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Real-world protocol examples
Protocols with probability, real-time and nondeterminism

Randomised back-off schemes
— Ethernet, WiFi (802.11), Zigbee (802.15.4)
Random choice of waiting time
— Bluetooth, device discovery phase
Random choice of a timing delay
— Root contention in IEEE 1394 FireWire
Random choice over a set of possible addresses
— IPv4 dynamic configuration (link-local addressing)
Random choice of a destination
— Crowds anonymity, gossip—-based routing



Time, clocks and clock valuations

Dense time domain: non-negative reals R_,

Finite set of clocks x € X
— take values from time domain R_,, abbreviate to R
— increase at the same rate as real time

- Clock valuation v € RX

— v(x) value of clock x
— v+t is time increment for v with t: (v+t)(X) = v(X)+t Vx € X
— v[Y:=0] clock reset of all clocks inY < X

v[Y:=0](x)=0 ifxeyY

v[Y:=0](x)=v(Xx) otherwise



Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted zones(X):

C:i=x=<d |c=<x | x+tc<y+d | =T |TACT
where x,y € X, ¢,d € N

— derived logical connectives: C,VvC, = =(=C,;A—T,), G, VT, —...
— get strict inequalities through negation x>5 = = (x<5)...

+ Closed: do not feature negation (no strict inequalities)

- Diagonal-free: do not feature x+c<y+d (no comparisons

between clocks)



Zones and clock valuations

- A clock valuation v satisfies a zone T, written v > T if
— T resolves to true after substituting each clock xeX with v(x)

Semantics of a zone is the set of clock valuations which
satisfy the zone (subset of RNif N clocks)

— more than one zone may have the same semantics:
(X<2)A(Y<T)A(X=<y+2) and X<2)A(Y<T)A(X<y+3)

Consider only canonical zones
— zones for which the constraints are as ‘tight’ as possible

— O(|X]3) algorithm to compute (unique) canonical zone [Dil89]

— allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations



c-equivalence and c-closure

- Clock valuations v and v’ are c-equivalent if for any x,yeX
— either v(x) = v(x), or v(x) > cand v'(x) > ¢
— either v(x)-v(y) = v(X)-Vv’(y) or v(x)-v(y) > c and v'(x)-v'(y) > ¢

+ The c-closure of the zone T, denoted close(C,c), equals
— the greatest zone T'2 T such that, forany v’ € T,
there exists v € T and v and v’ are c-equivalent

— c—closure ignores all constrains which are greater than c

— for a given ¢, there are only a finite number of c-closed zones



Operations on zones - Set theoretic

- Union of two zones: C,UT,

y A y A
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Operations on zones - Set theoretic

- Intersection of two zones: C,NT,

G

C
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(0,0)

XV



- Difference of two zones: C,\C,

y A

G

C

(0,0)

Operations on zones - Set theoretic

(0,0)
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Operations on zones - clock resets

- CIX:=0] = { v[X:=0] | v>T}
— clock valuations obtained from T by resetting the clocks in X
- [X:=0]C={v | v[X:=0] >T }

— clock valuations which are in T if the clocks in X are reset

A
Y
[y:=0IC
C
— )
(0,0) o

Cly:=0] 1



Operations on zones: c-closure

.+ c—closure close(T,c)
— ignores all constrains which are greater than c

Y close(T,c)

(O’O) C X
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Operations on zones: Projection

- Forwards diagonal projection
« /C={v|3dt=0.(v-t)>T}

— contains the clock valuations that can be
reached from T by letting time pass

y A y A

XV
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Operations on zones: Projection

- Backwards diagonal projection
+ vC={v|3Jt=0. (v+t)>T}

— contains the clock valuations that, by letting time pass, reach
a clock valuation in T

14
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Probabilistic timed automata - Syntax

.+ PTA = (Log, |. ., X, =, inv, prob, L)

init?

