Probabilistic Model Checking

Marta Kwiatkowska Gethin Norman Dave Parker

University of Oxford

Part 7 - Probabilistic Timed Automata

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

Real-world protocol examples

- Protocols with probability, real-time and nondeterminism
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth, device discovery phase
- Random choice of a timing delay
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Time, clocks and clock valuations

- Dense time domain: non-negative reals $\mathbb{R}_{\geq 0}$
- + Finite set of clocks $x \in X$
 - take values from time domain $\mathbb{R}_{\geq 0}$, abbreviate to \mathbb{R}
 - increase at the same rate as real time
- Clock valuation $v \in \mathbb{R}^{X}$
 - v(x) value of clock x
 - -v+t is time increment for v with t: $(v+t)(x) = v(x)+t \quad \forall x \in X$
 - v[Y:=0] clock reset of all clocks in $Y \subseteq X$

 $\begin{array}{ll} v[Y:=0](x)=0 & \mbox{if } x\in Y \\ v[Y:=0](x)=v(x) & \mbox{otherwise} \end{array}$

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted zones(X):

 $\zeta ::= x \leq d \ \mid c \leq x \ \mid x + c \leq y + d \ \mid \neg \zeta \ \mid \zeta \land \zeta$

where $x,y \in X$, $c,d \in \mathbb{N}$

- derived logical connectives: $\zeta_1 \lor \zeta_2 = \neg (\neg \zeta_1 \land \neg \zeta_2), \zeta_1 \lor \zeta_2 \rightarrow ...$
- get strict inequalities through negation $x > 5 = \neg(x \le 5)...$
- **Closed**: do not feature negation (no strict inequalities)
- Diagonal-free: do not feature x+c≤y+d (no comparisons between clocks)

Zones and clock valuations

- A clock valuation v satisfies a zone ζ , written v $\triangleright \zeta$ if
 - ζ resolves to true after substituting each clock x \in X with v(x)
- Semantics of a zone is the set of clock valuations which satisfy the zone (subset of \mathbb{R}^N if N clocks)

- more than one zone may have the same semantics:

 $(x{\le}2){\wedge}(y{\le}1){\wedge}(x{\le}y{+}2)$ and $(x{\le}2){\wedge}(y{\le}1){\wedge}(x{\le}y{+}3)$

Consider only canonical zones

- zones for which the constraints are as 'tight' as possible
- $O(|X|^3)$ algorithm to compute (unique) canonical zone [Dil89]
- allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any $x,y \in X$
 - either v(x) = v'(x), or v(x) > c and v'(x) > c
 - either v(x)-v(y) = v'(x)-v'(y) or v(x)-v(y) > c and v'(x)-v'(y) > c
- The c-closure of the zone ζ , denoted close(ζ ,c), equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constrains which are greater than c
 - for a given c, there are only a finite number of c-closed zones

Operations on zones – Set theoretic

• Union of two zones: $\zeta_1 \cup \zeta_2$

Operations on zones – Set theoretic

• Intersection of two zones: $\zeta_1 \cap \zeta_2$

Operations on zones – Set theoretic

• Difference of two zones: $\zeta_1 \setminus \zeta_2$

Operations on zones - clock resets

• $\zeta[X:=0] = \{ v[X:=0] | v \triangleright \zeta \}$

- clock valuations obtained from $\boldsymbol{\zeta}$ by resetting the clocks in X

• $[X:=0]\zeta = \{ v \mid v[X:=0] \triangleright \zeta \}$

- clock valuations which are in $\boldsymbol{\zeta}$ if the clocks in X are reset

Operations on zones: c-closure

- c-closure close(ζ,c)
 - ignores all constrains which are greater than c

Operations on zones: Projection

- Forwards diagonal projection
- $\bullet \ \ \land \zeta = \{ v \mid \exists t {\geq} 0 \ . \ (v{-}t) {\triangleright} \zeta \}$
 - contains the clock valuations that can be reached from ζ by letting time pass

Operations on zones: Projection

- Backwards diagonal projection
- $\bullet \ \checkmark \zeta = \{ v \mid \exists t {\geq} 0 \ . \ (v{+}t) {\triangleright} \zeta \}$
 - contains the clock valuations that, by letting time pass, reach a clock valuation in $\boldsymbol{\zeta}$

