i

5;
—

Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 5 - Continuous-Time Markov Chains

Overview

- Exponential distributions
- Continuous-time Markov chains (CTMCs)
Properties of CTMCs: The logic CSL
— syntax, semantics, equivalences, ...

- CSL model checking
— algorithm, examples, ...

- Costs and rewards

— definition, paths, probabilities, steady-state, transient, ...

Exponential distribution

« Continuous random variable X is exponential with

parameter A>0 if the density function is given by

A-e ™M ift>0
fx(t) = .
0 otherwise

- Cumulative distribution function (P[X<t]) of X:

FX (t) = j(: >\ . e—)\.xdx _ [_e—}\.x]g _ -I _ e_;\,t

—P[X >t]=e™

— expectation E[X] = j: X-\-eMdx = %

- variance Var[X] = %

Exponential distribution - Examples

i Probability distribution function : Cumulative distribution function
—————— 1
o),=5
— =1
23 — =05 0.8
2
0.6
1.5
0.4}
’
05 0.2 _k=5 I
— =1
—\=0.5
0 - — 0 : ;
0 1 2 3 4 0 1 2 3 4

The more A increases, the faster the c.d.f. approaches 1

Exponential distribution

- Adequate for modelling many real-life phenomena
— failure rates

— inter-arrival times

— continuous process to change state

Can approximate general distributions arbitrarily closely

Maximal entropy if just the mean is known
— i.e. best approximation when only mean is known

Exponential distribution - Memoryless
- Memoryless property: P[X>t,+t, | X>t,] = P[X>t,]

- Exponential distribution is the only continuous distribution
which is memoryless

- PLX>t,+t, I X>t,] = P[X>t,+t, A X>t,] / P[X>t,]
— e—)v(t] +t2)/ e—)vt]

— (e—)vt] . e—>\-t2) / e—)vt]
— e—>\-t2

= P[X>t,]

recall P[X>t] = et

Exponential distribution - Properties

- Minimum of two independent exponential distributions is

an exponential distribution (parameter is sum)
P[min(X,,X,) <t] = T-P[min(X,,X,) > t]
= 1-P[X,>tAX, > 1]
= 1-P[X, > t]-P[X, > t]
=]-eMt.gNt
“(NEA)

=1-e

= 1-P[Y > t] =P[Y <]

— recall P[X>t] = et

Overview

Exponential distributions
Continuous-time Markov chains (CTMCs)
Properties of CTMCs: The logic CSL

— syntax, semantics, equivalences, ...

CSL model checking
— algorithm, examples, ...

Costs and rewards

— definition, paths, probabilities, steady-state, transient, ...

Continuous-time Markov chains

Continuous-time Markov chains (CTMCs)
— labelled transition systems augmented with rates
— discrete states
— continuous time-steps
— delays exponentially distributed

Suited to modelling:
— reliability models
— control systems
— queueing networks
— biological pathways
— chemical reactions

Continuous-time Markov chains

Formally, a CTMC C is a tuple (S,s;,;;,R,L) where:
— Sis a finite set of states (“state space”)
— S € Sis the initial state
— R:S XS — R, is the transition rate matrix
— L:S — 2APjs a labelling with atomic propositions

- Transition rate matrix assigns rates to each pair of states
— used as a parameter to the exponential distribution

— transition between s and s’ when R(s,s’)>0

— probability triggered before t time units 1 - e-Rs:s)t

10

Continuous-time Markov chains

- What happens when there exists multiple s’ with R(s,s’)>07?
— first transition triggered determines the next state
— called the race condition

- Time spent in a state before a transition:
— minimum of exponential distributions
— exponential with parameter given by summation:

Es) =D (R(s,s")

— E(s) is the exit rate of state s
— state absorbing if E(s)=0 (no outgoing transitions)
— probability of leaving a state s within [0,t] equals 1-e-E()t

11

Embedded DTMC

- Can determine the probability of each transition occurring
— independent of the time at which it occurs

Embedded DTMC: emb(C)=(S,s.,...,Pemb© |)
— state space, initial state and labelling as the CTMC
— for any s,s’eS

init?