— Loc finite set of locations
— |
— X finite set of clocks

i € Loc the initial location
— X finite set of events

— inv : Loc — zones(X) invariant condition

— prob < Locxzones(X)xdist(Locx2X) probabilistic edge relation
— L : Loc — AP labelling function

16



Probabilistic timed automata - Example

Models a simple probabilistic communication protocol

— starts in location di; after between 1 and 2 time units, the
protocol attempts to send the data:

. with probability 0.9 data is sent correctly, move to location sr

. with probability 0.1 data is lost, move to location si
— in location si, after 2 to 3 time units, attempts to resend
. correctly sent with probability 0.95 and lost with probability 0.05




Probabilistic timed automata - Edges

- Probabilistic edge relation

— prob < Locxzones(X)x X xdist(Locx2X)

- Probabilistic edge (l,g,0,p) € prob

— | is the source location

— g is the guard

— o is the event

— p target distribution

- Edge (l,9,0,p,I’,X) € Locxzones(X)x X xdist(Locx2X)xLocx2X
— (l,9,0,p) is a probabilistic edge and p(I’,X)>0

— | is the source location, g is the guard, o is the event

— |’ is target location

— X is the set of clocks to be reset

18



Probabilistic timed automata - Behaviour

- State of a PTA is a pair (l,v) € LocxRX such that v > inv(l)

. Start in the initial location with all clocks initialized to zero
— let O denote the clock valuation where all clocks have value O

For any state (l,v) there is non-deterministic choice
between making a discrete transition and letting time pass

— discrete transition (l,g,0,p) enabled if gi>T and probability of
moving to location I’ and resetting the clocks X equals p(I’,X)

— time transition available only if invariant inv(l) is continuously
satisfied while time elapses

19



Probabilistic timed automata - Example

(di,x=0)

lu

(di,x=1.1)

0.9 B
send 0

(sr,x=0) (si,x=0)

18.66 lz.y

(sr,x=8.66) (si,x=2.7)

0.95 0.05
retry

(sr,x=0) (si,x=0)




Probabilistic timed automata - Semantics

Infinite Markov decision process Myra = (Spra;Sinics Ste€ps,Lpra)
« Spra € Loc X RX where (l,v) € Sy, if and only if vi>inv(l)

¢+ Sinit=Uini0) . actions of M, are the events of PTA
: and non-negative reals (XUR.,)

. Steps: Sppp — 2GVRIXDIstS) where ((1,v),a,u) € Steps if and only
— time transition a=t>0, p(l,v+t)=1 and v+t’>inv(l) for all t’<t
— discrete transition a=0, there exists (l,9,0,p) € prob such that
(1) vi>g
(2) forany (I'vV) € Sprar Wl,V) = > p(,Y)

YcXAv[Y:=0]=v'

e Lppa(l,v)=L(D) /

. summation as multiple resets may give same clock :
valuation (e.g. resetting a clock that equals 0) :




Time divergence

Restrict to time divergent behaviour
— a common restriction imposed in real-time systems
— unrealisable behaviour (i.e. corresponding to time not
advancing beyond a time bound) is disregarded during
— also called non-zeno behaviour

- A path of My, of the form: w=s,(a;,H;) So(a;,M;) S,(ay,M5)...
— where 3, € SUR=0
— duration up until the (n+1)th state

D,(n+1) =2{|la | 1<isn A a, € R, [}

- A path w is time divergent if for any teR_,:
— there exists j € N such that D_(j)>t

22




Time divergence

- An adversary of My, is divergent if for each state s € Syqa:
— the probability of divergent paths under A is 1
— i.e Praf{ w € PathA(s) | w is divergent } =1

Probabilistic divergence motivation by following example

— any adversary has a non-divergent path:
.- remain in |, and do not let 1 time unit elapse
— chance of such behaviour is 0

-----------------------------------------------------------------------

Strong notion - all
paths divergent
:  would mean NO
. divergent adversaries
. for this example

0.5
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PTCTL - Syntax

- Z - set of formula clocks i & U ¢ is true with probability ~p

A S l ..........................................................