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

Probabilistic timed automata - Syntax

- PTA = (Loc, I_{init} , X, Σ , inv, prob, L)
 - Loc finite set of locations
 - $I_{init} \in Loc$ the initial location
 - X finite set of clocks
 - $-\Sigma$ finite set of events
 - inv : Loc \rightarrow zones(X) invariant condition
 - − prob ⊆ Loc×zones(X)×dist(Loc×2^x) probabilistic edge relation
 - L : Loc \rightarrow AP labelling function

Probabilistic timed automata – Example

- Models a simple probabilistic communication protocol
 - starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location sr
 - · with probability 0.1 data is lost, move to location si
 - in location si, after 2 to 3 time units, attempts to resend
 - · correctly sent with probability 0.95 and lost with probability 0.05

Probabilistic timed automata - Edges

- Probabilistic edge relation
 - − prob ⊆ Loc×zones(X)× Σ ×dist(Loc×2^x)
- Probabilistic edge $(I,g,\sigma,p) \in prob$
 - I is the source location
 - g is the guard
 - $-\sigma$ is the event
 - p target distribution
- Edge (I,g, σ ,p,I',X) \subseteq Loc \times zones(X) $\times \Sigma \times$ dist(Loc $\times 2^{X}$) \times Loc $\times 2^{X}$
 - (l,g, σ ,p) is a probabilistic edge and p(l',X)>0
 - I is the source location, g is the guard, σ is the event
 - l' is target location
 - X is the set of clocks to be reset

Probabilistic timed automata - Behaviour

- State of a PTA is a pair (I,v) $\in Loc \times \mathbb{R}^{X}$ such that $v \triangleright inv(I)$
- Start in the initial location with all clocks initialized to zero
 let 0 denote the clock valuation where all clocks have value 0
- For any state (I,v) there is non-deterministic choice between making a discrete transition and letting time pass
 - discrete transition (l,g, σ ,p) enabled if g> ζ and probability of moving to location l' and resetting the clocks X equals p(l',X)
 - time transition available only if invariant inv(l) is continuously satisfied while time elapses

Probabilistic timed automata – Example

Probabilistic timed automata - Semantics

Infinite Markov decision process $M_{PTA} = (S_{PTA}, s_{init}, Steps, L_{PTA})$

- S_{PTA} ⊆ Loc × ℝ^X where (I,v) ∈ S_{PTA} if and only if v ▷ inv(I)
- $s_{init} = (I_{init}, \underline{0})$ actions of M_{PTA} are the events of PTA and non-negative reals $(\Sigma \cup \mathbb{R}_{\geq 0})$
- Steps: $S_{PTA} \rightarrow 2^{(\Sigma \cup \mathbb{R}) \times Dist(S)}$ where $((I,v),a,\mu) \in$ Steps if and only
 - time transition $a=t\ge 0$, $\mu(I,v+t)=1$ and $v+t' \triangleright inv(I)$ for all $t'\le t$
 - discrete transition $a=\sigma$, there exists $(I,g,\sigma,p) \in \text{prob such that}$ (1) $v \triangleright q$

(2) for any
$$(I',v') \in S_{PTA}$$
: $\mu(I',v') = \sum_{Y \subseteq X \land v[Y:=0]=v'} p(I',Y)$

• $L_{PTA}(I,v) = L(I)$

summation as multiple resets may give same clock valuation (e.g. resetting a clock that equals 0)

Time divergence

- Restrict to time divergent behaviour
 - a common restriction imposed in real-time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded during
 - also called non-zeno behaviour
- A path of M_{PTA} of the form: $\omega = s_0(a_1, \mu_1) s_0(a_1, \mu_1) s_2(a_2, \mu_2)...$
 - where $\boldsymbol{a}_i \in \boldsymbol{\Sigma} \cup \mathbb{R} {\geq} \boldsymbol{0}$
 - duration up until the (n+1)th state

 $\mathsf{D}_{\omega}(\mathsf{n}+1) = \Sigma \{ \mid \mathsf{a}_{\mathsf{i}} \mid 1 \leq \mathsf{i} \leq \mathsf{n} \land \mathsf{a}_{\mathsf{i}} \in \mathbb{R}_{\geq 0} \mid \}$

• A path ω is time divergent if for any $t \in \mathbb{R}_{\geq 0}$: - there exists $j \in \mathbb{N}$ such that $D_{\omega}(j) > t$

