
Probabilistic Model CheckingProbabilistic Model Checking

Part 5 Part 5 -- ContinuousContinuous--Time Markov ChainsTime Markov Chains

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of University of OxfordOxford



2

Overview

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probabilities, steady-state, transient, …

• Properties of CTMCs: The logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards



3

Exponential distribution

• Continuous random variable X is exponential with 
parameter λ>0 if the density function is given by

• Cumulative distribution function (P[X≤t]) of X:
tλt

0
xλxλt

0X e1]e[dxeλ(t)F ⋅−⋅−⋅− −=−=⋅= ∫

 otherwise
0tif

0
eλ    (t)f

tλ

X
>⋅

⎩
⎨
⎧

=
⋅−

2

0
xλ-

tλ-

λ
1 Var[X] variance -

λ
1  dxeλx E[X] nexpectatio -

e  t]P[X 

=

=⋅⋅=

=>−

∫
∞ ⋅

⋅



4

Exponential distribution - Examples

• The more λ increases, the faster the c.d.f. approaches 1

Cumulative distribution function Probability distribution function 



5

Exponential distribution

• Adequate for modelling many real-life phenomena
− failure rates
− inter-arrival times
− continuous process to change state

• Can approximate general distributions arbitrarily closely

• Maximal entropy if just the mean is known
− i.e. best approximation when only mean is known



6

Exponential distribution - Memoryless

• Memoryless property: P[ X>t1+t2 I X>t1 ] = P[ X>t2 ]

• Exponential distribution is the only continuous distribution 
which is memoryless

• P[ X>t1+t2 I X>t1 ] = P[ X>t1+t2 ∧ X>t1 ] / P[ X>t1 ]
= P[ X>t1+t2 ] / P[ X>t1 ]
= e-λ·(t1+t2) / e-λ·t1

= (e-λ·t1· e-λ·t2) / e-λ·t1

= e-λ·t2

= P[ X>t2 ]

recall P[X>t] = e-λ·t



7

Exponential distribution - Properties

• Minimum of two independent exponential distributions is 
an exponential distribution (parameter is sum)

− recall P[X>t] = e-λ·t

]tY[P]tY[P1

e1

ee1

]tX[P]tX[P1

]tXtX[P1

]t)X,X[min(P1t])X,P[min(X

t)λλ(

tλtλ

21

21

2121

21

21

≤=>−

−

⋅−

>⋅>−

>∧>−

>−

=

=

=

=

=

=≤

⋅+−

⋅−⋅−



8

Overview

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probabilities, steady-state, transient, …

• Properties of CTMCs: The logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards



9

Continuous-time Markov chains

• Continuous-time Markov chains (CTMCs)
− labelled transition systems augmented with rates
− discrete states
− continuous time-steps
− delays exponentially distributed

• Suited to modelling:
− reliability models
− control systems
− queueing networks
− biological pathways
− chemical reactions
− ...



10

Continuous-time Markov chains

• Formally, a CTMC C is a tuple (S,sinit,R,L) where: 
− S is a finite set of states (“state space”)
− sinit ∈ S is the initial state
− R : S × S → ℝ≥0 is the transition rate matrix
− L : S → 2AP is a labelling with atomic propositions

• Transition rate matrix assigns rates to each pair of states
− used as a parameter to the exponential distribution
− transition between s and s’ when R(s,s’)>0
− probability triggered before t time units 1 – e-R(s,s’)·t



11

Continuous-time Markov chains

• What happens when there exists multiple s’ with R(s,s’)>0?
− first transition triggered determines the next state
− called the race condition

• Time spent in a state before a transition: 
− minimum of exponential distributions 
− exponential with parameter given by summation:

− E(s) is the exit rate of state s
− state absorbing if E(s)=0 (no outgoing transitions)
− probability of leaving a state s within [0,t] equals 1-e-E(s)·t

∑ ∈
= Ss' )'s,s()s(E R



12

Embedded DTMC

• Can determine the probability of each transition occurring
− independent of the time at which it occurs

• Embedded DTMC: emb(C)=(S,sinit,Pemb(C),L)
− state space, initial state and labelling as the CTMC
− for any s,s’∈S

• Alternative characterisation of the behaviour:
− remain in s for delay exponentially distributed with rate E(s)
− probability next state is s’ is given by Pemb(C)(s,s’)

otherwise
s's and 0E(s) if

0(s)E if

0
1
)/E(s)s'R(s,

    )s'(s,emb(C) ==
>

⎪
⎩

⎪
⎨

⎧
=P



13

Continuous-time Markov chains

• Infinitesimal generator matrix

• Alternative definition: a CTMC is:
− a family of random variables { X(t) | t ∈ ℝ≥0 }
− X(t) are observations made at time instant t
− i.e. X(t) is the state of the system at time instant t
− which satisifies…