—du=truelalTlz.dldbAd|—d|P [dUd]

---------------------------------------------------------

— where a an atomic proposition, T € zones(XUZ), z € Z and
p €[0,1], ~ € {<,>,<,2}

— derived from PCTL [BdA95] and TCTL [AD94]

25




PTCTL - Examples

.+ 2 .P_yq9 [packet2unsent U packetldelivered A (z<5) ]

— with probability greater than 0.99, the system delivers packet
1 within 5 time units and does not try to send packet 2 in the
meantime

+ 2 .P_gs[(x=3) U (z=8)]

— with probability at least 0.95, the system clock x does not
exceed 3 before 8 time units elapse

.+ 72 .P_y,[ G (failure v (z<60))]

— the system fails after the first 60 time units have elapsed with
probability at most 0.01

26



PTCTL - Semantics

- Let (I,v) € Sprp and € € R% be a formula clock valuation

. combined clock valuation of v and € O — :
satisifies T . after resetting z, :
I S ; d) |S Satlsfled

— (L), E E a e L()
- (Lv),E T < veED> T
— (lLv),e E 2.9 < (IL,v),e[z:=0] = o

- (v, e =P, Ad, = (LV),E =P, and (I,v),€ = ¢,

— (Lv),E E - < (Lv),E = ¢ is false

— (ILv),E = PNp[l.P] < PrA, ,{ wePathA(Lv) | w,EEY } ~ p for all A

the probability of a path satisfying ¢ meets ~p
- for all divergent adversaries

27



PTCTL - Semantics of until

- W, & E ¢, Ud,if and only if
there exists i € Nand t € D(i+1)-D,(i) such that
— wWi+t,E+(D()+D) = P,
- Vtst.wi+t,e+D,MH+t) = P, vV b,
- Vj<i.Vt<D,(j+1)-D,() . w()+t',E+(D,()+1") = b, V b,

- Condition “¢, Vv ¢,” different from PCTL and CSL

— usually ¢, becomes true and ¢, is true until this point
— difference due to the density of the time domain

— to allow for open intervals use disjunction ¢, v ¢,

— for example consider x<5 U x>5 and x<5 U x>5

28
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The region graph

Region graph construction for PTAs [KNSS02]
— adapt the region graph construction for TAs [ACD93]
— construction dependent on PTCTL formula under study

For a PTA and PTCTL formula ¢
— construct a time-abstract, finite-state MDP R(¢)
— translate PTCTL formula ¢ to PCTL (denoted )
— ¢ is preserved via region quotient

— ¢ holds in a state of M, if and only if ® holds in the
corresponding state of R(d)

— model check R(¢) using standard methods for MDPs

30



The region graph - Clock equivalence

- Construction of region graph based on clock equivalence
— let c be largest constant appearing in PTA or PTCTL formula
— let | t] denotes the integral part of t
— t and t’ agree on their integral parts if and only if

(M) [t] =[]

(2) both t and t’ are integers or neither is an integer

- The clock valuations v and v’ are clock equivalent (v = V’) if:
— for all x € X one of the following conditions hold:
(@) v(x) and v’(x) agree on their integral parts
(b) v(x)>c and v’(xX)>c
— for all x,y € X one of the following conditions hold:
(@) v(x) — v(x’) and v'(x) — v'(x’) agree on their integral parts
(b) v(x) — v(xX’) > cand v'(x) — v'(X’) > ¢
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Region graph - Clock equivalence

32



Region graph - Clock equivalence

- Fundamental result: ifv= v, thenvp> T < Vv > T

— follows o > T is well defined (where «x equivalence class)

- B is the successor class of &, written succ(x)= B, if

— for each veq, there exists t>0 such that (v+t,E+t) € B
and (v+t’,E+t’) € xuB for all t’< t

yA V L

\ 4

(0,0) X

33



The region graph
- Region graph MDP (S;,(l,.,,0),Stepsg,L)

- (L) € Sy if I'is a location and o equivalence class of clock
valuations over X U Z such that o« > inv(l)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

