Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 7 - Probabilistic Timed Automata

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

Real-world protocol examples

- Protocols with probability, real-time and nondeterminism
- Randomised back-off schemes
- Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
- Bluetooth, device discovery phase
- Random choice of a timing delay
- Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
- IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
- Crowds anonymity, gossip-based routing

Time, clocks and clock valuations

- Dense time domain: non-negative reals $\mathbb{R}_{\geq 0}$
- Finite set of clocks $x \in X$
- take values from time domain $\mathbb{R}_{\geq 0}$, abbreviate to \mathbb{R}
- increase at the same rate as real time
- Clock valuation $v \in \mathbb{R}^{X}$
$-v(x)$ value of clock x
$-\mathrm{v}+\mathrm{t}$ is time increment for v with $\mathrm{t}:(\mathrm{v}+\mathrm{t})(\mathrm{x})=\mathrm{v}(\mathrm{x})+\mathrm{t} \quad \forall \mathrm{x} \in \mathrm{X}$
$-\mathrm{v}[\mathrm{Y}:=0]$ clock reset of all clocks in $\mathrm{Y} \subseteq \mathrm{X}$

$$
\begin{array}{ll}
v[Y:=0](x)=0 & \text { if } x \in Y \\
v[Y:=0](x)=v(x) & \text { otherwise }
\end{array}
$$

Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted zones(X):

$$
\zeta::=x \leq d|c \leq x| x+c \leq y+d|\neg \zeta| \zeta \wedge \zeta
$$

where $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{c}, \mathrm{d} \in \mathbb{N}$

- derived logical connectives: $\zeta_{1} \vee \zeta_{2}=\neg\left(\neg \zeta_{1} \wedge \neg \zeta_{2}\right), \zeta_{1} \vee \zeta_{2} \rightarrow \ldots$
- get strict inequalities through negation $x>5=\neg(x \leq 5) \ldots$
- Closed: do not feature negation (no strict inequalities)
- Diagonal-free: do not feature $\mathrm{x}+\mathrm{c} \leq \mathrm{y}+\mathrm{d}$ (no comparisons between clocks)

Zones and clock valuations

- A clock valuation v satisfies a zone ζ, written $v \triangleright \zeta$ if
$-\zeta$ resolves to true after substituting each clock $x \in X$ with $v(x)$
- Semantics of a zone is the set of clock valuations which satisfy the zone (subset of \mathbb{R}^{N} if N clocks)
- more than one zone may have the same semantics:

$$
(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+2) \text { and }(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+3)
$$

- Consider only canonical zones
- zones for which the constraints are as 'tight' as possible
- $\mathrm{O}\left(|\mathrm{X}|^{3}\right)$ algorithm to compute (unique) canonical zone [Dil89]
- allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

c-equivalence and c-closure

- Clock valuations v and v ' are $c-e q u i v a l e n t$ if for any $x, y \in X$
- either $v(x)=v^{\prime}(x)$, or $v(x)>c$ and $v^{\prime}(x)>c$
- either $v(x)-v(y)=v^{\prime}(x)-v^{\prime}(y)$ or $v(x)-v(y)>c$ and $v^{\prime}(x)-v^{\prime}(y)>c$
- The c-closure of the zone ζ, denoted close (ζ, c), equals
- the greatest zone $\zeta^{\prime} \supseteq \zeta$ such that, for any $v^{\prime} \in \zeta^{\prime}$, there exists $v \in \zeta$ and v and v ' are c-equivalent
- c-closure ignores all constrains which are greater than c
- for a given c, there are only a finite number of c-closed zones

Operations on zones - Set theoretic

- Union of two zones: $\zeta_{1} \cup \zeta_{2}$

Operations on zones - Set theoretic

- Intersection of two zones: $\zeta_{1} \cap \zeta_{2}$

Operations on zones - Set theoretic

- Difference of two zones: $\zeta_{1} \backslash \zeta_{2}$

Operations on zones - clock resets

- $\zeta[\mathrm{X}:=0]=\{\mathrm{v}[\mathrm{X}:=0] \mid \mathrm{v} \triangleright \zeta\}$
- clock valuations obtained from ζ by resetting the clocks in X
- $[\mathrm{X}:=0] \zeta=\{v \mid v[\mathrm{X}:=0] \triangleright \zeta\}$
- clock valuations which are in ζ if the clocks in X are reset

