA
s over paths

− constructed through an infinite state DTMC (PathA
fin(s),s,PA

s)
− states of the DTMC are the finite paths of A starting in state s
− initial state is s (the path starting in s of length 0)
− PA

s(ω,ω’)=μ(s) if ω’= ω(a, μ)s and A(ω)=(a,μ)
− PA

s(ω,ω’)=0 otherwise

16

Adversaries - Examples

• Consider the previous example MDP
− note that s1 is the only state for which |Steps(s)| > 1
− i.e. s1 is the only state for which an adversary makes a choice
− let μb and μc denote the probability distributions associated

with actions b and c in state s1

• Adversary A1

− picks action c the first time
− A1(s0s1)=(c,μc)

• Adversary A2

− picks action b the first time, then c
− A2(s0s1)=(b,μb), A2(s0s1s1)=(c,μc), A2(s0s1s0s1)=(c,μc)

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

17

Adversaries - Examples

• Fragment of DTMC for adversary A1

− A1 picks action c the first time

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

s0s1s0

0.5
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s30.5

1

1

18

Adversaries - Examples

• Fragment of DTMC for adversary A2

− A2 picks action b, then c
s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

19

Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

20

PCTL

• Temporal logic for describing properties of MDPs
− identical syntax to the logic PCTL for DTMCs

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

“until”

ψ is true with
probability ~p

“bounded
until”“next”

21

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP
− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:
− identical to those for DTMCs
− for a state s of the MDP (S,sinit,Steps,L):
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples
− s3 ⊨ tails
− s1 ⊨ ¬ heads ∧ ¬tails

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

22

PCTL semantics for MDPs

• Semantics of path formulas identical to DTMCs:
− for a path ω = s0(a1,μ1)s1(a2,μ2)s2… in the MDP:
− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:
− X tails

− ¬heads U tails

s1 s3 s3 s3

{tails} {tails} {tails}

s1 s1 s3 s3

{tails} {tails}

s0

{init}
s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

23

PCTL semantics for MDPs

• Semantics of the probabilistic operator P
− can only define probabilities for a specific adversary A
− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is

true for an outgoing path satisfies ~p for all adversaries A”
− formally s ⊨ P~p [ψ] ⇔ ProbA(s, ψ) ~ p for all adversaries A
− where ProbA(s, ψ) = PrA

s { ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ ProbA(s, ψ) ~ p

24

Minimum and maximum probabilities

• Letting:
− pmax(s, ψ) = supA ProbA(s, ψ)
− pmin(s, ψ) = infA ProbA(s, ψ)

• We have:
− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ pmin(s, ψ) ~ p
− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ pmax(s, ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
adversaries of either:
− the minimum probability of ψ holding
− the maximum probability of ψ holding

25

Classes of adversary

• A more general semantics for PCTL over MDPs
− parameterise by a class of adversaries Adv

• Only change is:
− s ⊨Adv P~p [ψ] ⇔ ProbA(s, ψ) ~ p for all adversaries A ∈ Adv

• Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

• Alternatively, take Adv to be the set of all fair adversaries
− path fairness: if a state is occurs on a path infinitely often,

then each non-deterministic choice occurs infinite often
− see e.g. [BK98]

26

PCTL derived operators

• Same equivalences as for DTMCs:

− false ≡ ¬true (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

− F φ ≡ true U φ (eventually)
− F≤k φ ≡ true U≤k φ

− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (always)
− G≤k φ ≡ ¬(F≤k ¬φ)
− P≥p [G φ] ≡ P≤1-p [F ¬φ]
− etc.

27

Qualitative properties

• PCTL can express qualitative properties of MDPs
− like for DTMCs, can relate these to CTL’s AF and EF operators
− need to be careful with “there exists” and adversaries

• P≥1 [F φ] is (similar to but) weaker than AF φ
− P≥1 [F φ] ⇔ ProbA(s, F φ) ≥ 1 for all adversaries A
− recall that “probability≥1” is weaker than “for all”

• We can construct the following equivalence for EF φ
− s ⊨ EF φ⇔ there exists a finite path from s to a φ-state

⇔ ProbA(s, F φ) > 0 for some adversary A
⇔ not ProbA (s, F φ) ≤ 0 for all adversaries A
⇔ ¬P≤0 [F φ]