Time divergence

- An adversary of M_{PTA} is divergent if for each state $s \in S_{PTA}$:
 - the probability of divergent paths under A is 1
 - i.e Pr^{A}_{s} { $\omega \in Path^{A}(s) \mid \omega \text{ is divergent } }=1$
- Probabilistic divergence motivation by following example
 - any adversary has a non-divergent path:
 - $\cdot\,$ remain in I_{init} and do not let 1 time unit elapse
 - chance of such behaviour is 0

Strong notion – all paths divergent would mean NO divergent adversaries for this example

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

- where a an atomic proposition, $\zeta\in \text{zones}(X\cup Z),\,z\in Z$ and $p\in[0,1],\,\textbf{\sim}\in\{<,>,\leq,\geq\}$

- derived from PCTL [BdA95] and TCTL [AD94]

PTCTL – Examples

- z . $P_{>0.99}$ [packet2unsent U packet1delivered \land (z<5)]
 - with probability greater than 0.99, the system delivers packet
 1 within 5 time units and does not try to send packet 2 in the meantime
- z . $P_{>0.95}[(x \le 3) \cup (z=8)]$
 - with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse
- + **z** . $P_{\leq 0.1}$ [G (failure \vee (z \leq 60))]
 - the system fails after the first 60 time units have elapsed with probability at most 0.01

PTCTL – Semantics

- Let $(I,v) \in S_{PTA}$ and $\mathcal{E} \in \mathbb{R}^{Z}$ be a formula clock valuation

PTCTL – Semantics of until

• $\omega, \mathcal{E} \models \varphi_1 \cup \varphi_2$ if and only if there exists $i \in \mathbb{N}$ and $t \in D_{\omega}(i+1)-D_{\omega}(i)$ such that $-\omega(i)+t, \mathcal{E}+(D_{\omega}(i)+t) \models \varphi_2$ $-\forall t' \le t \cdot \omega(i)+t', \mathcal{E}+(D_{\omega}(i)+t') \models \varphi_1 \lor \varphi_2$ $-\forall j < i \cdot \forall t' \le D_{\omega}(j+1)-D_{\omega}(j) \cdot \omega(j)+t', \mathcal{E}+(D_{\omega}(j)+t') \models \varphi_1 \lor \varphi_2$

- + Condition " $\varphi_1 \lor \varphi_2$ " different from PCTL and CSL
 - usually φ_2 becomes true and φ_1 is true until this point
 - difference due to the density of the time domain
 - to allow for open intervals use disjunction $\varphi_1 \vee \varphi_2$
 - for example consider $x{\le}5$ U $x{>}5$ and $x{<}5$ U $x{\ge}5$

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

The region graph

- Region graph construction for PTAs [KNSS02]
 - adapt the region graph construction for TAs [ACD93]
 - construction dependent on PTCTL formula under study
- + For a PTA and PTCTL formula φ
 - construct a time-abstract, finite-state MDP $R(\phi)$
 - translate PTCTL formula ϕ to PCTL (denoted ϕ)
 - $-\ \varphi$ is preserved via region quotient
 - φ holds in a state of M_{PTA} if and only if Φ holds in the corresponding state of $R(\varphi)$
 - model check $R(\varphi)$ using standard methods for MDPs

The region graph – Clock equivalence

- Construction of region graph based on clock equivalence
 - let c be largest constant appearing in PTA or PTCTL formula
 - let $\lfloor t \rfloor$ denotes the integral part of t
 - t and t' agree on their integral parts if and only if
 - (1) $\lfloor t \rfloor = \lfloor t' \rfloor$
 - (2) both t and t' are integers or neither is an integer
- The clock valuations v and v' are clock equivalent (v \cong v') if:
 - for all $x \in X$ one of the following conditions hold:
 - (a) v(x) and v'(x) agree on their integral parts
 - (b) v(x) > c and v'(x) > c
 - for all $x,y \in X$ one of the following conditions hold: (a) v(x) - v(x') and v'(x) - v'(x') agree on their integral parts (b) v(x) - v(x') > c and v'(x) - v'(x') > c

Region graph – Clock equivalence

Region graph – Clock equivalence

- Fundamental result : if $v \cong v'$, then $v \triangleright \zeta \Leftrightarrow v' \triangleright \zeta$
 - follows $\alpha \triangleright \zeta$ is well defined (where α equivalence class)

- β is the successor class of α , written succ(α) = β , if
 - for each $v \in \alpha$, there exists t>0 such that $(v+t, E+t) \in \beta$ and $(v+t', E+t') \in \alpha \cup \beta$ for all t'< t