[R(s,s")/E(s) ifE(s)>0
pemP©(g s') = 4] if E(s)=0ands =s'
i 0 otherwise

. Alternative characterisation of the behaviour:

— remain in s for delay exponentially distributed with rate E(s)
— probability next state is s’ is given by Pemb©)(s,s’)

12

Continuous-time Markov chains

- Infinitesimal generator matrix

, R(s,s") '
Q(s,s’) = { _ZS¢S,R(5,5') Zt;chrwise

- Alternative definition: a CTMC is:

— a family of random variables { X(t) | t € R_, }

— X(t) are observations made at time instant t

— i.e. X(t) is the state of the system at time instant t
— which satisifies...

- Memoryless (Markov property)

PIX(t)=s, | X(t,_1)=S_1, .-, X(tg)=5S,] = PIX(t)=5s, | X(t,_;)=5,_4]

13

Simple CTMC example

Modelling a queue of jobs
— initially the queue is empty
— jobs arrive with rate 3/2
— jobs are served with rate 3

=7

— maximum size of the queue is 3

{empty} 3/2 3/2 {fuII}

Simple CTMC example

C — (S, Sinit’ R, L) {emptY} 3/2 3/2 3/2 {fU”}
ant e cfJofolo
Sinit = S0
3 3 3
AP = {empty, full}
L(sg)={empty} L(s,)=L(s,)=9 and L(s3)={full}
0 3/2 O 0 | 0] 0 0 -3/2 3/2 0 0 |
Ro|3 0 32 0 Lo 23 0 3 00 13 912 32 0
0O 3 0O 3/2 0 2/3 0 1/3 0 3 -9/2 3/2
0O O 3 0 0 0 3 -3
- - ‘o o 1 o] * -
...... o embedded s
. rate matrix . DTMC . generator matrix :

15

Paths of a CTMC

Infinite path w is a sequence syt,s;t;s,t,... such that
— R(s;,s;,;) > 0and t, € R, forallie N
— amount of time spent in the jth state: time(w,j)=t,
— state occupied at time t: W@t=s,
where j smallest index such that >,_;t; > t

Finite path is a sequence syt,s,t;S,t,...t,_; S, such that
— R(s;,s,,7) > 0and t, € R, forall i<k
— s, is absorbing (R(s,s’) = 0 for all s’ € S)

— amount of time spent in the ith state only defined for j<k:

time(uu,j):tj if j<k and time(w,j)= if j=k
— state occupied at time t: if t<Z,_, t; then w@t as above
otherwise t>2,_, t; then w@t=s,

16

Probability space

Sample space: Path(s) (set of all paths from a state s)
Events: sets of infinite paths
Basic events: sets of paths with common finite prefix

— probability of a single finite path is zero
— include time intervals in cylinders

Cylinder is a sequence sg,l5,51,l1,-.-,1,_1,5,
— S$0,51,S2,---,S,, sequence of states where R(s;,s,,;)>0 for i<n

— lg,ly,05,...,1,_; sequence of of nonempty intervals of R_,

C(Sp,lg,S1,ly5---51-15S,) set of (infinite and finite paths):
— w(i)=s, for all i < n and time(w,i) € |, foralli < n

17

Probability space
Define measure over cylinders by induction
— Pr(C(s))=1

— Pr(C(s,l,s,l4,..,1,_1,S,,17,57)) equals

n-

PI’S(C(S, |, S],|],...,|n_], S,))) Pemb(C)(Sn, S') . (e—E(Sn)-inﬂ' _ e_E(sn).supp)

probability transition

. from s, to s’ (defined . probability time spent in state s,
. using embedded DTMCO) ¢ is within the interval I

Probability space
- Probability space (Path(s), ;) Prs)
- Sample space Q = Path(s) (infinite and finite paths)

° Event Set ZPath(s)
— least o-algebra on Path(s) containing all cylinders starting in s

- Probability measure Pr,
— Pr, extends uniquely from probability defined over cylinders

- See [BHHKO3] for further details

19

Probability space - Example

- Cylinder C(s,,[0,2],s,)

+ Pr(C(s,[0,2],5,))= Pr(C(sg)) - Pemb©(sy,s,) - (e7F:0)-0 — g-Es0)-2)
=1-1-(e3/20 - g-3/22)

=1-e3
~ 0.95021

- Probability of leaving the initial state s, and moving to state
s, within the first 2 time units of operation

fempty} 3/2 3/2 312 tfully
ogoRoRo
3 3 3

20

Transient and steady-state behaviour

- Transient behaviour

— state of the model at a particular time instant

— 1<, (s”) is probability of, having started in state s, being in
state s’ at time t