• Memoryless (Markov property)
P[X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0] = P[X(tk)=sk | X(tk-1)=sk-1]

otherwise
'ss

)'s,s(
)'s,s(    )'s,s(

'ss

≠
⎩
⎨
⎧

−= ∑ ≠
R

RQ



14

Simple CTMC example

• Modelling a queue of jobs
− initially the queue is empty
− jobs arrive with rate 3/2
− jobs are served with rate 3
− maximum size of the queue is 3

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



15

Simple CTMC example

C = ( S, sinit, R, L )
S = {s0, s1, s2, s3} 
sinit = s0

AP = {empty, full}
L(s0)={empty} L(s1)=L(s2)=∅ and L(s3)={full}

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0300
2/3030

02/303
002/30

R

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100

3/103/20

03/103/2

0010

emb(C)P
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

3300
2/32/930

02/32/93
002/32/3

Q

infinitesimal 
generator matrix

transition 
rate matrix

embedded 
DTMC



16

Paths of a CTMC

• Infinite path ω is a sequence s0t0s1t1s2t2… such that 
− R(si,si+1) > 0 and ti ∈ ℝ>0 for all i ∈ ℕ
− amount of time spent in the jth state: time(ω,j)=tj

− state occupied at time t: ω@t=sj

where j smallest index such that ∑i≤j tj ≥ t

• Finite path is a sequence s0t0s1t1s2t2…tk-1sk such that 
− R(si,si+1) > 0 and ti ∈ ℝ>0 for all i<k
− sk is absorbing (R(s,s’) = 0 for all s’ ∈ S)
− amount of time spent in the ith state only defined for j≤k:

time(ω,j)=tj if j<k and time(ω,j)=∞ if j=k
− state occupied at time t: if t≤∑i≤k tj then ω@t as above 

otherwise t>∑i≤k tj then ω@t=sk



17

Probability space

• Sample space: Path(s) (set of all paths from a state s)
• Events: sets of infinite paths
• Basic events: sets of paths with common finite prefix

− probability of a single finite path is zero
− include time intervals in cylinders

• Cylinder is a sequence s0,I0,s1,I1,…,In-1,sn

− s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n
− I0,I1,I2,…,In-1 sequence of of nonempty intervals of ℝ≥0

• C(s0,I0,s1,I1,…,In-1,sn) set of (infinite and finite paths):
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n



18

Probability space

• Define measure over cylinders by induction

− Prs(C(s))=1

− Prs(C(s,I,s1,I1,…,In-1,sn,I’,s’)) equals

( )'Isup)s(E'Iinf)s(E
n

)C(emb
n1n11s

nn ee)'s,s())s,I,...,I,s,I,s(C(Pr ⋅−⋅−
− −⋅⋅P

probability transition 
from sn to s’ (defined 

using embedded DTMC)
probability time spent in state sn

is within the interval I’



19

Probability space

• Probability space (Path(s), ΣPath(s), Prs)

• Sample space Ω = Path(s) (infinite and finite paths)

• Event set ΣPath(s)

− least σ-algebra on Path(s) containing all cylinders starting in s

• Probability measure Prs

− Prs extends uniquely from probability defined over cylinders

• See [BHHK03] for further details



20

Probability space - Example

• Cylinder C(s0,[0,2],s1)

• Pr(C(s0,[0,2],s1))= Pr(C(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2)
= 1 · 1 · (e-3/2·0 – e-3/2·2)
= 1– e-3

≈ 0.95021

• Probability of leaving the initial state s0 and moving to state 
s1 within the first 2 time units of operation

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



21

Transient and steady-state behaviour

• Transient behaviour
− state of the model at a particular time instant
− πC

s,t(s’) is probability of, having started in state s, being in 
state s’ at time t

− πC
s,t (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ }

• Steady-state behaviour
− state of the model in the long-run
− πC

s(s’) is probability of, having started in state s, being in 
state s’ in the long run

− πC
s(s’) = limt→∞πC

s,t(s’)
− the percentage of time, in long run, spent in each state



22

Computing transient probabilities

• Πt - matrix of transient probabilities 
− Πt(s,s’)=πs,t(s’)

• Πt solution of the differential equation: Πt’ = Πt · Q
− Q infinitesimal generator matrix

• Can be expressed as a matrix exponential and therefore 
evaluated as a power series

− computation potentially unstable
− probabilities instead computed using the uniformised DTMC