- probabilistic transition function Stepsg: Sy X 2{succu=)xDistGp)
— (succ,u) € Stepsi(l,&0) & succ(x) > inv(l) and u(l,succ(o) = 1
— (o,u) € Stepsg(l,00) & 3 (l,9,0,p) € prob such that « > g and
for any (I’,B) € S.. ' -
VER S wep= 3 pr,v)

YcXAx[Y:=0]=PB

+ Lp(l,o)=L(I) I T

. summation as multiple resets may give |
‘ same clock equivalence class '

----------------------------------------------------------------------------------------------------------------------------



Region graph -Example

- PTCTL formula: z.P_,[true U (sr<4)]

(dix=2=0) 2 » (di,0<x=2<1) —> (di,;x=2=1) ——>(di,1 <x=2<2)

OM]

(sr,x=0Az=1) (si,x=0Az=1)

35




Region graph - Model checking

Problem

— prohibitive complexity (exponential in number of clocks and
size of largest constant)

— not implemented (even for timed automata)

Improved approach based on zones instead of regions
— symbolic states (I,C) where T is a zone
— zones are unions of regions

- Two approaches based on:

— forwards reachability [KNSS02]
— backwards reachability [KNSWO7]

36
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Symbolic model checking

- Conventional symbolic model checking relies on computing

— post(S’) the states that can be reached from a state in S’ in a
single step

— pre(S’) the states that can reach S’ in a single step

Extend these operators to include time passage

— dpost[e](S’) the states that can be reached from a state in S’
by traversing the edge e

— tpost(S’) the states that can be reached from a state in S’ by
letting time elapse

— dpre[e](S’) the states that can reach S’ by traversing the edge e
— tpre(S’) the states that can reach S’ by letting time elapse
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Symbolic model checking

- Symbolic states (I, T) where

— | € Loc (location)

— T is a zone over PTA clocks and formula clocks
— generally fewer zones than regions

- tpost(l,0) = (I, #/TAinv(l) )
— /T can be reached from T by letting time pass
— /TAinv(l) must satisfy the invariant of the location |

- tpre(,0) = (I, #TAinv(l))
— ¢ T can reach T by letting time pass
— v CA inv(l) must satisfy the invariant of the location |

39



Symbolic model checking

- Edge e= (l,9,0,p,I’,X)
— | is the source
— g is the guard
— O is the event
— |’ is the target
— X is the clock reset

- dpost[e](l,T) = (I', (TAQ)[X:=0])
— CAg satisfy the guard of the edge

— (TAQ)[X:=0] reset the clocks X

- dpre[e](I',T) = (I, [X:=0]C A (g A inv(]))
— [X:=0]T’ the clocks X were reset
— [X:=0]T A (g A inv(l)) satisfied guard and invariant of |




Symbolic model checking - Forwards

- Based on the operation post[el(l,C) = tpost(dpost[e](l,T))

— (I’',v’) € post[e](l,Q) if there exists (l,v) € (I,C) such that after
traversing edge e and letting time pass one can reach (I’,v’)

- Forwards algorithm (part 1)
— start with initial state Sg={tpost(l,...,0)} then iterate
for each symbolic state (I,C) € S; and edge e
add post[e](l,0) to S;
— until set of symbolic states S; does not change

- To ensure termination need to take c-closure of each zone
encountered (c largest constant in the PTA)
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Symbolic model checking - Forwards

- Forwards algorithm (part 2)

— construct finite state MDP (S, (l,,,.,,0),Steps;,L¢)

init?