— % (s7) = Prd w € Path®(s) | w@t=s"}

- Steady-state behaviour
— state of the model in the long-run

— m¢.(s’) is probability of, having started in state s, being in
state s’ in the long run

— m&(s’) = lim_ 1< (s")
— the percentage of time, in long run, spent in each state

21

Computing transient probabilities

- TT, - matrix of transient probabilities
— TI(s,s")=11 (')

- TT, solution of the differential equation: TT” =TI, - Q
— Q infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore

evaluated as a power series
_ aQt _ °° AN
M =e —Zi:o(Q t) /il
— computation potentially unstable

— probabilities instead computed using the uniformised DTMC

22

Uniformisation

- Uniformised DTMC unif(C)=(S,s,,;,Pu""® L) of C=(S,s,,.,R,L)
— set of states, initial state and labelling the same as C

— Punif(CQ) = | + Q/q
— q = max{E(s) | s € S}is the uniformisation rate

Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— if E(s)<q add self loop with probability 1-E(s)/q (residence
time longer than 1/g so one epoch may not be ‘long enough’)

23

Uniformisation

- Using the uniformised DTMC the transient probabilities can
be expressed by:
.I_I. _ th _ eq'(Punif(C)—I)'t _ e(CI't)'Punif(C) . e_qt

t
_ pat | © (gt (unif(C))i)

5 e s o)
0 3
— ZO:O Yq-t,i , (Punif(C))i

. Punifl© stochastic (all entries in
. [0,1] & rows sum to 1), therefore
: computations with P more

ith Poisson probability

| with parameter 't pumerically stable than Q

..

Uniformisation

nt _ ZZO Yq.t,i _ (Punif(C))i

- (PunifQ)i js probability of jumping between each pair of
states in i steps

* Yq.ti IS the ith Poisson probability with parameter g-t

— the probability of i steps occurring in time t, given each has
delay exponentially distributed with rate g

- Can truncate the summation using the techniques of Fox
and Glynn [FG88], which allow efficient computation of the
Poisson probabilities

25

Uniformisation

Computing 11, , for a fixed state s and time t
— can be computed efficiently using matrix-vector operations
— pre-multiply the matrix TT, by the initial distribution
— in this 1, , where 11, ((s’) equals 1 if s=s’ and 0 otherwise

M, - ZZO Yo (Punif(C))i

— Zio You - Teo ,(Punif(c:))i

— compute iteratively to avoid the computation of matrix powers

(Tr .Punif(C))i” _ (1T .Punif(C))i . punif©

st —S,t

T = 1150 'nt

—s,t

26

Overview

Exponential distributions

Continuous-time Markov chains (CTMCs)

— definition, paths, probabilities, steady-state, transient, ...

Properties of CTMCs: The logic CSL
— syntax, semantics, equivalences, ...

CSL model checking
— algorithm, examples, ...

Costs and rewards

27

CSL

- Temporal logic for describing properties of CTMCs
— CSL = Continuous Stochastic Logic [ASSBO0,BHHKO03]
— extension of (non-probabilistic) temporal logic CTL

Key additions:

— probabilistic operator P (like PCTL)
— steady state operator S
Example: down — P_, s [—fail U=l!-21 up]

— when a shutdown occurs, the probability of a system recovery
being completed between 1 and 2 hours without further
failure is greater than 0.75

Example: S_, ;[insufficient_routers]

— in the long run, the chance that an inadequate number of
routers are operational is less than 0.1

28

CSL syntax

--

. Y is true with |
- CSL syntax: . probability ~p :

—¢du=truelaldAd|-d|P_ WIS, [d] (state formulas)

- =Xod | dUD \ (path formulas)
T Inthe“long_
e | run’ & is true

S until” with |
-- probablllty p

— where a is an atomic proposition, | interval of R.,and p €
[0,1], ~ € {<,>,<,>}

- A CSL formula is always a state formula
— path formulas only occur inside the P operator

29

CSL semantics for CTMCs

- CSL formulas interpreted over states of a CTMC
— s E ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of state formulas:

— for a state s of the CTMC (S,s,,,,.,R,L):
— 5 = a & a e L(S) PrObabIIItyof’
—SE O, A b, & sE¢;ands F ¢, . starting in state s,
~— sk b e sk ¢is false . satisfying the path
~sEP,[W e Pobs, W) p L. formuia
- s k=S, [¢] © o e T(S7) ~

