
Probabilistic Model CheckingProbabilistic Model Checking

Part 7 Part 7 -- Probabilistic Timed AutomataProbabilistic Timed Automata

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of University of OxfordOxford

2

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

3

Real-world protocol examples

• Protocols with probability, real-time and nondeterminism

• Randomised back-off schemes

− Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time

− Bluetooth, device discovery phase

• Random choice of a timing delay

− Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses

− IPv4 dynamic configuration (link-local addressing)

• Random choice of a destination

− Crowds anonymity, gossip-based routing

4

Time, clocks and clock valuations

• Dense time domain: non-negative reals ℝ≥0

• Finite set of clocks x ∈ X

− take values from time domain ℝ≥0, abbreviate to ℝ

− increase at the same rate as real time

• Clock valuation v ∈ ℝX

− v(x) value of clock x

− v+t is time increment for v with t: (v+t)(x) = v(x)+t ∀x ∈ X

− v[Y:=0] clock reset of all clocks in Y ⊆ X

v[Y:=0](x)=0 if x ∈ Y

v[Y:=0](x)=v(x) otherwise

5

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted zones(X):

ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∧ ζ

where x,y ∈ X, c,d ∈ ℕ

− derived logical connectives: ζ1∨ζ2 = ¬(¬ζ1∧¬ζ2), ζ1∨ζ2 →…

− get strict inequalities through negation x>5 = ¬(x≤5)…

• Closed: do not feature negation (no strict inequalities)

• Diagonal-free: do not feature x+c≤y+d (no comparisons
between clocks)

6

Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written v ⊲ ζ if

− ζ resolves to true after substituting each clock x∈X with v(x)

• Semantics of a zone is the set of clock valuations which
satisfy the zone (subset of ℝN if N clocks)

− more than one zone may have the same semantics:

(x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)

• Consider only canonical zones

− zones for which the constraints are as ‘tight’ as possible

− O(|X|3) algorithm to compute (unique) canonical zone [Dil89]

− allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations

7

c-equivalence and c-closure

• Clock valuations v and v’ are c-equivalent if for any x,y∈X

− either v(x) = v’(x), or v(x) > c and v’(x) > c

− either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c

• The c-closure of the zone ζ, denoted close(ζ,c), equals

− the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’,

there exists v ∈ ζ and v and v’ are c-equivalent

− c-closure ignores all constrains which are greater than c

− for a given c, there are only a finite number of c-closed zones

8

Operations on zones – Set theoretic

• Union of two zones: ζ1∪ζ2

(0,0) x

y

c

c (0,0) x

y

c

c

ζ1∪ζ2

ζ1

ζ2

9

Operations on zones – Set theoretic

• Intersection of two zones: ζ1∩ζ2

(0,0) x

y

c

c (0,0) x

y

c

c

ζ1∩ζ2

ζ1

ζ2

10

Operations on zones – Set theoretic

• Difference of two zones: ζ1\ζ2

(0,0) x

y

ζ1

ζ2

c

c (0,0) x

y

c

c

ζ1\ζ2

11

Operations on zones – clock resets

• ζ[X:=0] = { v[X:=0] | v⊲ζ }

− clock valuations obtained from ζ by resetting the clocks in X

• [X:=0]ζ= { v | v[X:=0] ⊲ζ }

− clock valuations which are in ζ if the clocks in X are reset

(0,0) x

y

ζ

[y:=0]ζ

ζ [y:=0]

12

Operations on zones: c-closure

• c-closure close(ζ,c)

− ignores all constrains which are greater than c

(0,0) x

y
ζ

c

c

close(ζ,c)

13

Operations on zones: Projection

• Forwards diagonal projection

• ր ζ = { v | ∃t≥0 . (v-t)⊲ζ }

− contains the clock valuations that can be
reached from ζ by letting time pass

(0,0) x

y

c

c

ζ

x

y

c

c

ր ζ

14

Operations on zones: Projection

• Backwards diagonal projection

• ւ ζ = { v | ∃t≥0 . (v+t)⊲ζ }

− contains the clock valuations that, by letting time pass, reach
a clock valuation in ζ

(0,0)(0,0) x

y

ζ

x

y

ւ ζ

15

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

16

Probabilistic timed automata - Syntax

• PTA = (Loc, linit, X, ∑, inv, prob, L)

− Loc finite set of locations

− linit ∈ Loc the initial location

− X finite set of clocks

− ∑ finite set of events

− inv : Loc → zones(X) invariant condition

− prob ⊆ Loc×zones(X)×dist(Loc×2X) probabilistic edge relation

− L : Loc → AP labelling function

17

Probabilistic timed automata - Example

• Models a simple probabilistic communication protocol

− starts in location di; after between 1 and 2 time units, the
protocol attempts to send the data:

• with probability 0.9 data is sent correctly, move to location sr

• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to resend

• correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset event

di

0.9

0.1 0.05

x≤2

si

x≤3

sr

true

0.95
x≥2

x≥1

x:=0
x:=0

x:=0

send
retry

18

Probabilistic timed automata - Edges

• Probabilistic edge relation

− prob ⊆ Loc×zones(X)×∑×dist(Loc×2X)

• Probabilistic edge (l,g,σ,p) ∈ prob

− l is the source location

− g is the guard

− σ is the event

− p target distribution

• Edge (l,g,σ,p,l’,X) ⊆ Loc×zones(X)×∑×dist(Loc×2X)×Loc×2X

− (l,g,σ,p) is a probabilistic edge and p(l’,X)>0

− l is the source location, g is the guard, σ is the event

− l’ is target location

− X is the set of clocks to be reset

19

Probabilistic timed automata - Behaviour

• State of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

• Start in the initial location with all clocks initialized to zero

− let 0 denote the clock valuation where all clocks have value 0

• For any state (l,v) there is non-deterministic choice
between making a discrete transition and letting time pass

− discrete transition (l,g,σ,p) enabled if g⊲ζ and probability of
moving to location l’ and resetting the clocks X equals p(l’,X)

− time transition available only if invariant inv(l) is continuously
satisfied while time elapses

20

Probabilistic timed automata - Example

di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2x≥1

x:=0x:=0

x:=0

send
retry

(di,x=0)

1.1

(di,x=1.1)

send
0.10.9

(sr,x=0) (si,x=0)

2.7

(si,x=2.7)

retry
0.050.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)

⋮

⋮ ⋮

21

Probabilistic timed automata - Semantics

Infinite Markov decision process MPTA = (SPTA,sinit,StepsStepsStepsSteps,LPTA)

• SPTA ⊆ Loc × ℝX where (l,v) ∈ SPTA if and only if v⊲inv(l)

• sinit=(linit,0)

• StepsStepsStepsSteps: SPTA → 2(∑∪ℝ)×Dist(S) where ((l,v),a,µ) ∈ StepsStepsStepsSteps if and only

− time transition a=t≥0, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t

− discrete transition a=σ, there exists (l,g,σ,p) ∈ prob such that

(1) v⊲g

(2) for any (l’,v’) ∈ SPTA:

• LPTA(l,v)=L(l)

summation as multiple resets may give same clock
valuation (e.g. resetting a clock that equals 0)

∑
==∧⊆

=
'v]0:Y[vXY

)Y,'l(p)'v,'l(µ

actions of MPTA are the events of PTA
and non-negative reals (∑∪ℝ≥0)

22

Time divergence

• Restrict to time divergent behaviour

− a common restriction imposed in real-time systems

− unrealisable behaviour (i.e. corresponding to time not

advancing beyond a time bound) is disregarded during

− also called non-zeno behaviour

• A path of MPTA of the form: ω=s0(a1,µ1) s0(a1,µ1) s2(a2,µ2)...

− where ai ∈ ∑∪ℝ≥0

− duration up until the (n+1)th state

Dω(n+1) = ∑ {| ai | 1≤i≤n ∧ ai ∈ ℝ≥0 |}

• A path ω is time divergent if for any t∈ℝ≥0:

− there exists j ∈ ℕ such that Dω(j)>t

23

Time divergence

• An adversary of MPTA is divergent if for each state s ∈ SPTA:

− the probability of divergent paths under A is 1

− i.e PrA
s{ ω ∈ PathA(s) | ω is divergent } =1

• Probabilistic divergence motivation by following example

− any adversary has a non-divergent path:

• remain in linit and do not let 1 time unit elapse

− chance of such behaviour is 0

linit

0.5

x≤1

l1
true

x≤1

0.5

Strong notion - all
paths divergent
would mean NO

divergent adversaries
for this example

24

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

25

PTCTL - Syntax

• Z – set of formula clocks

− φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [φ U φ]

− where a an atomic proposition, ζ ∈ zones(X∪Z), z ∈ Z and
p ∈ [0,1], ~ ∈ {<,>,≤,≥}

− derived from PCTL [BdA95] and TCTL [AD94]

φ U φ is true with probability ~p

“freeze quantifier”“zone over X∪Z”

26

PTCTL - Examples

• z . P>0.99 [packet2unsent U packet1delivered ∧ (z<5)]