! i/)t(  e  
0i

it
t ∑∞

=
⋅ ⋅== QΠ Q



23

Uniformisation

• Uniformised DTMC unif(C)=(S,sinit,Punif(C),L) of C=(S,sinit,R,L)
− set of states, initial state and labelling the same as C
− Punif(C) = I + Q/q
− q ≥ max{E(s) | s ∈ S} is the uniformisation rate

• Each time step (epoch) of uniformised DTMC corresponds 
to one exponentially distributed delay with rate q
− if E(s)=q transitions the same as embedded DTMC (residence 

time has the same distribution as one epoch)
− if E(s)<q add self loop with probability 1-E(s)/q (residence 

time longer than 1/q so one epoch may not be ‘long enough’)



24

Uniformisation

( )( )
( ) ( )

( )∑
∑

∑

∞

= ⋅

∞

=
⋅⋅−

∞

=
⋅⋅−

⋅−⋅⋅⋅−⋅⋅

⋅

⋅⋅

⋅⋅

⋅==

=

=

=

=

0i

i )C(unif
i,tq

0i

i )C(unif
! i
)tq(tq

0i

i )C(unif
! i
)tq(tq

tq)tq(t)(qt
t

 γ

  e 

   e

eeee

 

 

i

i

)C(unif)C(unif

P

P

P

Π PIPQ

ith Poisson probability 
with parameter q·t

• Using the uniformised DTMC the transient probabilities can 
be expressed by:

Punif(C) stochastic (all entries in 
[0,1] & rows sum to 1), therefore 

computations with P more 
numerically stable than Q. 



25

Uniformisation

• (Punif(C))i is probability of jumping between each pair of 
states in i steps

• γq·t,i is the ith Poisson probability with parameter q·t
− the probability of i steps occurring in time t, given each has 

delay exponentially distributed with rate q

• Can truncate the summation using the techniques of Fox 
and Glynn [FG88], which allow efficient computation of the 
Poisson probabilities

( )   γ
0i

i )C(unif
i,tqt ∑∞

= ⋅ ⋅= PΠ



26

Uniformisation

• Computing πs,t for a fixed state s and time t
− can be computed efficiently using matrix-vector operations
− pre-multiply the matrix Πt by the initial distribution
− in this πs,0 where πs,0(s’) equals 1 if s=s’ and 0 otherwise

− compute iteratively to avoid the computation of matrix powers 

( )

( )∑

∑
∞

= ⋅

∞

= ⋅

⋅⋅

⋅⋅

=

=⋅=

0i

i )C(unif
0,si,tq

0i

i )C(unif
i,tq0,st0,st,s

 πγ

  γπ
  

  ππ

P

PΠ

( ) ( ) )C(unifi )C(unif
ts,

1i )C(unif
ts, π   π PPP ⋅⋅=⋅

+



27

Overview

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probabilities, steady-state, transient, …

• Properties of CTMCs: The logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards



28

CSL

• Temporal logic for describing properties of CTMCs
− CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
− extension of (non-probabilistic) temporal logic CTL

• Key additions: 
− probabilistic operator P (like PCTL)
− steady state operator S

• Example: down → P>0.75 [ ¬fail U≤[1,2] up ] 
− when a shutdown occurs, the probability of a system recovery 

being completed between 1 and 2 hours without further 
failure is greater than 0.75

• Example: S<0.1[insufficient_routers] 
− in the long run, the chance that an inadequate number of 

routers are operational is less than 0.1



29

CSL syntax

• CSL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulas)

− ψ ::= X φ |    φ UI φ (path formulas)

− where a is an atomic proposition, I interval of ℝ≥0 and p ∈
[0,1], ~ ∈ {<,>,≤,≥}

• A CSL formula is always a state formula
− path formulas only occur inside the P operator

ψ is true with 
probability ~p

“time bounded 
until”

“next”
in the “long 

run” φ is true 
with 

probability ~p



30

CSL semantics for CTMCs

• CSL formulas interpreted over states of a CTMC
− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of state formulas:
− for a state s of the CTMC (S,sinit,R,L):

− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false
− s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p
− s ⊨ S~p [φ] ⇔ ∑s’ ⊨ φ πs(s’) ~ p

Probability of, starting in state s, being 
in state s’ in the long run

Probability of, 
starting in state s, 
satisfying the path 

formula ψ



31

CSL semantics for CTMCs

• Prob(s, ψ) is the probability, starting in state s, of satisfying 
the path formula ψ
− Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ }

• Semantics of path formulas:
− for a path ω of the CTMC:
− ω ⊨ X φ ⇔ ω(1) is defined and ω(1) ⊨ φ
− ω ⊨ φ1 UI φ2 ⇔ ∃t ∈ I. ( ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1)

there exists a time instant in the interval I where φ2
is true and φ1 is true at all preceding time instants

if ω(0) is absorbing 
ω(1) not defined



32

CSL derived operators

• (As for PCTL) can derive basic logical equivalences:
− false ≡ ¬true (false)
− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
− φ1 → φ2 ≡¬φ1 ∨ φ2 (implication)