Probablllty of, startlng in state s, belng

in state s’ in the long run "

CSL semantics for CTMCs

- Prob(s, @) is the probability, starting in state s, of satisfying
the path formula @

— Prob(s,) = Pr, {w € Path, | w = y }

if w(0) is absorbing
w(1) not defined

- Semantics of path formulas:
— for a path w of the CTMC:
—wWEXo® < w(1)is defined and w(1) E ¢
- wkE ¢, U, < dtel. (wétE ¢, A VE'<t. w@t’ = ¢,)

. there exists a time instant in the interval | where ¢,
. is true and ¢, is true at all preceding time instants :

31

CSL derived operators

+ (As for PCTL) can derive basic logical equivalences:

— false = —true (false)
- ¢, Vb, = (=, A =) (disjunction)
- ¢, > b, =0, VD, (implication)

- The “eventually” operator (path formula)

— Fd=trueUd (F="“future”) (F = “future”)
— sometimes written as ¢ ¢ (“diamond”) (“diamond”)
— “® is eventually true”

— timed version: F' ¢ = true U' ¢

— “¢p becomes true in the interval I’

32

More on CSL

Negation and probabilities
- _'P>p [$, U,] = Psp [$, U &,]
— =S, [p1=S_ (]

- The “always” operator (path formula)

~ G =—-(F) = —(true U) (G = “globally”)
— sometimes written as O ¢ (“box”)

— “¢ is always true”

— bounded version: G' d = —(F' =)

— “¢ holds throughout the interval I’

— strictly speaking, G ¢ cannot be derived from the CSL syntax
in this way since there is no negation of path formulas

— but, as for PCTL, we can derive P_ [G ¢] directly...

33

Derivation of P_, [G ¢]

+ sEP ,[Gd] = Prob(s,GP) >p

~ P [Go]
— P [Gd]
— P [G]

=

g0 ¢ 0

Prob(s, —=(F =d)) > p
1 - Prob(s, F =) > p
Prob(s, F =) < 1 -p
SEP 4, [F-d]

- Other equivalences:

PS]_p [F _'CI)]
P>1_p [F _'d)]
P<1_p [F _'d)]

34

Quantitative properties

- Consider CSL formulaeP_,[w]andS_ []
— if the probability is unknown, how to choose the bound p?

- When the outermost operator of a CSL formula is P or S
— allow bounds of the form P_,[w]and S _,[¢]

— what is the probability that path formula ¢ is true?

— what is the long-run probability that ¢ holds?

- Model checking is no harder: compute the values anyway

- As we have seen, useful for spotting patterns and trends

35

CSL example - Workstation cluster

Case study: Cluster of workstations [HHKOO]
— two sub-clusters (N workstations in each cluster)
— star topology with a central switch
— components can break down, single repair unit

— minimum QoS: at least 3 of the workstations operational and
connected via switches

— premium QoS: all workstations operational and connected via
switches

left backbone right
sub-cluster _ sub-cluster

left right

switch switch

36

CSL example - Workstation cluster

P_.[true U%U —minimum]
— the chance that the QoS drops below minimum within t hours
—minimum — P_,,[F%Y =minimum]

— when facing insufficient QoS, the probability of facing the
same problem after t hours is less than 0.1

-« S_,[minimum]
— the probability in the long run of having minimum QoS
minimum — P_, g[minimum U4 premium]

— the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

P_,[“minimum Ut minimum]

— the chance it takes more than t time units to recover from
insufficient QoS

37

Overview

Exponential distributions

Continuous-time Markov chains (CTMCs)

— definition, paths, probabilities, steady-state, transient, ...

Properties of CTMCs: The logic CSL
— syntax, semantics, equivalences, ...

CSL model checking
— algorithm, examples, ...