− with probability greater than 0.99, the system delivers packet
1 within 5 time units and does not try to send packet 2 in the
meantime

• z . P>0.95[(x≤3) U (z=8)]

− with probability at least 0.95, the system clock x does not
exceed 3 before 8 time units elapse

• z . P≤0.1[G (failure ∨ (z≤60))]

− the system fails after the first 60 time units have elapsed with
probability at most 0.01

27

PTCTL - Semantics

• Let (l,v) ∈ SPTA and ℇ ∈ ℝZ be a formula clock valuation

− (l,v),ℇ ⊨ a ⇔ a ∈ L(l)

− (l,v),ℇ ⊨ ζ ⇔ v,ℇ ⊲ ζ

− (l,v),ℇ ⊨ z.φ ⇔ (l,v),ℇ[z:=0] ⊨ φ

− (l,v),ℇ ⊨ φ1 ∧ φ2 ⇔ (l,v),ℇ ⊨ φ1 and (l,v),ℇ ⊨ φ2

− (l,v),ℇ ⊨ ¬φ ⇔ (l,v),ℇ ⊨ φ is false

− (l,v),ℇ ⊨ P~p[ψ] ⇔ PrA
(l,v){ ω∈PathA(l,v) | ω,ℇ⊨ψ } ~ p for all A

after resetting z,
φ is satisfied

combined clock valuation of v and ℇ
satisifies ζ

the probability of a path satisfying ψ meets ~p
for all divergent adversaries

28

PTCTL - Semantics of until

• ω,ℇ ⊨ φ1 U φ2 if and only if

there exists i ∈ ℕ and t ∈ Dω(i+1)-Dω(i) such that

− ω(i)+t,ℇ+(Dω(i)+t) ⊨ φ2

− ∀ t’≤t . ω(i)+t’,ℇ+(Dω(i)+t’) ⊨ φ1 ∨ φ2

− ∀ j<i . ∀ t’≤ Dω(j+1)-Dω(j) . ω(j)+t’,ℇ+(Dω(j)+t’) ⊨ φ1 ∨ φ2

• Condition “φ1 ∨ φ2” different from PCTL and CSL

− usually φ2 becomes true and φ1 is true until this point

− difference due to the density of the time domain

− to allow for open intervals use disjunction φ1 ∨ φ2

− for example consider x≤5 U x>5 and x<5 U x≥5

29

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

30

The region graph

• Region graph construction for PTAs [KNSS02]

− adapt the region graph construction for TAs [ACD93]

− construction dependent on PTCTL formula under study

• For a PTA and PTCTL formula φ

− construct a time-abstract, finite-state MDP R(φ)

− translate PTCTL formula φ to PCTL (denoted ΦΦΦΦ)

− φ is preserved via region quotient

− φ holds in a state of MPTA if and only if ΦΦΦΦ holds in the
corresponding state of R(φ)

− model check R(φ) using standard methods for MDPs

31

The region graph - Clock equivalence

• Construction of region graph based on clock equivalence

− let c be largest constant appearing in PTA or PTCTL formula

− let ⌊t⌋ denotes the integral part of t

− t and t’ agree on their integral parts if and only if

(1) ⌊t⌋ = ⌊t’⌋

(2) both t and t’ are integers or neither is an integer

• The clock valuations v and v’ are clock equivalent (v ≅ v’) if:

− for all x ∈ X one of the following conditions hold:

(a) v(x) and v’(x) agree on their integral parts

(b) v(x)>c and v’(x)>c

− for all x,y ∈ X one of the following conditions hold:

(a) v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts

(b) v(x) − v(x’) > c and v’(x) − v’(x’) > c

32

Region graph - Clock equivalence

(0,0) x

y

x=y ∧ 0<x<1

x=1 ∧ y=2

y=1 ∧ 2<x<3

x<y ∧ 1<x<2 ∧ 1<y<2

33

Region graph - Clock equivalence

• Fundamental result : if v ≅ v’, then v ⊲ ζ ⇔ v’ ⊲ ζ

− follows α ⊲ ζ is well defined (where α equivalence class)

• β is the successor class of α, written succ(α)= β, if

− for each v∈α, there exists t>0 such that (v+t,ℇ+t) ∈ β

and (v+t’,ℇ+t’) ∈ α∪β for all t’< t

(0,0) x

y

34

The region graph

• Region graph MDP (SR,(linit,0000),StepsStepsStepsStepsR,LR)

• (l,α) ∈ SR if l is a location and α equivalence class of clock
valuations over X ∪ Z such that α ⊲ inv(l)