• The “eventually” operator (path formula)
− F φ ≡ true U φ (F = “future”) (F = “future”)
− sometimes written as ◊ φ (“diamond”) (“diamond”)
− “φ is eventually true”
− timed version: FI φ ≡ true UI φ
− “φ becomes true in the interval I”



33

More on CSL

• Negation and probabilities
− ¬P>p [ φ1 UI φ2 ] ≡ P≤p [φ1 UI φ2 ]
− ¬S>p [ φ ] ≡ S≤p [ φ ]

• The “always” operator (path formula)
− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (G = “globally”)
− sometimes written as □ φ (“box”)
− “φ is always true”
− bounded version: GI φ ≡ ¬(FI ¬φ)
− “φ holds throughout the interval I”
− strictly speaking, G φ cannot be derived from the CSL syntax 

in this way since there is no negation of path formulas
− but, as for PCTL, we can derive P~p [ G φ ] directly...



34

Derivation of P~p [ G φ ]

• s ⊨ P>p [ G φ ] ⇔ Prob(s, G φ) > p
⇔ Prob(s, ¬(F ¬φ)) > p
⇔ 1 - Prob(s, F ¬φ) > p
⇔ Prob(s, F ¬φ) < 1 - p
⇔ s ⊨ P<1-p [ F ¬φ ]

• Other equivalences:
− P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
− P<p [ G φ ] ≡ P>1-p [ F ¬φ ]
− P>p [ GI φ ] ≡ P<1-p [ FI ¬φ ]



35

Quantitative properties

• Consider  CSL formulae P~p [ ψ ] and S~p [ φ ]
− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a CSL formula is P or S
− allow bounds of the form P=? [ ψ ] and S =? [ φ ]
− what is the probability that path formula ψ is true?
− what is the long-run probability that φ holds?

• Model checking is no harder: compute the values anyway

• As we have seen, useful for spotting patterns and trends



36

CSL example - Workstation cluster

• Case study: Cluster of workstations [HHK00]
− two sub-clusters (N workstations in each cluster)
− star topology with a central switch
− components can break down, single repair unit
− minimum QoS: at least ¾ of the workstations operational and 

connected via switches
− premium QoS: all workstations operational and connected via 

switches

backbone

left
switch

right
switch

left 
sub-cluster

right 
sub-cluster



37

CSL example - Workstation cluster

• P=?[true U[0,t] ¬minimum ] 
− the chance that the QoS drops below minimum within t hours

• ¬minimum → P<0.1[F[0,t] ¬minimum] 
− when facing insufficient QoS, the probability of facing the 

same problem after t hours is less than 0.1
• S=?[ minimum ]

− the probability in the long run of having minimum QoS
• minimum → P>0.8[minimum U[0,t] premium ] 

− the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

• P=?[ ¬minimum U[t,∞) minimum ]
− the chance it takes more than t time units to recover from 

insufficient QoS



38

Overview

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probabilities, steady-state, transient, …

• Properties of CTMCs: The logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards



39

CSL model checking for CTMCs

• Algorithm for CSL model checking [BHHK03]
− inputs: CTMC C=(S,sinit,R,L), CSL formula φ
− output: Sat(φ) = { s∈S | s ⊨ φ }, the set of states satisfying φ

• What does it mean for a CTMC C to satisfy a formula φ?
− check that s ⊨ φ for all states s ∈ S, i.e. Sat(φ) = S
− know if sinit ⊨ φ, i.e. if sinit∈ Sat(φ)

• Sometimes, focus on quantitative results
− e.g. compute result of P=? [true U[0,13.5] minimum ]
− e.g. compute result of P=? [true U[0,t] minimum ] for 0≤t≤100



40

CSL model checking for CTMCs

• Basic algorithm proceeds by induction on parse tree of φ
− example: φ = S<0.1[¬fail ] → P>0.95 [ ¬fail UI succ ]

• For the non-probabilistic 
operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

S<0.1[·]

¬

→

P>0.95 [ · UI · ]

¬

fail fail

succ



41

Untimed properties

• Untimed properties can be verified on the embedded DTMC
− properties of the form: P~p [ X φ ] or P~p [ φ1 U[0,∞) φ2 ]
− use algorithms for checking PCTL against DTMCs

• Certain qualitative time-bounded until formulae can also 
be verified on the embedded DTMC
− for any (non-empty) interval I

s ⊨ P~0 [ φ1 UI φ2 ] if and only if s ⊨ P~0 [φ1 U[0,∞) φ2 ]