The region graph

- Region graph MDP (S_R,(I_{init},0),Steps_R,L_R)
- $(I, \alpha) \in S_R$ if I is a location and α equivalence class of clock valuations over $X \cup Z$ such that $\alpha \triangleright inv(I)$

action set {succ} $\cup \Sigma$ (succ corresponds to time passage)

- probabilistic transition function $Steps_R: S_R \times 2^{(\{succ\} \cup \Sigma) \times Dist(S_R)}$
 - $(succ, \mu) \in \textbf{Steps}_{R}(I, \alpha) \Leftrightarrow succ(\alpha) \triangleright inv(I) \text{ and } \mu(I, succ(\alpha)) = 1$
 - $\begin{array}{l} (\sigma, \mu) \in \textbf{Steps}_{R}(I, \alpha) \Leftrightarrow \exists \ (I, g, \sigma, p) \in \text{prob such that } \alpha \triangleright g \text{ and} \\ \text{for any } (I', \beta) \in S_{R:} \\ \mu(I', \beta) = \sum p(I', Y) \end{array}$

$$(I,\alpha)=L(I)$$

summation as multiple resets may give same clock equivalence class

 $Y \subset X \land \alpha[Y:=0]=\beta$

Region graph – Example

PTCTL formula: z.P_{~p}[true U (sr<4)]

Region graph – Model checking

Problem

- prohibitive complexity (exponential in number of clocks and size of largest constant)
- not implemented (even for timed automata)
- Improved approach based on zones instead of regions
 - symbolic states (I, ζ) where ζ is a zone
 - zones are unions of regions
- Two approaches based on:
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

Symbolic model checking

- Conventional symbolic model checking relies on computing
 - post(S') the states that can be reached from a state in S' in a single step
 - pre(S') the states that can reach S' in a single step
- Extend these operators to include time passage
 - dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
 - tpost(S') the states that can be reached from a state in S' by letting time elapse
 - dpre[e](S') the states that can reach S' by traversing the edge e
 - tpre(S') the states that can reach S' by letting time elapse

Symbolic model checking

- Symbolic states (I, ζ) where
 - $I \in Loc$ (location)
 - $\boldsymbol{\zeta}$ is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions
- tpost(I, ζ) = (I, $\land \zeta \land inv(I)$)
 - $\checkmark \zeta$ can be reached from ζ by letting time pass
 - ${\nearrow}\zeta{\wedge}inv(I)$ must satisfy the invariant of the location I
- tpre(I, ζ) = (I, $\checkmark \zeta \land inv(I)$)
 - $\checkmark \zeta$ can reach ζ by letting time pass
 - $\checkmark \zeta \wedge$ inv(l) must satisfy the invariant of the location l

Symbolic model checking

• Edge $e = (I,g,\sigma,p,I',X)$

- I is the source
- g is the guard
- $-\sigma$ is the event
- l' is the target
- X is the clock reset
- dpost[e](I, ζ) = (I', ($\zeta \land g$)[X:=0])
 - $\zeta \wedge g$ satisfy the guard of the edge
 - $(\zeta \land g)[X:=0]$ reset the clocks X
- dpre[e](l', ζ ') = (l, [X:=0] ζ ' \land (g \land inv(l)))
 - $[X:=0]\zeta'$ the clocks X were reset
 - $[X:=0]\zeta' \land (g \land inv(I))$ satisfied guard and invariant of I

- Based on the operation $post[e](I,\zeta) = tpost(dpost[e](I,\zeta))$
 - $(l',v') \in post[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')

• Forwards algorithm (part 1)

- start with initial state $S_F = \{tpost(|_{init}, \underline{0})\}$ then iterate for each symbolic state $(I, \zeta) \in S_F$ and edge e add post[e](I, \zeta) to S_F
- until set of symbolic states S_F does not change
- To ensure termination need to take c-closure of each zone encountered (c largest constant in the PTA)

- Forwards algorithm (part 2)
 - construct finite state MDP $(S_F, (I_{init}, \underline{0}), Steps_F, L_F)$
 - states S_F (returned from first part of the algorithm)
 - $L_F(I,\zeta)$ =L(I) for all (I, ζ) \in S_F
 - $\mu \in Steps_F(I, \zeta)$ if and only if there exists a probabilistic edge (I,g, σ ,p) of PTA such that for any (I', ζ ') $\in Z$:

 $\mu(l',\zeta') = \sum \left\{ \left| p(l',X) \right| (l,g,\sigma,p,l',X) \in edges(p) \land post[e](l,\zeta) = (l',\zeta') \left| \right\} \right\}$

summation over all the edges of (I,g,σ,p) such that applying **post** to (I,ζ) leads to the symbolic state (I',ζ')

- Only obtain upper bounds on maximum probabilities
 - caused by when edges are combined
- Suppose $post[e_1](I,\zeta)=(I_1,\zeta_1)$ and $post[e_2](I,\zeta)=(I_2,\zeta_2)$
 - where e_1 and e_2 from the same probabilistic edge
- By definition of post
 - there exists $(I,v_i) \in (I,\zeta)$ such that a state in (I_i, ζ_i) can be reached by traversing the edge e_i and letting time pass
- Problem
 - we combine these transitions but are (I,v_1) and (I,v_2) the same?
 - may not exist states in (I, ζ) for which both edges are enabled

- Maximum probability of reaching I_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when x=1
 - for the right branch need to take the first transition when x=0
- · However, in the forwards reachability graph probability is 1

- can reach I_3 via either branch from ($I_0, x=y$)

- Main result [KNSS02]
 - obtain time-abstract, finite-state MDP over zones
 - bound on maximum reachability probabilities only
 - can model check the MDP using standard methods
 - loss of on-the fly, must construct MDP first

Implementations

- KRONOS pre-processor into PRISM input language, outputs time-abstract MDP [DKN02]
- Explicit, using Difference Bound Matrices (DBMs), to PRISM input language [WK05]
- Symbolic, using Difference Decision Diagrams (DDDs), via MTBDD-coded PTA syntax directly to PRISM engine [WK05]

Symbolic model checking – Backwards

Based on pre as opposed to post

 $pre[e](I,\zeta) = dpre[e](tpre(I,\zeta))$

- Suppose $pre[e_1](I_1, \zeta_1') = (I, \zeta_1)$ and $pre[e_2](I_2, \zeta_2') = (I, \zeta_2)$
 - where e_1 and e_2 from the same probabilistic edge
- By definition of pre
 - for all $(I,v_i) \in (I,\zeta_i)$, a state in (I_i,ζ_i) can be reached by traversing the edge e_i and letting time pass
 - therefore, for any (I,v) in the intersection (I, $\zeta_1 \cap \zeta_2$)
 - (I_i, ζ_i) can be reached by traversing the edge e_i and letting time pass for both i=1 and i=2
- To preserve the probabilistic branching structure
 - use both **pre** and **intersection** operations
 - unlike the forwards approach results precise

Symbolic model checking – Backwards

- Backwards Algorithm for PTCTL model checking
 - Input: PTA, PTCTL property $\boldsymbol{\varphi}$
 - **Output**: set of symbolic states Sat(φ)
 - Sat(a) := { (I,inv(I)) | I \in Loc and $a \in L(I)$ }
 - $\operatorname{Sat}(\zeta) \qquad := \{ (\mathsf{I}, \mathsf{inv}(\mathsf{I}) \land \zeta) \mid \mathsf{I} \in \mathsf{Loc} \}$
 - $\ \mathsf{Sat}(\neg \varphi) \qquad \qquad := \{ \ (\mathsf{I},\mathsf{inv}(\mathsf{I}) \, \land \, (\lor_{(\mathsf{I},\, \zeta) \, \in \, \mathsf{Sat}(\varphi)} \neg \, \zeta \,) \ | \ \mathsf{I} \in \mathsf{Loc} \ \}$
 - $\operatorname{Sat}(\varphi_1 \lor \varphi_2) \qquad := \operatorname{Sat}(\varphi_1) \cup \operatorname{Sat}(\varphi_2)$
 - $\text{ Sat}(\textbf{z}.\varphi) \qquad := \{ (\textbf{I}, \textbf{[z]=0]}\zeta) \mid (\textbf{I}, \zeta) \in \text{ Sat}(\varphi) \}$
 - $\text{ Sat}(P_{\sim p}[\varphi_1 U \varphi_2]) \quad := ?$