• probabilistic transition function StepsStepsStepsStepsR: SR × 2({succ}∪∑)×Dist(SR)

− (succ,µ) ∈ StepsStepsStepsStepsR(l,α) ⇔ succ(α) ⊲ inv(l) and µ(l,succ(α)) = 1

− (σ,µ) ∈ StepsStepsStepsStepsR(l,α) ⇔ ∃ (l,g,σ,p) ∈ prob such that α ⊲ g and
for any (l’,β) ∈ SR:

• LR(l,α)=L(l)

∑
==∧⊆

=
β]0:Y[αXY

)Y,'l(p)β,'l(µ

action set {succ}∪∑ (succ corresponds to time passage)

summation as multiple resets may give
same clock equivalence class

35

Region graph -Example

• PTCTL formula: z.P~p[true U (sr<4)]

(di,x=z=0) (di,0<x=z<1)
succ

(di,x=z=1)
succ succ

(di,1<x=z<2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2
x≥1

x:=0x:=0

x:=0

send
retry

36

Region graph - Model checking

• Problem

− prohibitive complexity (exponential in number of clocks and
size of largest constant)

− not implemented (even for timed automata)

• Improved approach based on zones instead of regions

− symbolic states (l,ζ) where ζ is a zone

− zones are unions of regions

• Two approaches based on:

− forwards reachability [KNSS02]

− backwards reachability [KNSW07]

37

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

38

Symbolic model checking

• Conventional symbolic model checking relies on computing

− postpostpostpost(S’) the states that can be reached from a state in S’ in a
single step

− prepreprepre(S’) the states that can reach S’ in a single step

• Extend these operators to include time passage

− dpostdpostdpostdpost[e](S’) the states that can be reached from a state in S’
by traversing the edge e

− tposttposttposttpost(S’) the states that can be reached from a state in S’ by
letting time elapse

− dpredpredpredpre[e](S’) the states that can reach S’ by traversing the edge e

− tpretpretpretpre(S’) the states that can reach S’ by letting time elapse

39

Symbolic model checking

• Symbolic states (l, ζ) where

− l ∈ Loc (location)

− ζ is a zone over PTA clocks and formula clocks

− generally fewer zones than regions

• tposttposttposttpost(l,ζ) = (l, րζ∧inv(l))

− րζ can be reached from ζ by letting time pass

− րζ∧inv(l) must satisfy the invariant of the location l

• tpretpretpretpre(l,ζ) = (l, ւζ∧inv(l))

− ւ ζ can reach ζ by letting time pass

− ւ ζ∧ inv(l) must satisfy the invariant of the location l

40

Symbolic model checking

• Edge e= (l,g,σ,p,l’,X)

− l is the source

− g is the guard

− σ is the event

− l’ is the target

− X is the clock reset

• dpostdpostdpostdpost[e](l,ζ) = (l’, (ζ∧g)[X:=0])

− ζ∧g satisfy the guard of the edge

− (ζ∧g)[X:=0] reset the clocks X

• dpredpredpredpre[e](l’,ζ’) = (l, [X:=0]ζ’ ∧ (g ∧ inv(l)))

− [X:=0]ζ’ the clocks X were reset

− [X:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

41

Symbolic model checking - Forwards

• Based on the operation postpostpostpost[e](l,ζ) = tposttposttposttpost(dpostdpostdpostdpost[e](l,ζ))

− (l’,v’) ∈ postpostpostpost[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after
traversing edge e and letting time pass one can reach (l’,v’)

• Forwards algorithm (part 1)

− start with initial state SF={tposttposttposttpost(linit,0)} then iterate

for each symbolic state (l,ζ) ∈ SF and edge e

add postpostpostpost[e](l,ζ) to SF

− until set of symbolic states SF does not change

• To ensure termination need to take c-closure of each zone
encountered (c largest constant in the PTA)

42

Symbolic model checking - Forwards

• Forwards algorithm (part 2)

− construct finite state MDP (SF,(linit,0),StepsStepsStepsStepsF,LF)

− states SF (returned from first part of the algorithm)

− LF(l,ζ)=L(l) for all (l,ζ)∈ SF

− µ ∈ StepsStepsStepsStepsF(l,ζ) if and only if

there exists a probabilistic edge (l,g,σ,p) of PTA such that for
any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,σ,p) such that
applying post post post post to (l,ζ) leads to the symbolic state (l’,ζ’)

|})'ζ,'l()ζ,l([e])p(edges)X,'l,p,σ,g,l(|)X,'l(p{|)'ζ,'l(µ =∧∈=∑ postpostpostpost

43

Symbolic model checking - Forwards

• Only obtain upper bounds on maximum probabilities

− caused by when edges are combined

• Suppose postpostpostpost[e1](l,ζ)=(l1,ζ1) and postpostpostpost[e2](l,ζ)=(l2, ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of postpostpostpost

− there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be
reached by traversing the edge ei and letting time pass

• Problem

− we combine these transitions but are (l,v1) and (l,v2) the same?