— states S; (returned from first part of the algorithm)
— L(I,©)=L() for all (1,0)e S;
— W € Stepsi(1,0) if and only if

there exists a probabilistic edge (,g,0,p) of PTA such that for
any (I’, ) € Z:

u', T => {Ipl',X)1(,9,0,p,I' X) e edges(p) » post[el(,T) = (', T") |}

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

: summation over all the edges of (I,g,0,p) such that
: applying post to (I,0) leads to the symbolic state (I’',T’)
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Symbolic model checking - Forwards

- Only obtain upper bounds on maximum probabilities
— caused by when edges are combined

- Suppose postle;](I,0)=(,,C,) and post[e,](,0)=(l,, T,)
— where e, and e, from the same probabilistic edge
. By definition of post

— there exists (I,v) € (I,©) such that a state in (I, T,) can be
reached by traversing the edge e, and letting time pass

- Problem

— we combine these transitions but are (l,v,) and (l,v,) the same?
— may not exist states in (I,C) for which both edges are enabled
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Symbolic model checking - Forwards

- Maximum probability of reaching I; is 0.5 in the PTA
— for the left branch need to take the first transition when x=1
— for the right branch need to take the first transition when x=0

- However, in the forwards reachability graph probability is 1

— can reach |5 via either branch from (l,,x=y)
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Symbolic model checking - Forwards

Main result [KNSSO02]
— obtain time-abstract, finite-state MDP over zones
— bound on maximum reachability probabilities only
— can model check the MDP using standard methods
— loss of on-the fly, must construct MDP first

Implementations

— KRONOS pre-processor into PRISM input language, outputs
time-abstract MDP [DKNO2]

— Explicit, using Difference Bound Matrices (DBMs), to PRISM
input language [WKO5]

— Symbolic, using Difference Decision Diagrams (DDDs), via
MTBDD-coded PTA syntax directly to PRISM engine [WKO5]
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Symbolic model checking - Backwards
- Based on pre as opposed to post
prele](l,©) = dpre[e](tpre(l,0))

- Suppose pre[e,](,,C,)=(,T,) and prele,](l,,C,")=(,T,)
— where e, and e, from the same probabilistic edge
- By definition of pre

— for all (I,v) € (I,C), a state in (I,,C’) can be reached by
traversing the edge e, and letting time pass

— therefore, for any (I,v) in the intersection (1,C,NT,)

(I, T’) can be reached by traversing the edge e, and letting
time pass for both i=1 and i=2

- To preserve the probabilistic branching structure
— use both pre and intersection operations
— unlike the forwards approach results precise

46



Symbolic model checking - Backwards

- Backwards Algorithm for PTCTL model checking
— Input: PTA, PTCTL property ¢
— Output: set of symbolic states Sat(})

— Sat(a) ={ (l,inv(l)) | | € Locand a € L(l) }

— Sat(0) ={(,inv() AT | | € Loc}

— Sat(—o) ={(Linv() A (V¢ ¢ csaey™ ©) | | € Loc }
— Sat(d,Vd,) = Sat(d,) U Sat(d,)

— Sat(z.9) = {(,[z:=0]0) | (,0) € Sat(d) }

— Sat(P_,[b,Ud,]) =7
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Symbolic model checking - Backwards

- Remains to compute the set of states Sat(P_,[¢,U ¢,])
— sufficient to consider maximum or minimum probability

- Recall from the MDP lecture
— if ~e{<,<}, then s,& & P_[d,Ud,] < pproy(s,E, dUd,)~p
— if ~{=,>}, then s,& £ P_[$,Ud,] & ppin(s,€, dUd,)~p

where
Prax(5:€s P U d,) = sup,aq, PradwePathA(s) | w,& E ¢, U b,}
Pmin(S,€, ;U d,) = inf,_, 4 PrifwePathA(s) | w,& Ed, U P}
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Backwards — Maximum probabilities

Based on classical backwards exploration for TAs
— iteratively apply pre operations

- Qualitative case (probability bound 0 or 1)

— graph based analysis
— uses methods for finite state MDPs [dA97a, dAKN+00]

- Quantitative case (probability bound in interval (0,1))
— construct finite-state MDP during backwards exploration
— states: symbolic states generated during exploration

— transitions: induced by those of the PTA

— compute maximal probability for all states of the original PTA
through maximum reachability probabilities of the MDP

49



Backwards — Maximum probabilities

Basic algorithm for P_ (¢, U ¢,]
— start with the set of symbolic states S;=Sat(¢,) then iterate
for each symbolic state (I,C) € S; and edge e
add pre[e](I,©) to S
until set of symbolic states S; does not change
- Slightly more complicated...
Restrict to states in Sat(¢p,)