28

Quantitative properties

• For PCTL properties with P as the outermost operator
− we allow a quantitative form
− for MDPs, there are two types: Pmin=? [ψ] and Pmax=? [ψ]
− i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
− model checking is no harder since compute the values of

pmin(s, ψ) or pmax(s, ψ) anyway
− useful to spot patterns/trends

• Example CSMA/CD protocol
− “min/max probability

that a message is sent
within the deadline”

29

Some real PCTL examples

• Byzantine agreement protocol
− Pmin=? [F (agreement ∧ rounds≤2)]
− “what is the minimum probability that agreement is reached

within two rounds?”

• CSMA/CD communication protocol
− Pmax=? [F collisions=k]
− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols
− Pmin=? [F≤t stable]
− “what is the minimum probability of reaching a stable state

within k steps?”

30

Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

31

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]
− inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ
− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a MDP M to satisfy a formula φ?
− sometimes require s ⊨ φ for all s ∈ S, i.e. Sat(φ) = S
− sometimes sufficient to check sinit ⊨ φ, i.e. if sinit∈ Sat(φ)

• Focus on quantitative results
− e.g. compute result of Pmin=? [F error]
− e.g. compute result of Pmax=? [F≤k error] for 0≤k≤100

32

PCTL model checking for MDPs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For non-probabilistic formulae:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For P~p [ψ] formulae
− need to compute either

pmin(s, ψ) or pmax (s, ψ)
for all states s ∈ S

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

33

PCTL model checking for MDPs

• Remains to consider P~p [ψ] formulae
− reduces compute either pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

• Present algorithms for computing pmin(s, ψ)
− the case when ~ ∈ {≥,>}

• Computation of pmin(s, ψ) is dual
− replace “min” with “max” and “for all” with “there exists”

34

PCTL next for MDPs

• Computation of probabilities for PCTL next operator
− Sat(P~p[X φ]) = { s ∈ S | pmin(s, X φ) ~ p }
− need to compute pmin(s, X φ) for all s ∈ S

• Recall in the DTMC case
− sum outgoing probabilities for

transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• For MDPs perform computation for each distribution
available in s and then take minimum:
− pmin(s, X φ) = min { Σs’∈Sat(φ) μ(s’) | (a,μ)∈Steps(s) }

s

φ

35

PCTL next - Example

• Model check: P≥0.5 [X heads]
− Sat (heads)= {s2}

• Extracting the minimum for each state yields
− pmin(X heads) = [0, 0, 1, 0]
− Sat(P≥0.5 [X heads]) = {s2}

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⋅

0
1
5.0

0
0

0
1
0
0

1000
0100
5.05.000

003.07.0
0010

 headsSteps

36

PCTL bounded until for MDPs

• Computation of probabilities for PCTL U≤k operator
− Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p }
− need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S

• First identify states where probability is trivially 1 or 0
− Syes = Sat(φ2)
− Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• For the remaining states S? = S \ (Syes ∪ Sno)
− compute pmin(s, φ1 U≤k φ2) through the recursive equations:

If k=0, then pmin(s, φ1 U≤k φ2) equals 0
If k>0, then pmin(s, φ1 U≤k φ2) equals

min{ Σs’∈S μ(s’) ·pmin(s, φ1 U≤k-1 φ2) | (a,μ)∈Steps(s) }

37

PCTL bounded until for MDPs

• Simultaneous computation of vector pmin(φ1 U≤k φ2)
− i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S

• Recursive definition in terms of matrices and vectors
− similar to DTMC case
− requires k matrix-vector multiplications
− in addition requires k minimum operations

38

PCTL bounded until - Example

• Model check: P<0.95 [F≤3 init] ≡ P<0.95 [true U≤3 init]
− Sat (true) = S and Sat (init) = {s0}
− Syes = {s0}
− Sno = ∅,
− S? = {s1,s2,s3}

• The vector of probabilities is
computed successively as:
− pmax(true U≤0 init) = [1,0,0,0]
− pmax(true U≤1 init) = [1,0.7,0,0]
− pmax(true U≤2 init) = [1,0.91,0,0]
− pmax(true U≤3 init) = [1,0.973,0,0]