− may not exist states in (l,ζ) for which both edges are enabled

44

Symbolic model checking - Forwards

• Maximum probability of reaching l3 is 0.5 in the PTA

− for the left branch need to take the first transition when x=1

− for the right branch need to take the first transition when x=0

• However, in the forwards reachability graph probability is 1

− can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)

45

Symbolic model checking - Forwards

• Main result [KNSS02]

− obtain time-abstract, finite-state MDP over zones

− bound on maximum reachability probabilities only

− can model check the MDP using standard methods

− loss of on-the fly, must construct MDP first

• Implementations

− KRONOS pre-processor into PRISM input language, outputs
time-abstract MDP [DKN02]

− Explicit, using Difference Bound Matrices (DBMs), to PRISM
input language [WK05]

− Symbolic, using Difference Decision Diagrams (DDDs), via
MTBDD-coded PTA syntax directly to PRISM engine [WK05]

46

Symbolic model checking - Backwards

• Based on prepreprepre as opposed to postpostpostpost

prepreprepre[e](l,ζ) = dpre[e]dpre[e]dpre[e]dpre[e](tpretpretpretpre(l,ζ))

• Suppose prepreprepre[e1](l1,ζ1’)=(l,ζ1) and prepreprepre[e2](l2,ζ2’)=(l,ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of prepreprepre

− for all (l,vi) ∈ (l,ζi), a state in (li,ζi’) can be reached by
traversing the edge ei and letting time pass

− therefore, for any (l,v) in the intersection (l,ζ1∩ζ2)

(li, ζi’) can be reached by traversing the edge ei and letting
time pass for both i=1 and i=2

• To preserve the probabilistic branching structure

− use both prepreprepre and intersection operations

− unlike the forwards approach results precise

47

Symbolic model checking - Backwards

• Backwards Algorithm for PTCTL model checking

− InputInputInputInput: PTA, PTCTL property φ

− OutputOutputOutputOutput: set of symbolic states Sat(φ)

− Sat(a) := { (l,inv(l)) | l ∈ Loc and a ∈ L(l) }

− Sat(ζ) := { (l,inv(l) ∧ ζ) | l ∈ Loc }

− Sat(¬φ) := { (l,inv(l) ∧ (∨(l, ζ) ∈ Sat(φ)¬ ζ) | l ∈ Loc }

− Sat(φ1∨φ2) := Sat(φ1) ∪ Sat(φ2)

− Sat(z.φ) := { (l,[z:=0]ζ) | (l,ζ) ∈ Sat(φ) }

− Sat(P~p[φ1Uφ2]) := ?

48

Symbolic model checking - Backwards

• Remains to compute the set of states Sat(P~p[φ1U φ2])

− sufficient to consider maximum or minimum probability

• Recall from the MDP lecture

− if ~∈{<,≤}, then s,ℇ ⊨ P~p[φ1Uφ2] ⇔ pmax(s,ℇ, φ1Uφ2)~p

− if ~∈{≥,>}, then s,ℇ ⊨ P~p[φ1Uφ2] ⇔ pmin(s,ℇ, φ1Uφ2)~p

where

pmax(s,ℇ, φ1 U φ2) = supA∈AdvPrA
s{ω∈PathA(s) | ω,ℇ╞ φ1 U φ2}

pmin(s,ℇ, φ1 U φ2) = infA∈AdvPrA
s{ω∈PathA(s) | ω,ℇ ╞ φ1 U φ2}

49

Backwards - Maximum probabilities

• Based on classical backwards exploration for TAs

− iteratively apply prepreprepre operations

• Qualitative case (probability bound 0 or 1)

− graph based analysis

− uses methods for finite state MDPs [dA97a, dAKN+00]

• Quantitative case (probability bound in interval (0,1))

− construct finite-state MDP during backwards exploration

− states: symbolic states generated during exploration

− transitions: induced by those of the PTA

− compute maximal probability for all states of the original PTA
through maximum reachability probabilities of the MDP

50

Backwards - Maximum probabilities

• Basic algorithm for P~p[φ1 U φ2]

− start with the set of symbolic states SB=Sat(φ2) then iterate

for each symbolic state (l,ζ) ∈ SB and edge e

add prepreprepre[e](l,ζ) to SB

until set of symbolic states SB does not change

• Slightly more complicated...