Retain the probabilistic branching structure

— keep track of which symbolic states are constructed through
which edges of the PTA and take conjunctions of relevant
symbolic states

— relevant symbolic states are those generated by traversing
edges taken from the same probabilistic edge

50



Backwards — Maximum probabilities

- Once the symbolic states S; have been found

- Construct MDP (S;,Stepsg,L;)
no initial state as we have traversed backwards
construction similar to forwards approach

Find maximum probability of reaching Sat(¢,)
— that is compute p,,,(Sg, F ag42) for all sp € Sy

where ag, 4, IS an atomic proposition labelling only those
states in Sat(¢p,)

For any state (I,v) of the PTA and formula clock valuation &:
Pmax((lV), €, U d,) = max {p,,,(Sg, F asaya2) | (1,V),EESzASE € S}
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Backwards — Maximum probabilities

- Maximum probability of reaching |,
v v v
(|],y2X) (|1,y:X) (I],XZY)

(I,,y=x) (I5,x2y)

() (e

y2X x2y ' predecessors from the same probabilistic

K backwards exploration: pre[.](.) e
@ LTS preserveprobabiﬁsticbranching'
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Backwards — Maximum probabilities

- 2.P_J[true U srAz<4] maximum probability of sending the
message before 4 time units have passed

-------------------------------

(Si,2<x<3Az<4)
0.05

0.1
(di,1<x<2Az<3)

(Si,2<x<3Az<?2)

: 1i:0),0 given by p_..((di,1 <di<2Az<3), F (sr,z<4))= 0.995 :

SR S 0 oot 4@ 8 8 {114 4.4 6041 GHsN WC & R 3 9 1@ BN 8§ 36 16 e § ot Gy et S

. maximum probability of reaching srAz<4 from the initial state
corresponds to taking discrete transitions as soon as enabled

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------




Backwards - Minimum probabilities

Problem: restriction to divergent adversaries

— minimum probability for until under divergent adversaries
does not equal minimum under all adversaries

Example:
— the minimum probability of formula clock reaching z>1
— equals T under divergent adversaries

— equals 0 under all adversaries, e.g. consider any adversary
which lets time converge to a value < 1

Maximum until probability under divergent adversaries
does equal maximum under all adversaries

— just delay time divergence until after satisfaction
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Backwards - Minimum probabilities

- Similar problem occurs for timed automata and TCTL

- ¢, VU &, - all paths satisfy ¢, U ¢,

— all divergent paths satisfy “true U z>1"

— there exist non-divergent paths not satisfying “true U z>1"
— cannot ignore time divergence when model checking

.+ ¢, U o, - there exists a path satisfying ¢, U ¢,

— there exists a path satisfying ¢, U ¢, if and only if there exists
a divergent path satisfying ¢, U ¢,

— (use same path but let time diverge after ¢, is reached)
— can ignore time-divergence when model checking
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Backwards - Minimum probabilities

. Solution for timed automata and TCTL

— consider simple case of AF¢ (= true YU ¢):
— find state satisfying the dual formula EG—¢
— (there exists a path for which =& holds at all times)

- Compute states satisfying EG¢ as the greatest fixpoint of

HX) =d A z.(X3U z>c)
— O iterations: all states
— 1 iteration: satisfy ¢
— 2 iterations: can satisfy ¢ until c time units have passed, ...
— k+1 iterations: can satisfy ¢ until k-c time units have passed
— ... always satisfy ¢

c is any constant greater than 0
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Backwards - Qualitative minimum probabilities

- Set of states satisfying — P_,[G ¢] is greatest fixpoint of
HX) = ddAz. =P [XUXvz>c)]

— O iterations: all states
— 1 iteration: all states satisfying ¢

— 2 iterations: all states for which the maximum probability of
satisfying ¢ until c time units have passed equals 1...

— k+1 iterations: all states for which the maximum probability
of satisfying ¢ until k-c time units have passed equals 1...