− can use pre-computation algorithm Prob0



42

Untimed properties

• s ⊨ P~1 [φ1 U[0,∞) φ2 ] does not imply s ⊨ P~1 [ φ1 UI φ2 ]

• Consider the following example
− with probability 1 eventually reach state s1

s0 ⊨ P≥1 [φ1 U[0,∞) φ2 ]
− probability of remaining in state s0 until time-bound t is 

greater than zero for any t 
− s0 ⊨ ¬P≥1 [φ1 U[0,t] φ2 ]

s0

λ1

s1λ2



43

Model checking - Time-bounded until

• Compute Prob(s, φ1 UI φ2) for all states where I is an 
arbitrary interval of the non-negative real numbers

− Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2) 
where cl(I) closure of the interval I

− Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2)
where emb(C) is the embedded DTMC

• Therefore, remains to consider the cases when
− I = [0,t] for some t∈ℝ≥0

− I = [t,t’] for some t,t’∈ℝ≥0 such that t ≤ t’
− I = [t,∞) for some t∈ℝ≥0



44

Model checking - P~p[φ1 U[0,t] φ2]

• Computing the probabilities reduces to determining the 
least solution of the following set of integral equations:

• Prob(s,φ1 U[0,t] φ2) equals 
− 1 if s∈Sat(φ2), 
− 0 if s∈Sat(¬φ1 ∧¬φ2) 
− and otherwise equals

( )∫ −⋅− ⋅⋅⋅
t

0 2
x]t[0,

1
x)s(E)C(emb dx )φ U φ,s'(Prob e)s(E)'s,s( P

probability of moving 
from s to s’ at time x

probability in state s’ of satisfying 
until before t-x time units elapse

integrate over x 
between 0 and t



45

Model checking - P~p[φ1 U[0,t] φ2]

• Construct CTMC C[φ2][¬φ1 ∧¬φ2]
− where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L) where

R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise
• Make all φ2 states absorbing

− in such a state φ1 U[0,x] φ2 holds with probability 1
• Make all ¬φ1 ∧¬φ2 states absorbing

− in such a state φ1 U[0,x] φ2 holds with probability 0
• Problem then reduces to calculating transient probabilities

of the CTMC C[φ2][¬φ1 ∧¬φ2]:

∑
∈

¬∧¬=
)φSat(  s'

]φφ][φC[
ts,2

t][0,
1

2

212 )'s(π  )φ U φProb(s,

transient probability: starting in state the 
probability of being in state s’ at time t



46

Model checking - P~p[φ1 U[0,t] φ2]

• Can now adapt uniformisation to computing the vector of 
probabilities Prob( φ1 U[0,t] φ2)
− recall Πt is matrix of transient probabilities Πt(s,s’)=πs,t(s’) 
− computed via uniformisation:

• Combining with: 

( )   γ
0i

i )C(unif
i,tqt ∑∞

= ⋅ ⋅= PΠ

( )( )
( )( )∑

∑
∞

=
¬∧¬

⋅

∞

=
¬∧¬

⋅

¬∧¬

⋅⋅

⋅⋅

⋅

=

=

=

0i 2
i )]φφ][φ[C(unif

i,tq

20i

i )]φφ][φ[C(unif
i,tq

2
]φφ][φC[

t2
t][0,

1

 φ γ 

 φ  γ 

φ)φ U φ(Prob

212

212

212

P

P

Π

∑
∈

¬∧¬=
)φSat(  s'

]φφ][φC[
ts,2

t][0,
1

2

212 )'s(π  )φ U φ, Prob(s



47

Model checking – P~p[φ1 U[0,t] φ2]

• Have shown that we can calculate the probabilites as:

• Infinite summation can be truncated using the techniques 
of Fox and Glynn [FG88]

• Can compute iteratively to avoid matrix powers:

( ) 22
0 )C(unif φφ =⋅P

( ) ( )( ) φ  φ 2
i )C(unif)C(unif

2
1i )C(unif ⋅⋅=⋅
+ PPP

( )( )∑∞

=
¬∧¬

⋅ ⋅⋅= 0i 2
i )]φφ][φ[C(unif

i,tq2
t][0,

1  φ γ )φ U φ(obPr 212P



48

P~p[φ1 U[0,t] φ2] - Example

• P>0.65[ true U[0,7.5] full ] 
− “probability of the queue becoming full within 7.5 time units”

• State s3 satisfies full and no states satisfy ¬true
− in C[full][¬true ∧¬ full] only state s3 made absorbing