• Hence, the result is:
− Sat(P<0.95 [F≤3 init]) = {s2, s3}

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

39

PCTL until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

• Set of states for which pmin(s, φ1 U φ2)=1
− for all adversaries the probability of satisfying φ1 U φ2 is 1
− Syes = Sat(P≥1 [φ1 U φ2])

• Set of states for which pmin(s, φ1 U φ2)=0
− there exists an adversary for which the probability of

satisfying φ1 U φ2 is 0
− not all adversaries satisfy φ1 U φ2 with probability >0
− Sno = Sat(¬ P>0 [φ1 U φ2])

40

PCTL until for MDPs

• When computing pmax(s, φ1 U φ2)...

• Set of states for which pmax(s, φ1 U φ2)=1
− there exists an adversary for which the probability of

satisfying φ1 U φ2 is 1
− not all adversaries satisfy φ1 U φ2 with probability <1
− Syes = Sat(¬P<1 [φ1 U φ2])

• Set of states for which pmax(s, φ1 U φ2)=0
− for all adversaries the probability of satisfying φ1 U φ2 is 0
− Sno = Sat(P≤0 [φ1 U φ2])

41

PCTL until for MDPs

• As for the DTMC refered to as “precomputation” phase
− four precomputation algorithms:
− for minimum probabilities Prob1A and Prob0E
− for maximum probabilities Prob1E and Prob0A

• Important for several reasons
− reduces the set of states for which probabilities must be

computed numerically
− for P~p[·] where p is 0 or 1, no further computation required
− gives exact results for the states in Syes and Sno (no round-off)

42

PCTL until for MDPs

• Probabilities pmin(s, φ1 U φ2) are obtained as the unique
solution of the following linear optimisation problem:

• Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

• This can be solved with (a variety of) standard techniques
− direct methods, e.g. Simplex, ellipsoid method
− iterative methods, e.g. policy, value iteration

)s()μ(a,allforandSsall for

)'s(μx)'s(μx
:sconstraint thetosubjectxmaximize

?
S s'S s'

'ss

S s s

yes?

?

Steps∈∈

+⋅≤ ∑∑
∑

∈∈

∈

43

PCTL until for MDPs

• In the case of maximum probabilities

• Probabilities pmax(s, φ1 U φ2) are obtained as the unique
solution of the following linear optimisation problem:

)s()μ(a,allforandSsallfor

)'s(μx)'s(μx
:sconstraintthe tosubjectxminimize

?
S s'S s'

'ss

S s s

yes?

?

Steps∈∈

+⋅≥ ∑∑
∑

∈∈

∈

44

PCTL until - Example

• Model check: P≥ 0.5 [true U (tails ∨ init)]
− Sat(tails ∨ init) = {s0,s3}
− Sno = Sat(¬P>0 [true U (tails ∨ init)]) = {s2}
− Syes = Sat(P≥1 [true U (tails ∨ init)]) = {s0,s3}

• Linear optimisation problem:
− maximize x1 subject to the constraints

x1 ≤ 0.3 · x1 + 0.7
x1 ≤ 0.5

• Which yields:
− pmin(true U (tails ∨ init)) = [1, 0.5, 0, 1]
− Sat(P≥0.5 [try U succ]) = {s0 , s1, s3}

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

45

Overview

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

46

Costs and rewards

• We can augment MDPs with rewards (or costs)
− real-valued quantities assigned to states and/or actions
− different from the DTMC case where transition rewards

assigned to individual transitions

• For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι)
− ρ : S → ℝ≥0 is the state reward function
− ι : S × Act → ℝ≥0 is transition reward function

• As for DTMCs these can be used to compute:
− elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

47

PCTL and rewards

• Augment PCTL with rewards based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ ::= … | R~r [I=k] | R~r [C≤k] | R~r [F φ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r for all
adversaries”

“reachability”

expected reward is ~r

“cumulative”“instantaneous”

48

Types of reward formulas

• Instantaneous: R~r [I=k]
− the expected value of the reward at time-step k is ~r for all

adversaries
− “the minimum expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]
− the expected reward cumulated up to time-step k is ~r for all

adversaries
− “the maximum expected power consumption over one hour”

• Reachability: R~r [F φ]
− the expected reward cumulated before reaching a state

satisfying φ is ~r for all adversaries
− the maximum expected time for the algorithm to terminate