— ...all states for which the maximum probability of always
satisfying ¢ equals 1
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Backwards - Quantitative minimum probabilities

+ For formulae of the form F ¢ use the following result

pmin(51 F CI)) 1 - pmaX(S, G _'d))

= 1- pmax(51 _'cb U — P<1[ G _lcb])

and the fact that we have already shown methods for
— computing maximum until probabilities
— the set of states satisfying = P_,[ G ¢]

- Problem reduces to
— graph analysis (compute Sat(= P_,[ G ¢]))
— computation of maximum until probabilities
(compute p,... (s, =d U—=P_,[ G —d]))
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Backwards - Minimum probabilities

- For formulae of the form ¢, U ¢, instead use

pmin(S’ d)] U ¢2) =1 - pmax d)] ﬁCI)Z)
=1 = Pmax(s, 7P, U= P,[ =, R =)

— operator R (release) is the dual of U (until)

- CI)] U ¢2 = - (_'¢1 R _'Cl)z)
— Sat(= P_,[ -¢,R —¢,]) can be computed via a greatest fixpoint
— similar to the method for Sat(— P_,[ G —¢])

- Problem reduces to

— graph analysis (compute Sat(—= P_,[ ~¢; R =d,]))
— computation of maximum until probabilities

(compute p,,.. (s, =, U= P_,[ =d; R =d,]))
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Backwards - Minimum probabilities

» 2.P_[F sr A z<6] minimum probability of sending the
message before 6 time units have passed

— first step is to find the set of states which satisfy the formula
= P_,[ G =(srAz<6)] = = P_,[ G sivdiVv(z=6)]

— following method described this set is computed as
{(sr,z=6), (si,x<3Az=x+3), (di,x<2Az=x+3)}

— now find maximum probability of reaching this set of states
while remaining in —(srAz<6)

— i.e. compute p,_ (s, =d U= P_,[ G —d])
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Backwards - Minimum probabilities

- find maximum probability of reaching
— (sr,z=06), (si,x<3Az=x+3), (di,x<2Az=x+4)
— while remaining in —(srAz<6)
0.95 0.9

0.1 T O'Ov\ | 0.05 Q

(si,2<x<3AZz>3) «—— (5i,2<x<3) <+ 05

0.1T M
(di,1<x<2Az=3) i

(di,1<x<?2)
.............. for(lm,t,O)Oglvenbypmax((dll<d|<2)target)OOOS

.,--------------i'-------------------f-f--h----n\----"-r-----------------r----ﬂ---------«l-----1.-------------|--------l-----------ar-------------------------tﬁ----ﬁ -------------------------

. minimum probability of reaching srAz<6 from the initial state
' corresponds to taking transitions as late as possible :

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



Symbolic model checking - Backwards

Main result [KNSO1b, KNSWO04]
— obtain time-abstract, finite-state MDP over zones
— full PTCTL is preserved via quotient
— conjunctions of zones to preserve probabilistic branching
— not on-the fly, must construct MDP first

Experimental implementation
— Implemented in Java, using Difference Bound Matrices (DBMs)
— Explicit, into PRISM input language

Problem: need to consider non-convex zones
— represented as unions of convex zones, i.e. lists of DBMs
— expensive operations
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Overview

Motivation

- Time, clocks and zones

Probabilistic timed automata (PTAs)

— definition, examples, semantics, time divergence
Properties of PTAs: The logic PTCTL

— syntax, semantics, examples
PTCTL model checking

— the region graph

— forwards and backwards symbolic approaches

— digital clocks

- Costs and rewards
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Model checking - Digital clocks

Durations can only take integer durations

— time domain is N as opposed to R_,
Restricted to PTAs class of PTAs, zones must be:

— closed - do not feature strict inequalities

— diagonal-free - no comparisons between clocks (x+c<y+d)
Based on e-digitisation [HMP92]
Preserves a subset of properties