Costs and rewards

38

CSL model checking for CTMCs

- Algorithm for CSL model checking [BHHKO03]
— inputs: CTMC C=(S,s,,,R,L), CSL formula ¢
— output: Sat(p) = {s€S | s £ $ }, the set of states satisfying ¢

- What does it mean for a CTMC C to satisfy a formula ¢?
— check that s = ¢ for all states s € S, i.e. Sat(¢p) =S
— know if s._.. = &, i.e. if s. .. € Sat(p)

init init
- Sometimes, focus on quantitative results
— e.g. compute result of P=7? [true UI0.13.5] minimum]

— e.g. compute result of P=? [true UO:Y minimum] for 0<t<100

39

CSL model checking for CTMCs

.- Basic algorithm proceeds by induction on parse tree of ¢

— example: ¢ =S_, [—fail | = P_y 45 [—fail U' succ]

—

T~

S<o.1['] P>o.95 [- U]

- For the non-probabilistic /
operators: -
il

— Sat(true) = S

—Sat@ ={seS|ael(s)} @ @

— Sat(—d) = S\ Sat(d)
— Sat(d, A b,) = Sat(d,) N Sat(d,)

40

Untimed properties

- Untimed properties can be verified on the embedded DTMC

— properties of the form: P_, [X b] or P_, [&, U0*) o,]
— use algorithms for checking PCTL against DTMCs

- Certain qualitative time-bounded until formulae can also

be verified on the embedded DTMC
— for any (non-empty) interval |

sEP_,[$, U d,]ifand onlyif s = P_, [d, UL &,]

— can use pre-computation algorithm ProbO

41

Untimed properties
. sk P, [b, U%> ¢,] does notimplys =P_, [¢, U &,]

+ Consider the following example
— with probability 1 eventually reach state s,
So F Py [y U0 ¢,]

— probability of remaining in state s, until time-bound t is
greater than zero for any t

— So E =P,y [, U0 b,] A

42

Model checking - Time-bounded until

- Compute Prob(s, ¢, U' d,) for all states where | is an
arbitrary interval of the non-negative real numbers

— Prob(s, ¢, U' ¢,) = Prob(s, ¢, Ud® ¢.)
where cl(l) closure of the interval |

— Prob(s, ¢, Ul0:=) ¢,) = Probemb@)(s, ¢, U)
where emb(C) is the embedded DTMC

- Therefore, remains to consider the cases when
— | = [0,t] for some teR_,

— | = [t,t'] for some t,t’eR_, such thatt < t’

— | = [t,0) for some teR_,

43

Model checking - P_ [, U0Y ¢,]

- Computing the probabilities reduces to determining the
least solution of the following set of integral equations:

. Prob(s,$, U0t ¢,) equals

— 1 if seSat(db,), proI?abiIity in state s’ of .satisfying
until before t-x time units elapse

— 0 if seSat(—d, A—d,)
— and otherwise equals

[(P9 (s,5") - E(s) - @)-Prob(s', ¢, U™ &,) dx

N\

integrate over x . probability of moving
between O and t : from s to s’ at time x

44

Model checking - P_ [, U0Y ¢,]

- Construct CTMC C[,][—P; A—P,]
— where for CTMC C=(S,s,,.,R,L), let C[B]=(S,s,,;;,
R[B](s,s’)=R(s,s’) if s ¢ Sat(B) and O otherwise
- Make all ¢, states absorbing
— in such a state ¢, U0l ¢, holds with probability 1
- Make all =&, A=, states absorbing
— in such a state ¢, Ul0Xl ¢, holds with probability 0

- Problem then reduces to calculating transient probabilities
of the CTMC C[,][—P; A—d,]:

Prob(s’d)] U[O,t] ¢2) — 1TC[¢2][—'¢1A—|¢2](SI)

—s,t
s'eSat(dp,)

R[B],L) where

i transient probability: starting in state the
probability of being in state s’ at time t

Model checking - P_ [, U0Y ¢,]

- Can now adapt uniformisation to computing the vector of

probabilities Prob(¢, U0t ¢.)
— recall TT; is matrix of transient probabilities TT(s,s’)=11 (s’)
— computed via uniformisation: T, = ZZqu-t,i .(P“”‘f(C))'

. Combining with: Prob(s,d, U ¢,)= > o »%i(s)

s'eSat(d,)

PI'Ob(d)] U[O,t] ¢2):nf[¢z][ﬂ¢mﬂ¢2] E

_ o unif (Cl, l[—dy A=, D))
(37 vy - (P) g
_\"”® unif (Cl, l[—dy A—d,]))
_Zi—o(YQ-t,i°(P A) P,)

46

Model checking - P_ [d, UOY ¢,]

- Have shown that we can calculate the probabilites as:

Probid, U ;) = 37, vy - (Prrctedtonan) g,)

- Infinite summation can be truncated using the techniques

of Fox and Glynn [FG88]

- Can compute iteratively to avoid matrix powers:
(P g, - o,
(Punif(C))i” ., = punif(© .((Punif(C))i b)
X2 - 2