• Restrict to states in Sat(φ1)

• Retain the probabilistic branching structure

− keep track of which symbolic states are constructed through
which edges of the PTA and take conjunctions of relevant
symbolic states

− relevant symbolic states are those generated by traversing
edges taken from the same probabilistic edge

51

Backwards - Maximum probabilities

• Once the symbolic states SB have been found

• Construct MDP (SB,StepsStepsStepsStepsB,LB)

no initial state as we have traversed backwards

construction similar to forwards approach

• Find maximum probability of reaching Sat(φ2)

− that is compute pmax(sB, F aSat(φ2)) for all sB ∈ SB

where aSat(φ2) is an atomic proposition labelling only those
states in Sat(φ2)

• For any state (l,v) of the PTA and formula clock valuation ℇ:

pmax((l,v),ℇ,φ1 U φ2) = max {pmax(sB, F aSat(φ2)) | (l,v),ℇ∈sB∧sB ∈ SB}

52

add relevant edges to this symbolic statebackwards exploration: prepreprepre.continue backwards exploration: prepreprepre.
predecessors from the same probabilistic
transition: take conjunction of zones to

preserve probabilistic branching

start with set of target symbolic states

Backwards - Maximum probabilities

• Maximum probability of reaching l4

x≥yy≥x

½½

(l4,true)

(l3,x≥y)(l2,y≥x)

½½

(l1,y≥x) (l1,x≥y)(l1,y=x)

½ ½

l4
true

l3
true

l2
true

l1
true

backwards exploration: prepreprepre.

53

Backwards - Maximum probabilities

• z.P~p[true U sr∧z<4] maximum probability of sending the
message before 4 time units have passed

di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2x≥1

x:=0x:=0

x:=0

send
retry

(sr,z<4)

(si,2≤x≤3∧z<4)

(di,1≤x≤2∧z<4)

(si,2≤x≤3∧z<2)

(di,1≤x≤2∧z<3)

add edge after intersecting symbolic states (di,-) add edge after intersecting symbolic states (si,-)

0.9

0.9

0.1
0.05

0.95

0.95

construct MDP (may have subdistributions)for state (l,v) the probability is the maximum of
pmax((l,ζ), F atarget) for (l,ζ) such that (l,v)∈tpre(l,ζ)

backwards exploration: prepreprepre.start with target set (sr,z<4)backwards exploration: prepreprepre.backwards exploration: prepreprepre.
– no new symbolic states encountered

for (linit,0),0 given by pmax((di,1≤di≤2∧z<3), F (sr,z<4))= 0.995

maximum probability of reaching sr∧z<4 from the initial state
corresponds to taking discrete transitions as soon as enabled

54

Backwards - Minimum probabilities

• Problem: restriction to divergent adversaries

− minimum probability for until under divergent adversaries
does not equal minimum under all adversaries

• Example:

− the minimum probability of formula clock reaching z>1

− equals 1 under divergent adversaries

− equals 0 under all adversaries, e.g. consider any adversary
which lets time converge to a value < 1

• Maximum until probability under divergent adversaries
does equal maximum under all adversaries

− just delay time divergence until after satisfaction

55

Backwards - Minimum probabilities

• Similar problem occurs for timed automata and TCTL

• φ1 ∀U φ2 – all paths satisfy φ1 U φ2

− all divergent paths satisfy “true U z>1”

− there exist non-divergent paths not satisfying “true U z>1”

− cannot ignore time divergence when model checking

• φ1 ∃U φ2 – there exists a path satisfying φ1 U φ2

− there exists a path satisfying φ1 U φ2 if and only if there exists
a divergent path satisfying φ1 U φ2

− (use same path but let time diverge after φ2 is reached)

− can ignore time-divergence when model checking

56

Backwards - Minimum probabilities

• Solution for timed automata and TCTL

− consider simple case of AFφ (= true ∀U φ):

− find state satisfying the dual formula EG¬φ

− (there exists a path for which ¬φ holds at all times)

• Compute states satisfying EGφ as the greatest fixpoint of

H(X) = φ ∧ z.(X ∃U z>c)

− 0 iterations: all states

− 1 iteration: satisfy φ

− 2 iterations: can satisfy φ until c time units have passed, …

− k+1 iterations: can satisfy φ until k⋅c time units have passed

− ... always satisfy φ

c is any constant greater than 0

57

Backwards – Qualitative minimum probabilities

• Set of states satisfying ¬ P<1[G φ] is greatest fixpoint of

H(X) = φ ∧ z. ¬ P<1[X U (X ∨ z>c)]

− 0 iterations: all states

− 1 iteration: all states satisfying φ

− 2 iterations: all states for which the maximum probability of
satisfying φ until c time units have passed equals 1...