— no nested PTCTL properties

— zones appearing in formulae closed and diagonal free
Semantics is an MDP with finite state space
max (Max constant in PTA and formula)
— can employ model checking algorithms for PCTL against MDPs

— need only count up to ¢
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Model checking - Digital clocks

(di,x=z=0) —» (di,x=z=1) —» (di,x=z=2)

0.1
0‘9/\ O.9VA

(sr,x=0Az=1) (si,x=0Az=1) (sr,x=0Az=2)

v v v

(si,x= 1/\2 2)

(si,x= 2/\2 3) —»

/\25

(sr,x= O/\z 3) (si,x=0Az=3)

v
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Model checking - Digital clocks

Main result for digital semantics [KNPS06]
— for closed diagonal free PTAs digital semantics preserves
minimum/maximum reachability probabilities
— only for initial state

— extends to formula of the form z.P_[ ¢, U ¢, | if ¢, and ¢,
contain only atomic propositions and closed diagonal-free
zones

— extends to any state where all clocks have integer values

Restriction to closed, diagonal-free found not to be
important for many case studies

Problem: inefficiency for some models, as large constants
give rise to very large state spaces
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Digital clocks - Probabilistic reachability

Probabilistic reachability:

— with probability at least 0.999, a data packet is correctly
delivered

Probabilistic time-bounded reachability

— with probability 0.01 or less, a data packet is lost within 5
time units

Probabilistic cost-bounded reachability

— with probability 0.75 or greater, a data packet is correctly
delivered with at most 4 retransmissions

Invariance:
— with probability 0.875 or greater, the system never aborts
Bounded response:

— with probability 0.99 or greater, a data packet will always be
delivered within 5 time units
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Digital clocks - PTCTL not preserved

- Consider the PTCTL formula ¢=z.P_,[true U (a;, A z<1)]
— a;; atomic proposition only true in location [,

- Digital semantics:

— no state satisfies & since for any state we have
ProbA(s,E[z:=0], true U (a;; Az<1) )=1for some adversary A
— hence P_,[true U @] is trivially true in all states
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Digital clocks - PTCTL not preserved

- Consider the PTCTL formula ¢=z.P_;[ true U (a;, A z<1) ]
— a;; atomic proposition only true in location [,
Dense time semantics:
— any state (l,,,,,,v) where v(x) € (1,2) satisfies ¢
more than one time unit must pass before we can reach I,
— hence P_,[ true U ¢ ] is not true in the initial state
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Overview

Motivation

- Time, clocks and zones

Probabilistic timed automata (PTAs)

— definition, examples, semantics, time divergence
Properties of PTAs: The logic PTCTL

— syntax, semantics, examples
PTCTL model checking

— the region graph

— forwards and backwards symbolic approaches

— digital clocks

- Costs and rewards
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Costs and rewards

Add reward structure (p,t) to Probabilistic Timed Automata

- p:Loc —»R_, location reward function
— p(l) is the rate at which the reward is accumulated in location |
L: X —R,, event reward function
— (o) is the reward associated with performing the event o

- Generalisation of uniformly priced timed automata

- Special case reward is the elapsed time
— p()=1 for all locations | € Loc
— (0)=0 for all events o0 € X
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Expected reachability

Expected reward of reaching set of target states

— digital clocks semantics preserves expected reachability
[KNPSO06]

— can use finite-state MDP algorithm
— no approach based on zones (yet)

Expected reachability properties:
— the maximum expected time until a data packet is delivered
— the minimum expected time until a packet collision occurs

— the minimum expected number of retransmissions before the
message is correctly delivered

— the minimum expected number of packets sent before failure

— the maximum expected number of lost messages within the
first 200 seconds

72



Summing up...

Probabilistic timed automata (PTAS)
— discrete probability distributions only

— useful in modelling protocols with timing delays and
probability

— extension with continuous distributions exists, but model
checking only approximate

Implementation
— digital clocks via model checking for MDPs
— forward/backward, experimental implementations only

— still no satisfactory combination of symbolic probabilistic and
real-time data structures

More research needed...
— contribution to theory and practice
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