47

P_.[d, UOU §,] - Example

— “probability of the queue becoming full within 7.5 time units”

- State s; satisfies full and no states satisfy —true
— in C[full][-true A— full] only state s; made absorbing

2/3 1/3 0 0 |

matrix of unif(C[full][—-true A—full])
2/3 0 1/3 0 with uniformisation rate
.E(s)=4.5

--

0 0 0 _1| fempyy 22 312 312 gfu
o oBoleS
3 3 3

48

P_.[d, UOU §,] - Example

- Computing the summation of matrix-vector multiplications

, 0 if (C A i
PI’Ob(CI)] U[o t] d)z) _ Zizo(yq-t,i .(Pum (Cl 1=, <I>2])) ﬁ)
— vyields Prob(true U0.7-5lfull) ~ (0.6482,0.6823,0.7811,1)

P_o.6sl true U071 full | satisfied in states s,, s, and s;

fempty} 3/2 3/2 312 tfully
ogogoNo
3 3

3

49

Model checking - P_ [, Utt] ¢,]

In this case the computation can be split into two parts:
Probability of remaining in ¢, states until time t

— can be computed as transient probabilities on the CTMC
where are states satisfying —¢, have been made absorbing

Probability of reaching a ¢, state, while remaining in states
satisfying ¢, within the time interval [0,t’-t]

— i.e. computing Prob(d, UL ¢.)

Prob(s,d, UT ,) =3 (. T *(s")-Prob(s', &, U b,)

N

. sum over states | . | probability
satisfying & . i Probability of reaching state : : ¢, Ut ¢,
I ¢ A UTE L and saifching JE [nelels i §

¢, up until this point

Model checking - P_ [, Utt] ¢,]

- Letting Proby, (s, ¢,Ul%Ud,)= Prob(s, ¢,U%Ud,) if s €Sat(¢p;)
and O otherwise, from the previous slide we have:

Prob(d, U ,) = T *"-Proby, (b, U™ &,)
= (37 Vo (Prce0)).prob, 4, U° &)
- Z(v (Prcet-en) prob, (&, US ¢,) |

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
operations)

51

Model checking - P_j[$, Ut=) ¢,]

- Similar to the case for ¢, Ultt] $, except second part is now
unbounded, and hence the embedded DTMC can be used

- Probability of remaining in ¢, states until time t

- Probability of reaching a ¢, state, while remaining in states
satisfying ¢,

— i.e. computing Prob(d, UL>) ¢,)

Prob(s,d, U ¢,) = > el *(s") - Prob™ (s’ b, U d,)

s'eSat(¢,) — St

UM OVer states b oo . probability
0 satisfying &, Probability of reaching | | &; U &,
11| [ALY S state s’ at time t and . : holdsins’ !
\ ‘ g Satisfying d)] up until thiS é .. H

point 52

Model checking - P_j[$, Ut=) ¢,]

- Letting Proby, (s, ¢,Ul%~),)= Prob(s, ¢,U0:>)¢,) if s
eSat(¢d,) and 0 otherwise, from the previous slide we have:

Prob(d, Ut &,) = TIE#1-Proby™ (¢, U ¢,)
_ (ZZ You .(Punif(CHb]]))') Probir]nb(c)(d)] U[O,oo) ¢2)
- Z:Oo(Yq.t,i '(Punif(C[ﬁd)]]))l | —PrObi:nb(C)(d)l U[O’OO) CI)Z))

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
opertions

53

Model Checking - S_J[¢]

- A state s satisfies the formula S_j[¢] if X, _ , Tt€(s") ~ p

— ¢ (s’) is probability, having started in state s, of being in
state s’ in the long run

First, consider the simple case when C is irreducible

— Cis irreducible (strongly connected) if there exists a finite
path from each state to every other state

— the steady-state probabilities are independent of the starting
state: denote the steady state probabilities by 11¢(s’)

— these probabilities can be computed as the unique solution of
the linear equation system:

m-Q=0 and > m(s)=1

Q is the infinitesimal generator matrix of C

54

Model Checking - S_J[¢]

Equation system can be solved by any standard approach
— Direct methods, such as Gaussian elimination
— lterative methods, such as Jacobi and Gauss-Seidel

- The satisfaction of the CSL formula

— same for all states (steady state independent of starting state)