− k+1 iterations: all states for which the maximum probability
of satisfying φ until k⋅c time units have passed equals 1...

− ...all states for which the maximum probability of always
satisfying φ equals 1

maximum probability of satisfying X U (X ∨ z>c) equals 1

maximum probability of satisfying G φ equals 1 (is not less than 1)

58

Backwards – Quantitative minimum probabilities

• For formulae of the form F φ use the following result

pmin(s, F φ) = 1 - pmax(s, G ¬φ)

= 1- pmax(s, ¬φ U ¬ P<1[G ¬φ])

and the fact that we have already shown methods for

− computing maximum until probabilities

− the set of states satisfying ¬ P<1[G φ]

• Problem reduces to

− graph analysis (compute Sat(¬ P<1[G φ]))

− computation of maximum until probabilities

(compute pmax(s, ¬φ U ¬ P<1[G ¬φ]))

59

Backwards - Minimum probabilities

• For formulae of the form φ1 U φ2 instead use

pmin(s, φ1 U φ2) = 1 - pmax(s, ¬φ1 R ¬φ2)

= 1 - pmax(s, ¬φ2 U ¬ P<1[¬φ1 R ¬φ2])

− operator R (release) is the dual of U (until)

− φ1 U φ2 ≡ ¬ (¬φ1 R ¬φ2)

− Sat(¬ P<1[¬φ1R ¬φ2]) can be computed via a greatest fixpoint

− similar to the method for Sat(¬ P<1[G ¬φ])

• Problem reduces to

− graph analysis (compute Sat(¬ P<1[¬φ1 R ¬φ2]))

− computation of maximum until probabilities

(compute pmax(s, ¬φ2 U ¬ P<1[¬φ1 R ¬φ2]))

60

Backwards - Minimum probabilities

• z.P~p[F sr ∧ z<6] minimum probability of sending the
message before 6 time units have passed

− first step is to find the set of states which satisfy the formula

¬ P<1[G ¬(sr∧z<6)] = ¬ P<1[G si∨di∨(z≥6)]

− following method described this set is computed as

{(sr,z≥6), (si,x≤3∧z≥x+3), (di,x≤2∧z≥x+3)}

− now find maximum probability of reaching this set of states
while remaining in ¬(sr∧z<6)

− i.e. compute pmax(s, ¬φ U ¬ P<1[G ¬φ])

di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2
x≥1

x:=0x:=0

x:=0

send
retry

61

Backwards - Minimum probabilities

• find maximum probability of reaching

− (sr,z≥6), (si,x≤3∧z≥x+3), (di,x≤2∧z≥x+4)

− while remaining in ¬(sr∧z<6) di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2x≥1

x:=0x:=0

x:=0

send
retry

(si,x≤3∧z≥x+1), (sr,z≥4), (di,x≤2∧z≥x+2)

(di,1≤x≤2∧z≥3)

(si,2≤x≤3∧z≥3)

0.1 0.05

add probabilities to construct MDPstart with target set of statesbackwards exploration: prepreprepre.backwards exploration: prepreprepre.

(si,2≤x≤3)

(di,1≤x≤2)

backwards exploration: prepreprepre.no more symbolic states encountered

0.1 0.1

0.05

0.05

for state (l,v) the probability is the maximum of
pmax((l,ζ), F atarget) for (l,ζ) such that (l,v)∈tpre(l,ζ)

for (linit,0),0 given by pmax((di,1≤di≤2), F atarget)= 0.005

minimum probability of reaching sr∧z<6 from the initial state
corresponds to taking transitions as late as possible

0.95 0.9

62

Symbolic model checking - Backwards

• Main result [KNS01b, KNSW04]

− obtain time-abstract, finite-state MDP over zones

− full PTCTL is preserved via quotient

− conjunctions of zones to preserve probabilistic branching

− not on-the fly, must construct MDP first

• Experimental implementation

− Implemented in Java, using Difference Bound Matrices (DBMs)

− Explicit, into PRISM input language

• Problem: need to consider non-convex zones

− represented as unions of convex zones, i.e. lists of DBMs

− expensive operations

63

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

64

Model checking - Digital clocks

• Durations can only take integer durations

− time domain is ℕ as opposed to ℝ≥0

• Restricted to PTAs class of PTAs, zones must be:

− closed - do not feature strict inequalities

− diagonal-free - no comparisons between clocks (x+c≤y+d)