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000

3/103/20

03/103/2

003/13/2
matrix of unif(C[full][¬true ∧¬full]) 

with uniformisation rate 
maxs∈SE(s)=4.5

s3 made absorbing

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



49

P~p[φ1 U[0,t] φ2] - Example

• Computing the summation of matrix-vector multiplications

− yields Prob(true U[0,7.5]full) ≈ (0.6482,0.6823,0.7811,1)

• P>0.65[ true U[0,7.5] full ] satisfied in states s1, s2 and s3

( )( )∑∞

=
¬∧¬

⋅ ⋅⋅= 0i 2
i )]φφ][φ[C(unif

i,tq2
t][0,

1  φ γ )φ U φ(obPr 212P

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



50

Model checking - P~p[φ1 U[t,t’] φ2]

• In this case the computation can be split into two parts:
• Probability of remaining in φ1 states until time t

− can be computed as transient probabilities on the CTMC 
where are states satisfying ¬φ1 have been made absorbing

• Probability of reaching a φ2 state, while remaining in states 
satisfying φ1, within the time interval [0,t’-t]
− i.e. computing Prob(φ1 U[0,t’-t] φ2)

∑ ∈

¬ ⋅=
)φ(Sat's 2

t'-t][0,
1

]φ[C
t,s2

t][0,
1

1

1 )φ U φ,'s(Prob)'s(π)φ U φ,s(Prob

probability 
φ1 U[0,t’-t] φ2
holds in s’

Probability of reaching state 
s’ at time t and satisfying 
φ1 up until this point

sum over states 
satisfying φ1



51

Model checking - P~p[φ1 U[t,t’] φ2]

• Letting Probφ1(s, φ1U[0,t]φ2)= Prob(s, φ1U[0,t]φ2) if s ∈Sat(φ1) 
and 0 otherwise, from the previous slide we have:

− summation can be truncated using Fox and Glynn [FG88]
− can compute iteratively (only scalar and matrix-vector 

operations)

( )( )
( )( )  )φ U φ(Prob γ 

)φ U φ(Prob   γ 
)φ U φ(obPr  )φ U φ(Prob

0i 2
t'-t][0,

1φ
i ])φ[C(unif

i,tq

2
t'-t][0,

1φ0i

i ])φ[C(unif
i,tq

2
t'-t][0,

1φ
]φ[C

t2
t'][t,

1

1
1

1
1

1
1

∑
∑
∞

=
¬

⋅

∞

=
¬

⋅

¬

⋅⋅

⋅⋅

⋅

=
=
=

P
P

Π



52

Model checking - P~p[φ1 U[t,∞) φ2]

• Similar to the case for φ1 U[t,t’] φ2 except second part is now 
unbounded, and hence the embedded DTMC can be used

• Probability of remaining in φ1 states until time t
• Probability of reaching a φ2 state, while remaining in states 

satisfying φ1 

− i.e. computing Prob(φ1 U[0,∞) φ2)

∑ ∈

¬ ⋅=
)φ(Sat's 21

emb(C)]φ[C
t,s2

t][0,
1

1

1 )φ U φ,'s(Prob)'s(π)φ U φ,s(Prob

probability 
φ1 U[0,∞) φ2
holds in s’

Probability of reaching 
state s’ at time t and 

satisfying φ1 up until this 
point

sum over states 
satisfying φ1



53

Model checking - P~p[φ1 U[t,∞) φ2]

• Letting Probφ1(s, φ1U[0,∞)φ2)= Prob(s, φ1U[0,∞)φ2) if s 
∈Sat(φ1) and 0 otherwise, from the previous slide we have:

− summation can be truncated using Fox and Glynn [FG88]
− can compute iteratively (only scalar and matrix-vector 

opertions

( )( )
( )( )  )φ U φ(obPr γ 

)φ U φ(obPr   γ 
)φ U φ(obPr  )φ U φ(Prob

0i 2
)[0,

1
)C(emb

φ
i ])φ[C(unif

i,tq

2
)[0,

1
)C(emb

φ0i

i ])φ[C(unif
i,tq

2
)[0,

1
)C(emb

φ
]φ[C

t2
)[t,

1

1
1

1
1

1
1

∑
∑
∞

=
∞¬

⋅

∞∞

=
¬

⋅

∞¬∞

⋅⋅

⋅⋅

⋅

=
=
=

P
P

Π



54

Model Checking - S~p[ φ ]

• A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC
s(s’) ~ p

− πC
s(s’) is probability, having started in state s, of being in 

state s’ in the long run

• First, consider the simple case when C is irreducible
− C is irreducible (strongly connected) if there exists a finite 

path from each state to every other state
− the steady-state probabilities are independent of the starting 

state: denote the steady state probabilities by πC(s’)
− these probabilities can be computed as the unique solution of 

the linear equation system:

Q is the infinitesimal generator matrix of C

1)s(π   and   0π
Ss

CC ==⋅ ∑ ∈
Q



55

Model Checking - S~p[ φ ]

• Equation system can be solved by any standard approach
− Direct methods, such as Gaussian elimination
− Iterative methods, such as Jacobi and Gauss-Seidel

• The satisfaction of the CSL formula
− same for all states (steady state independent of starting state)
− computed by summing steady state probabilities for all states 

satisfying φ



56

Model Checking - S~p[ φ ]

• We now suppose that C is reducible

• First perform graph analysis to find set bssc(C) of bottom 
strongly connected components (BSCCs) 
− strongly connected components that cannot be left

• Treating each individual B ∈ bscc(C) as an irreducible CTMC
compute the steady state probabilities πB

− employ the methods described above

• Calculate the probability of reaching each individual BSCC
− can be computed in the embedded DTMC
− if aB is an atomic proposition true only in the states of B, this 

probability is given by Probemb(C)(s, F aB)



57

Model Checking - S~p[ φ ]

• For any states s and s’ the steady state probability πC
s(s’) 

can then be computed as:

• The total work required to compute πC
s(s’) for all s and s’

− solve two linear equation systems for each BSCC B
• one to obtain the vector Probemb(C)(F aB)
• the other to compute the steady state probabilities πB

− computation of the BSCCs requires only analysis of the 
underlying graph structure and can be performed using 
classical algorithms based on depth-first search

otherwise

bscc(C)B some for Bs' if

0

)'s(π)a F ,s(Prob
)'s(π

B
B

emb(C)
C
s

∈∈

⎪⎩

⎪
⎨
⎧ ⋅

=



58

S~p[ φ ] - Example

• S<0.1[ full ]
• CTMC is irreducible (comprises of a single BSCC)

− steady state probabilities independent of starting state
− can be computed by solving π·Q=0 and ∑ π(s)=1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

3300
2/32/930

02/32/93
002/32/3

Q

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



59

S~p[ φ ] - Example

− solution: π=(8/15,4/15,2/15,1/15)

− ∑s’ ⊨ full π (s’) = 1/15 < 0.1

− so all states satisfy S<0.1[ full ]

0)s(π3)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/3

32

321

210

10

=⋅−⋅
=⋅+⋅−⋅
=⋅+⋅−⋅
=⋅+⋅−

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333

1)s(π)s(π)s(π)s(π 3210 =+++



60

Overview

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probabilities, steady-state, transient, …

• Properties of CTMCs: The logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards



61

Costs and rewards

• We augment CTMCs with rewards
− real-valued quantities assigned to states and/or transitions
− these can have a wide range of possible interpretations
− allows a wide range of quantitative measures of the system
− basic notion: expected value of rewards
− formal property specifications in an extension of CSL

• For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι)
− ρ : S →ℝ≥0 is a vector of state rewards
− ι : S × S →ℝ≥0 is a matrix of transition rewards

− continuous time: reward t·ρ(s) acquired if the CTMC remains 
in state s for t∈ℝ≥0 time units



62

Reward structures - Example

• Example: “number of requests served”

• Example: “size of message queue”
− ρ(si)=i and ι(si,sj)=0 for all states si and sj

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0100

0010

0001

0000

    and    

0

0

0

0

ρ ι

s1s0

3/2

1

{full}{empty}

s2 s3

3/2 3/2

333



63

CSL and rewards

• Extend CSL to incorporate reward-based properties
− add R operator similar to the one in PCTL

− φ ::=  … |  R~r [ I=t ]  |  R~r [ C≤t ] |  R~r [ F φ ] |  R~r [ S ]

− where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected reward is ~r

“cumulative”“instantaneous” “steady-state”



64

Types of reward formulas

• Instantaneous: R~r [ I=t ]
− the expected value of the reward at time-instant t is ~r
− “the expected queue size after 6.7 seconds is at most 2”

• Cumulative: R~r [ C≤t ]
− the expected reward cumulated up to time-instant t is ~r
− “the expected requests served within the first 4.5 seconds of 

operation is less than 10”
• Reachability: R~r [ F φ ]

− the expected reward cumulated before reaching φ is ~r
− “the expected requests served before the queue becomes full”

• Steady-state R~r [ S ]
− the long-run average expected reward is ~r
− “expected long-run queue size is at least 1.2”



65

Reward formula semantics

• Formal semantics of the four reward operators:

− s ⊨ R~r [ I=t ] ⇔ Exp(s, XI=t) ~ r
− s ⊨ R~r [ C≤t ] ⇔ Exp(s, XC≤t) ~ r
− s ⊨ R~r [ F Φ ] ⇔ Exp(s, XFΦ) ~ r
− s ⊨ R~r [ S ] ⇔ limt→∞( 1/t · Exp(s, XC≤t) ) ~ r

• where:
− Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs



66

Reward formula semantics

• Definition of random variables:
− path ω= s0t0s1t1s2…

− where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }  

( ) )s(ρtt)s,s()s(ρ t   )ω(X
t

tt

j

1j

0i
i

1j 

0i 
1iiiitC ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⋅= ∑∑

−

=

−

=
+≤ ι

)t@ω(ρ   )ω(X kI ==

otherwise

 0i all for )φSat( s if

)φSat(s if

)s,s()s(ρt

0

   )ω(X i

0

1-k 
0i 1iiii

φF

φ

≥∉

∈

+⋅

∞

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

∑ = +ι

state of ω at time t

time spent in state si

time spent in state 
sjt before t time 

units have elapsed



67

Model checking reward formulas

• Instantaneous: R~r [ I=t ]
− reduces to transient analysis (state of the CTMC at time t)
− use uniformisation

• Cumulative: R~r [ C≤t ]
− extends approach for time-bounded until [KNP06]
− based on uniformisation

• Reachability: R~r [ F φ ] 
− can be computed on the embedded DTMC
− reduces to solving a system of linear equation

• Steady-state: R~r [ S ]
− similar to steady state formulae S~r [ φ ] 
− graph based analysis (compute BSCCs)
− solve systems of linear equations (compute steady state 

probabilities of each BSCC)



68

Model checking complexity

• For model checking of a CTMC complexity:
− linear in |Φ| and polynomial in |S|
− linear in q·tmax (tmax is maximum finite bound in intervals)

• P~p[Φ1 U[0,∞) Φ2], S~p[Φ], R~r [F Φ] and R~r [S]
− require solution of linear equation system of size |S|
− can be solved with Gaussian elimination: cubic in |S|
− precomputation algorithms (max |S| steps)

• P~p[Φ1 UI Φ2], R~r [C≤t] and R~r [I=t] 
− at most two iterative sequences of matrix-vector product 
− operation is quadratic in the size of the matrix, i.e. |S|
− total number of iterations bounded by Fox and Glynn
− the bound is linear in the size of q·t (q uniformisation rate)



69

Summing up…

• Exponential distributions

• Continuous-time Markov chains (CTMCs)
− definition, paths, probability measure, …

• Properties of CTMCs: the logic CSL
− syntax, semantics, equivalences, …

• CSL model checking
− algorithm, examples, …

• Costs and rewards


	Probabilistic Model Checking
	Overview
	Exponential distribution	
	Exponential distribution - Examples
	Exponential distribution
	Exponential distribution - Memoryless
	Exponential distribution - Properties
	Overview
	Continuous-time Markov chains
	Continuous-time Markov chains
	Continuous-time Markov chains
	Embedded DTMC
	Continuous-time Markov chains
	Simple CTMC example
	Simple CTMC example
	Paths of a CTMC
	Probability space
	Probability space
	Probability space
	Probability space - Example
	Transient and steady-state behaviour
	Computing transient probabilities
	Uniformisation
	Uniformisation
	Uniformisation
	Uniformisation
	Overview
	CSL
	CSL syntax
	CSL semantics for CTMCs
	CSL semantics for CTMCs
	CSL derived operators
	More on CSL
	Derivation of P~p [ G φ ]
	Quantitative properties
	CSL example - Workstation cluster
	CSL example - Workstation cluster
	Overview
	CSL model checking for CTMCs
	CSL model checking for CTMCs
	Untimed properties
	Untimed properties
	Model checking - Time-bounded until
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking - P~p[φ1 U[0,t] φ2]
	Model checking – P~p[φ1 U[0,t] φ2]
	P~p[φ1 U[0,t] φ2] - Example
	P~p[φ1 U[0,t] φ2] - Example
	Model checking - P~p[φ1 U[t,t’] φ2]
	Model checking - P~p[φ1 U[t,t’] φ2]
	Model checking - P~p[φ1 U[t,∞) φ2]
	Model checking - P~p[φ1 U[t,∞) φ2]
	Model Checking - S~p[ φ ]
	Model Checking - S~p[ φ ]
	Model Checking - S~p[ φ ]
	Model Checking - S~p[ φ ]
	S~p[ φ ] - Example
	S~p[ φ ] - Example
	Overview
	Costs and rewards
	Reward structures - Example
	CSL and rewards
	Types of reward formulas
	Reward formula semantics
	Reward formula semantics
	Model checking reward formulas
	Model checking complexity
	Summing up…