— computed by summing steady state probabilities for all states
satisfying ¢

55

Model Checking - S_J[¢]

- We now suppose that C is reducible

First perform graph analysis to find set bssc(C) of bottom
strongly connected components (BSCCs)

— strongly connected components that cannot be left

- Treating each individual B € bscc(C) as an irreducible CTMC

compute the steady state probabilities 18
— employ the methods described above

. Calculate the probability of reaching each individual BSCC

— can be computed in the embedded DTMC

— if ag is an atomic proposition true only in the states of B, this
probability is given by Probemb© (s, F ap)

56

Model Checking - S_J[¢]

For any states s and s’ the steady state probability ¢ (s’)
can then be computed as:

o {Probemb‘c’(s, Fa,) -1 (s') if s'eBforsomeB ebscc(C)
s') =

0 otherwise

- The total work required to compute ¢ (s’) for all s and s

— solve two linear equation systems for each BSCC B
. one to obtain the vector Prob¢mb©(F a;)
. the other to compute the steady state probabilities 1B

— computation of the BSCCs requires only analysis of the
underlying graph structure and can be performed using
classical algorithms based on depth-first search

57

SNp[$ | - Example

« S_oq[full]

- CTMC is irreducible (comprises of a single BSCC)
— steady state probabilities independent of starting state
— can be computed by solving 1-Q=0 and X 11(s)=1

_3/2 3/2 0 0
q - 3 -9/2 3/2 0
10 3 -9/2 3/2
0 0 3 -3
{emptyi/2 :3/2 i tfull}
3 3 3

58

S~p[$ | - Example

-3/2-1m(s,) + 3-m(s,) =
3/2-m(sy) - 9/2-1(s)) + 3-7(s,) =
3/2-m(s)) — 9/2-m(s,) + 3-m(s;) =

3/2-1(s,) — 3-m(s;) =

© O O O

m(s,) + () + 1(s,) + m(s;) =]

— solution: m=(8/15,4/15,2/15,1/15)
3/2 3/2 3/2 ffull}

, {empty}
— 2o qI(s’)=1/15<0.1 @‘Q‘@‘@
3 3 3

— so all states satisfy S_ ;[full]

59

Overview

Exponential distributions

Continuous-time Markov chains (CTMCs)

— definition, paths, probabilities, steady-state, transient, ...

Properties of CTMCs: The logic CSL
— syntax, semantics, equivalences, ...

CSL model checking
— algorithm, examples, ...

Costs and rewards

60

Costs and rewards

We augment CTMCs with rewards
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations
— allows a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications in an extension of CSL

For a CTMC (S,s....,R,L), a reward structure is a pair (p,U)
- p:S—R,,is avector of state rewards

inits
—1:S xS —=R_,is amatrix of transition rewards

— continuous time: reward t-p(s) acquired if the CTMC remains
in state s for teR_, time units

61

Reward structures — Example

- Example: “number of requests served”

(0 | 0 0 0 0|

0] 0 0 0
p = and L =

0 0] 0 0

|0 | 0 0] 0 |

- Example: “size of message queue”
— p(s)=i and u(s;,s)=0 for all states s; and s,

3/2 3/2 3/2 fFull}

{emplty‘ I ' I ‘l
3 3 3
62

CSL and rewards

Extend CSL to incorporate reward-based properties
— add R operator similar to the one in PCTL

expected reward is ~r

e NN

- ¢ = [C=t]| R, [F&d]| R, [S]

o o Lo N

. “instantaneous” ; | “cumulative” | | “reachability” :: “steady-state” :

— wherernte R, ,, ~ € {<,>,<,>}

R.. [-] means “the expected value of - satisfies ~r"

63

Types of reward formulas

Instantaneous: R_ [I7t]
— the expected value of the reward at time-instant t is ~r
— “the expected queue size after 6.7 seconds is at most 2”
Cumulative: R_, [C=t]
— the expected reward cumulated up to time-instant t is ~r

— “the expected requests served within the first 4.5 seconds of
operation is less than 10”

Reachability: R_, [F ¢]

— the expected reward cumulated before reaching ¢ is ~r

— “the expected requests served before the queue becomes full”
Steady-state R_. [S]

— the long-run average expected reward is ~r

— “expected long-run queue size is at least 1.2”

64

Reward formula semantics

Formal semantics of the four reward operators:

—sER,[IF] = Exp(s, X,_) ~r

—skER_ [C=t] = Exp(s, Xcop) ~ 1

—SER_[F?] = Exp(s, Xie) ~ 1

- sE=R.[S] = lim,_ (1/t - Exp(s, Xc)) ~r
- where:

— Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

65

Reward formula semantics

Definition of random variables: . time spent in state
— path w= sytys,4;S,... . state of wat Si Pefore ttime

--

/ .. units have elapsed

time spent in stat

X (W) = plw@t)

Xca(W) = i (ti -p(sy) + l(si’SiH)) [Zt j p(s;)
i=0
0 if s, e Sat(d)
X (W) =+ 00 if s, ¢ Sat(¢p) foralli>0
\ Zk“’ t;-p(s) +1(s;,S,,) otherwise

— where j=min{j | £, t;> t}and k, = min{i | s, = ¢}

i<j “i

66

Model checking reward formulas

Instantaneous: R_ [I7t]
— reduces to transient analysis (state of the CTMC at time t)
— use uniformisation

- Cumulative: R_. [C=t]
— extends approach for time-bounded until [KNPO06]
— based on uniformisation

Reachability: R_, [F ¢]
— can be computed on the embedded DTMC
— reduces to solving a system of linear equation

- Steady-state: R [S]

— similar to steady state formulae S_ [¢]

— graph based analysis (compute BSCCs)

— solve systems of linear equations (compute steady state
probabilities of each BSCC)

67

Model checking complexity

For model checking of a CTMC complexity:
— linear in |®| and polynomial in |S|
— linearin g-t ., (t,. iS maximum finite bound in intervals)
PNp[CD] Ul0.=) ¢,], SNp[CD], R.. [F ®] and R_, [S]
— require solution of linear equation system of size |S|
— can be solved with Gaussian elimination: cubic in |S|
— precomputation algorithms (max |S| steps)
PNp[CD] U'd,], R_, [C=t] and R_, [I71]
— at most two iterative sequences of matrix-vector product
— operation is quadratic in the size of the matrix, i.e. |S|
— total number of iterations bounded by Fox and Glynn
— the bound is linear in the size of gq-t (g uniformisation rate)

68

Summing up...

- Exponential distributions

- Continuous-time Markov chains (CTMCs)

— definition, paths, probability measure, ...

Properties of CTMCs: the logic CSL
— syntax, semantics, equivalences, ...

- CSL model checking

— algorithm, examples, ...

- Costs and rewards

69

	Probabilistic Model Checking
	Overview
	Exponential distribution	
	Exponential distribution - Examples
	Exponential distribution
	Exponential distribution - Memoryless
	Exponential distribution - Properties
	Overview
	Continuous-time Markov chains
	Continuous-time Markov chains
	Continuous-time Markov chains
	Embedded DTMC
	Continuous-time Markov chains
	Simple CTMC example
	Simple CTMC example
	Paths of a CTMC
	Probability space
	Probability space
	Probability space
	Probability space - Example
	Transient and steady-state behaviour
	Computing transient probabilities
	Uniformisation
	Uniformisation
	Uniformisation
	Uniformisation
	Overview
	CSL
	CSL syntax
	CSL semantics for CTMCs
	CSL semantics for CTMCs
	CSL derived operators
	More on CSL
	Derivation of P~p [G φ]
	Quantitative properties
	CSL example - Workstation cluster
	CSL example - Workstation cluster
	Overview
	CSL model checking for CTMCs
	CSL model checking for CTMCs
	Untimed properties
	Untimed properties
	Model checking - Time-bounded until
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking – P~p[φ1 U[0,t] φ2]
	P~p[φ1 U[0,t] φ2] - Example
	P~p[φ1 U[0,t] φ2] - Example
	Model checking - P~p[φ1 U[t,t’] φ2]
	Model checking - P~p[φ1 U[t,t’] φ2]
	Model checking - P~p[φ1 U[t,∞) φ2]
	Model checking - P~p[φ1 U[t,∞) φ2]
	Model Checking - S~p[φ]
	Model Checking - S~p[φ]
	Model Checking - S~p[φ]
	Model Checking - S~p[φ]
	S~p[φ] - Example
	S~p[φ] - Example
	Overview
	Costs and rewards
	Reward structures - Example
	CSL and rewards
	Types of reward formulas
	Reward formula semantics
	Reward formula semantics
	Model checking reward formulas
	Model checking complexity
	Summing up…