• Based on ε-digitisation [HMP92]

• Preserves a subset of properties

− no nested PTCTL properties

− zones appearing in formulae closed and diagonal free

• Semantics is an MDP with finite state space

− need only count up to cmax (max constant in PTA and formula)

− can employ model checking algorithms for PCTL against MDPs

65

Model checking - Digital clocks

di
0.9

0.1 0.05
x≤2

si
x≤3

sr
true

0.95 x≥2x≥1

x:=0x:=0

x:=0

send
retry

(di,x=z=0) (di,x=z=1) (di,x=z=2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

(si,x=1∧z=2)

(si,x=2∧z=3)

(sr,x=0∧z=3) (si,x=0∧z=3)

0.95 0.05

0.1
0.9

(sr,x=0∧z=2)

one clock tickInitial statediscrete transition of PTAone clock tickdiscrete transition of PTAone clock tickdiscrete transition of PTAone clock tick

66

Model checking - Digital clocks

• Main result for digital semantics [KNPS06]

− for closed diagonal free PTAs digital semantics preserves

minimum/maximum reachability probabilities

− only for initial state

− extends to formula of the form z.P~p[φ1 U φ2] if φ1 and φ2
contain only atomic propositions and closed diagonal-free
zones

− extends to any state where all clocks have integer values

• Restriction to closed, diagonal-free found not to be
important for many case studies

• Problem: inefficiency for some models, as large constants
give rise to very large state spaces

67

Digital clocks - Probabilistic reachability

• Probabilistic reachability:

− with probability at least 0.999, a data packet is correctly
delivered

• Probabilistic time-bounded reachability

− with probability 0.01 or less, a data packet is lost within 5
time units

• Probabilistic cost-bounded reachability

− with probability 0.75 or greater, a data packet is correctly
delivered with at most 4 retransmissions

• Invariance:

− with probability 0.875 or greater, the system never aborts

• Bounded response:

− with probability 0.99 or greater, a data packet will always be
delivered within 5 time units

68

Digital clocks - PTCTL not preserved

• Consider the PTCTL formula φ=z.P<1[true U (al1
∧ z≤1)]

− al1
atomic proposition only true in location l1

• Digital semantics:

− no state satisfies φ since for any state we have

ProbA(s,ℇ[z:=0], true U (al1
∧z≤1))=1for some adversary A

− hence P<1[true U φ] is trivially true in all states

linit

x≤3

l1
true

x≥3

x≤1

69

Digital clocks - PTCTL not preserved

• Consider the PTCTL formula φ=z.P<1[true U (al1
∧ z≤1)]

− al1
atomic proposition only true in location l1

• Dense time semantics:

− any state (linit,v) where v(x) ∈ (1,2) satisfies φ

more than one time unit must pass before we can reach l1

− hence P<1[true U φ] is not true in the initial state

linit

x≤3

l1
true

x≥3

x≤1

70

Overview

• Motivation

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• Properties of PTAs: The logic PTCTL

− syntax, semantics, examples

• PTCTL model checking

− the region graph

− forwards and backwards symbolic approaches

− digital clocks

• Costs and rewards

71

Costs and rewards

Add reward structure (ρ,ιιιι) to Probabilistic Timed Automata

• ρ : Loc →ℝ≥0 location reward function

− ρ(l) is the rate at which the reward is accumulated in location l

• ιιιι : ∑ →ℝ≥0 event reward function

− ιιιι(σ) is the reward associated with performing the event σ

• Generalisation of uniformly priced timed automata

• Special case reward is the elapsed time

− ρ(l)=1 for all locations l ∈ Loc

− ιιιι(σ)=0 for all events σ ∈ ∑

72

Expected reachability

• Expected reward of reaching set of target states

− digital clocks semantics preserves expected reachability
[KNPS06]

− can use finite-state MDP algorithm

− no approach based on zones (yet)

• Expected reachability properties:

− the maximum expected time until a data packet is delivered

− the minimum expected time until a packet collision occurs

− the minimum expected number of retransmissions before the
message is correctly delivered

− the minimum expected number of packets sent before failure

− the maximum expected number of lost messages within the
first 200 seconds

73

Summing up…

• Probabilistic timed automata (PTAs)

− discrete probability distributions only

− useful in modelling protocols with timing delays and
probability

− extension with continuous distributions exists, but model
checking only approximate

• Implementation

− digital clocks via model checking for MDPs

− forward/backward, experimental implementations only

− still no satisfactory combination of symbolic probabilistic and
real-time data structures

• More research needed…

− contribution to theory and practice