- sufficient to consider maximum or minimum probability
- Recall from the MDP lecture
 - $\text{ if } \sim \in \{<, \le\}, \text{ then } s, \mathcal{E} \vDash P_{\sim p}[\varphi_1 U \varphi_2] \Leftrightarrow p_{max}(s, \mathcal{E}, \varphi_1 U \varphi_2) \sim p$
 - $\text{ if } \sim \in \{\geq, >\}, \text{ then } s, \mathcal{E} \vDash P_{\sim p}[\varphi_1 U \varphi_2] \Leftrightarrow p_{\min}(s, \mathcal{E}, \varphi_1 U \varphi_2) \sim p$

where

$$p_{max}(s, \mathcal{E}, \varphi_1 \cup \varphi_2) = sup_{A \in Adv} Pr^A_s \{ \omega \in Path^A(s) \mid \omega, \mathcal{E} \models \varphi_1 \cup \varphi_2 \}$$
$$p_{min}(s, \mathcal{E}, \varphi_1 \cup \varphi_2) = inf_{A \in Adv} Pr^A_s \{ \omega \in Path^A(s) \mid \omega, \mathcal{E} \models \varphi_1 \cup \varphi_2 \}$$

- Based on classical backwards exploration for TAs
 - iteratively apply **pre** operations
- Qualitative case (probability bound 0 or 1)
 - graph based analysis
 - uses methods for finite state MDPs [dA97a, dAKN+00]
- Quantitative case (probability bound in interval (0,1))
 - construct finite-state MDP during backwards exploration
 - states: symbolic states generated during exploration
 - transitions: induced by those of the PTA
 - compute maximal probability for all states of the original PTA through maximum reachability probabilities of the MDP

• Basic algorithm for $P_{-p}[\phi_1 \cup \phi_2]$

- start with the set of symbolic states $S_B = Sat(\varphi_2)$ then iterate for each symbolic state $(I, \zeta) \in S_B$ and edge e add pre[e](I, \zeta) to S_B until set of symbolic states S_B does not change

- Slightly more complicated...
- Restrict to states in $Sat(\phi_1)$
- Retain the probabilistic branching structure
 - keep track of which symbolic states are constructed through which edges of the PTA and take conjunctions of relevant symbolic states
 - relevant symbolic states are those generated by traversing edges taken from the same probabilistic edge

- Once the symbolic states S_B have been found
- Construct MDP (S_B, Steps_B, L_B)

no initial state as we have traversed backwards construction similar to forwards approach

- Find maximum probability of reaching Sat(ϕ_2)
 - that is compute $p_{max}(s_B, F a_{Sat(\varphi_2)})$ for all $s_B \in S_B$ where $a_{Sat(\varphi_2)}$ is an atomic proposition labelling only those states in Sat(φ_2)
- For any state (I,v) of the PTA and formula clock valuation \mathcal{E} : $p_{max}((I,v),\mathcal{E},\varphi_1 \cup \varphi_2) = max \{p_{max}(s_B, F \mid a_{Sat(\varphi_2)}) \mid (I,v), \mathcal{E} \in s_B \land s_B \in S_B\}$

+ Maximum probability of reaching I_4

• $z.P_{-p}$ [true U sr $\land z < 4$] maximum probability of sending the message before 4 time units have passed

for $(I_{init}, \underline{0}), 0$ given by $p_{max}((di, 1 \le di \le 2 \land z < 3), F(sr, z < 4)) = 0.995$ maximum probability of reaching $sr \land z < 4$ from the initial state corresponds to taking discrete transitions as soon as enabled

- Problem: restriction to divergent adversaries
 - minimum probability for until under divergent adversaries does not equal minimum under all adversaries
- Example:
 - the minimum probability of formula clock reaching z>1
 - equals 1 under divergent adversaries
 - equals 0 under all adversaries, e.g. consider any adversary which lets time converge to a value < 1
- Maximum until probability under divergent adversaries
 does equal maximum under all adversaries
 - just delay time divergence until after satisfaction

- Similar problem occurs for timed automata and TCTL
- $\phi_1 \forall U \phi_2 all \text{ paths satisfy } \phi_1 U \phi_2$
 - all divergent paths satisfy "true U z>1"
 - there exist non-divergent paths not satisfying "true U z>1"
 - cannot ignore time divergence when model checking
- $\phi_1 \exists U \phi_2$ there exists a path satisfying $\phi_1 U \phi_2$
 - there exists a path satisfying $\phi_1 \cup \phi_2$ if and only if there exists a divergent path satisfying $\phi_1 \cup \phi_2$
 - (use same path but let time diverge after φ_2 is reached)
 - can ignore time-divergence when model checking