49

Reward formula semantics

• Formal semantics of the three reward operators:
− for a state s in the MDP:
− s ⊨ R~r [I=k] ⇔ ExpA(s, XI=k) ~ r for all adversaries A
− s ⊨ R~r [C≤k] ⇔ ExpA(s, XC≤k) ~ r for all adversaries A
− s ⊨ R~r [F Φ] ⇔ ExpA(s, XFΦ) ~ r for all adversaries A

ExpA(s, X) denotes the expectation of the random variable
X : PathA (s) → ℝ≥0 with respect to the probability measure PrA

s

50

Reward formula semantics

• For an infinite path ω= s0(a0,μ0)s1(a1,μ1)s2…

where kφ =min{ i | si ⊨ φ }

 otherwise

0k if

)a()s(ρ

0
)ω(X

1k
0i ii

kC

=

+⎪⎩

⎪
⎨
⎧

=
∑ −

=

≤

ι

)s(ρ)ω(X kkI ==

otherwise

 0i all for)φSat(s if

)φSat(sif

)a()s(ρ

0

)ω(X i

0

1-k
0i ii

φF

φ

≥∉

∈

+

∞

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

∑ =
ι

51

Model checking reward formulas

• Instantaneous: R~r [I=k]
− similar the to computation of bounded until probabilities
− solution of recursive equations

• Cumulative: R~r [C≤k]
− extension of bounded until computation
− solution of recursive equations

• Reachability: R~r [F φ]
− similar to the case for until
− solve a linear optimization problem

52

Model checking summary

• Atomic propositions and logical connectives: trivial

• Probabilistic operator P:
− X Φ : one matrix-vector multiplications
− Φ1 U≤k Φ2 : k matrix-vector multiplications
− Φ1 U Φ2 : linear optimisation problem in at most |S| variables

• Expected reward operator R
− I=k : k matrix-vector multiplications
− C≤k : k iterations of matrix-vector multiplication + summation
− F Φ : linear optimisation problem in at most |S| variables

53

Model checking complexity

• For model checking of an MDP (S,sinit,Steps,L) and PCTL
formula φ (including reward operators)
− complexity is linear in |Φ| and polynomial in |S|

• Size |φ| of φ is defined as number of logical connectives
and temporal operators plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operators are P~p [φ1 U φ2] and R~r [F φ]
− main task: solution of linear optimization problem of size |S|
− can be solved with ellipsoid method (polynomial in |S|)
− and also precomputation algorithms (max |S| steps)

54

Summing up…

• Nondeterminism

• Markov decision processes (MDPs)
− definition, examples, adversaries, probabilities

• Properties of MDPs: The logic PCTL
− syntax, semantics, equivalences, …

• PCTL model checking
− algorithms, examples, …

• Costs and rewards

	Probabilistic Model Checking
	Overview
	Recap: DTMCs
	Nondeterminism
	Probability vs. nondeterminism
	Overview
	Markov decision processes
	Markov decision processes
	Simple MDP example
	Simple MDP example 2
	Simple MDP example 2
	The transition probability function
	Example - Parallel composition
	Paths and probabilities
	Adversaries
	Adversaries - Examples
	Adversaries - Examples
	Adversaries - Examples
	Overview
	PCTL
	PCTL semantics for MDPs
	PCTL semantics for MDPs
	PCTL semantics for MDPs
	Minimum and maximum probabilities
	Classes of adversary
	PCTL derived operators
	Qualitative properties
	Quantitative properties
	Some real PCTL examples
	Overview
	PCTL model checking for MDPs
	PCTL model checking for MDPs
	PCTL model checking for MDPs
	PCTL next for MDPs
	PCTL next - Example
	PCTL bounded until for MDPs
	PCTL bounded until for MDPs
	PCTL bounded until - Example
	PCTL until for MDPs
	PCTL until for MDPs
	PCTL until for MDPs
	PCTL until for MDPs
	PCTL until for MDPs
	PCTL until - Example
	Overview
	Costs and rewards
	PCTL and rewards
	Types of reward formulas
	Reward formula semantics
	Reward formula semantics
	Model checking reward formulas
	Model checking summary
	Model checking complexity
	Summing up…