- Solution for timed automata and TCTL
 - consider simple case of AF ϕ (= true $\forall U \phi$):
 - find state satisfying the dual formula $EG\neg\varphi$
 - (there exists a path for which $\neg \varphi$ holds at all times)
- Compute states satisfying EG φ as the greatest fixpoint of $H(X)=\varphi \wedge z.(\ X \ \exists U \ z{>}c \)$
 - 0 iterations: all states
 - 1 iteration: satisfy φ
 - 2 iterations: can satisfy φ until c time units have passed, ...
 - k+1 iterations: can satisfy φ until k c time units have passed
 - ... always satisfy φ

c is any constant greater than 0

Backwards - Qualitative minimum probabilities

maximum probability of satisfying G ϕ equals 1 (is not less than 1)

• Set of states satisfying $\neg P_{<1}[G \varphi]$ is greatest fixpoint of H(X) = $\varphi \land z$. $\neg P_{<1}[X \cup (X \lor z > c)]$

maximum probability of satisfying X U (X \lor z>c) equals 1

- 0 iterations: all states
- 1 iteration: all states satisfying φ
- 2 iterations: all states for which the maximum probability of satisfying ϕ until c time units have passed equals 1...
- k+1 iterations: all states for which the maximum probability of satisfying ϕ until k·c time units have passed equals 1...
- ...all states for which the maximum probability of always satisfying φ equals 1

Backwards - Quantitative minimum probabilities

+ For formulae of the form F φ use the following result

$$p_{min}(s, F \varphi) = 1 - p_{max}(s, G \neg \varphi)$$

= 1 - p_max(s, \gence \varphi U \gence P_{<1}[G \gence \varphi])

and the fact that we have already shown methods for

- computing maximum until probabilities
- the set of states satisfying \neg $P_{<1}[$ G $\varphi]$
- Problem reduces to
 - graph analysis (compute Sat($\neg P_{<1}[G \varphi]$))
 - computation of maximum until probabilities (compute $p_{max}(s, \neg \varphi \cup \neg P_{<1}[G \neg \varphi])$)

+ For formulae of the form $\phi_1 \cup \phi_2$ instead use

$$p_{\min}(s, \phi_1 \cup \phi_2) = 1 - p_{\max}(s, \neg \phi_1 \land \nabla \phi_2)$$

= 1 - p_{\max}(s, \neg \phi_2 \cup \neg P_{<1}[\neg \phi_1 \land \nabla \phi_2])

- operator R (release) is the dual of U (until)
- $\varphi_1 U \varphi_2 \equiv \neg (\neg \varphi_1 R \neg \varphi_2)$
- Sat(¬ $P_{<1}$ [¬ φ_1 R ¬ φ_2]) can be computed via a greatest fixpoint
- similar to the method for Sat($\neg P_{<1}[G \neg \varphi]$)
- Problem reduces to
 - graph analysis (compute Sat($\neg P_{<1}[\neg \varphi_1 R \neg \varphi_2]$))
 - computation of maximum until probabilities

(compute $p_{max}(s, \neg \varphi_2 \cup \neg P_{<1}[\neg \varphi_1 \land \neg \varphi_2])$)

- $z.P_{-p}[F \ sr \land z < 6]$ minimum probability of sending the message before 6 time units have passed
 - first step is to find the set of states which satisfy the formula $\neg P_{<1}[G \neg (sr \land z < 6)] = \neg P_{<1}[G si \lor di \lor (z \ge 6)]$
 - following method described this set is computed as $\{(sr,z\geq 6), (si,x\leq 3\land z\geq x+3), (di,x\leq 2\land z\geq x+3)\}$
 - now find maximum probability of reaching this set of states while remaining in \neg (sr \land z<6)

- i.e. compute
$$p_{max}(s, \neg \varphi \cup \neg P_{<1}[G \neg \varphi])$$

Symbolic model checking – Backwards

- Main result [KNS01b, KNSW04]
 - obtain time-abstract, finite-state MDP over zones
 - full PTCTL is preserved via quotient
 - conjunctions of zones to preserve probabilistic branching
 - not on-the fly, must construct MDP first
- Experimental implementation
 - Implemented in Java, using **Difference Bound Matrices** (DBMs)
 - Explicit, into PRISM input language
- Problem: need to consider non-convex zones
 - represented as unions of convex zones, i.e. lists of DBMs
 - expensive operations

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

Model checking – Digital clocks

- Durations can only take integer durations
 - time domain is $\mathbb N$ as opposed to $\mathbb R_{\geq 0}$
- Restricted to PTAs class of PTAs, zones must be:
 - closed do not feature strict inequalities
 - diagonal-free no comparisons between clocks (x+c \leq y+d)
- Based on ϵ -digitisation [HMP92]
- Preserves a subset of properties
 - no nested PTCTL properties
 - zones appearing in formulae closed and diagonal free
- Semantics is an MDP with finite state space
 - need only count up to c_{max} (max constant in PTA and formula)
 - can employ model checking algorithms for PCTL against MDPs

Model checking – Digital clocks

65

Model checking – Digital clocks

- Main result for digital semantics [KNPS06]
 - for closed diagonal free PTAs digital semantics preserves minimum/maximum reachability probabilities
 - only for initial state
 - extends to formula of the form z.P_p[$\phi_1 \cup \phi_2$] if ϕ_1 and ϕ_2 contain only atomic propositions and closed diagonal-free zones
 - extends to any state where all clocks have integer values
- Restriction to closed, diagonal-free found not to be important for many case studies
- Problem: inefficiency for some models, as large constants give rise to very large state spaces

Digital clocks - Probabilistic reachability

- Probabilistic reachability:
 - with probability at least 0.999, a data packet is correctly delivered
- Probabilistic time-bounded reachability
 - with probability 0.01 or less, a data packet is lost within 5 time units
- Probabilistic cost-bounded reachability
 - with probability 0.75 or greater, a data packet is correctly delivered with at most 4 retransmissions
- Invariance:
 - with probability 0.875 or greater, the system never aborts
- Bounded response:
 - with probability 0.99 or greater, a data packet will always be delivered within 5 time units

Digital clocks – PTCTL not preserved

- Consider the PTCTL formula $\phi = z.P_{<1}$ [true U ($a_{11} \land z \le 1$)]
 - $-a_{11}$ atomic proposition only true in location I_1
- Digital semantics:
 - no state satisfies ϕ since for any state we have
 - Prob^A(s, $\mathcal{E}[z:=0]$, true U ($a_{|1} \land z \le 1$))=1 for some adversary A
 - hence $P_{<1}$ [true U φ] is trivially true in all states

Digital clocks – PTCTL not preserved

- Consider the PTCTL formula $\phi = z.P_{<1}$ [true U ($a_{11} \land z \le 1$)]
 - $-a_{11}$ atomic proposition only true in location I_1
- Dense time semantics:
 - any state (I_{init},v) where v(x) \in (1,2) satisfies φ

more than one time unit must pass before we can reach I_1

- hence $P_{<1}$ [true U φ] is not true in the initial state

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards

Costs and rewards

Add reward structure (ρ,ι) to Probabilistic Timed Automata

- $\underline{\rho}$: Loc $\rightarrow \mathbb{R}_{\geq 0}$ location reward function
 - $\underline{\rho}(I)$ is the rate at which the reward is accumulated in location I
- $\iota : \Sigma \to \mathbb{R}_{\geq 0}$ event reward function
 - $\iota(\sigma)$ is the reward associated with performing the event σ
- Generalisation of uniformly priced timed automata
- Special case reward is the elapsed time
 - $\underline{\rho}(I) = 1$ for all locations $I \in Loc$
 - $\iota(\sigma)=0$ for all events $\sigma \in \Sigma$

Expected reachability

- Expected reward of reaching set of target states
 - digital clocks semantics preserves expected reachability [KNPS06]
 - can use finite-state MDP algorithm
 - no approach based on zones (yet)
- Expected reachability properties:
 - the maximum expected time until a data packet is delivered
 - the minimum expected time until a packet collision occurs
 - the minimum expected number of retransmissions before the message is correctly delivered
 - the minimum expected number of packets sent before failure
 - the maximum expected number of lost messages within the first 200 seconds
Summing up...

- Probabilistic timed automata (PTAs)
 - discrete probability distributions only
 - useful in modelling protocols with timing delays and probability
 - extension with continuous distributions exists, but model checking only approximate

Implementation

- digital clocks via model checking for MDPs
- forward/backward, experimental implementations only
- still no satisfactory combination of symbolic probabilistic and real-time data structures
- More research needed...
 - contribution to theory and practice