$\zeta[y:=0]$

Operations on zones: c-closure

- c-closure close($\zeta, \mathrm{c})$
- ignores all constrains which are greater than c

Operations on zones: Projection

- Forwards diagonal projection
- $\nearrow \zeta=\{v \mid \exists \mathrm{t} \geq 0 .(\mathrm{v}-\mathrm{t}) \triangleright \zeta\}$
- contains the clock valuations that can be reached from ζ by letting time pass

Operations on zones: Projection

- Backwards diagonal projection
- $\measuredangle \zeta=\{v \mid \exists t \geq 0 .(v+t) \triangleright \zeta\}$
- contains the clock valuations that, by letting time pass, reach a clock valuation in ζ

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

Probabilistic timed automata - Syntax

- $\mathrm{PTA}=\left(\right.$ Loc, $\mathrm{I}_{\text {init }}, X, \Sigma$, inv, prob, L)
- Loc finite set of locations
$-I_{\text {init }} \in$ Loc the initial location
- X finite set of clocks
- Σ finite set of events
- inv: Loc \rightarrow zones (X) invariant condition
- prob $\subseteq \operatorname{Loc} \times$ zones $(X) \times \operatorname{dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right)$ probabilistic edge relation
$-\mathrm{L}:$ Loc \rightarrow AP labelling function

Probabilistic timed automata - Example

- Models a simple probabilistic communication protocol
- starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
- with probability 0.9 data is sent correctly, move to location sr
- with probability 0.1 data is lost, move to location si
- in location si, after 2 to 3 time units, attempts to resend . correctly sent with probability 0.95 and lost with probability 0.05

Probabilistic timed automata - Edges

- Probabilistic edge relation
- prob \subseteq Loc \times zones $(X) \times \Sigma \times \operatorname{dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right)$
- Probabilistic edge $(\mathrm{I}, \mathrm{g}, \sigma, \mathrm{p}) \in$ prob
- I is the source location
$-g$ is the guard
- σ is the event
- p target distribution
- Edge $(\mathrm{l}, \mathrm{g}, \sigma, \mathrm{p}, \mathrm{l}, \mathrm{X}) \subseteq \operatorname{Loc} \times \operatorname{zones}(\mathrm{X}) \times \sum \times \operatorname{dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right) \times \operatorname{Loc} \times 2^{\mathrm{X}}$
- (l, g, σ, p) is a probabilistic edge and $p\left(l^{\prime}, X\right)>0$
- I is the source location, g is the guard, σ is the event
- I ' is target location
- X is the set of clocks to be reset

Probabilistic timed automata - Behaviour

- State of a PTA is a pair $(\mathrm{I}, \mathrm{v}) \in \operatorname{Loc} \times \mathbb{R}^{X}$ such that $\mathrm{v} \triangleright \operatorname{inv}(\mathrm{I})$
- Start in the initial location with all clocks initialized to zero
- let $\underline{0}$ denote the clock valuation where all clocks have value 0
- For any state (l,v) there is non-deterministic choice between making a discrete transition and letting time pass
- discrete transition (I,g, σ, p) enabled if $g \triangleright \zeta$ and probability of moving to location l^{\prime} and resetting the clocks X equals $p\left(l^{\prime}, X\right)$
- time transition available only if invariant inv(I) is continuously satisfied while time elapses

Probabilistic timed automata - Example

Probabilistic timed automata - Semantics

Infinite Markov decision process $\mathrm{M}_{\text {PTA }}=\left(\mathrm{S}_{\text {PTA }}, \mathrm{s}_{\text {init }}\right.$, Steps, $\left.\mathrm{L}_{\text {PTA }}\right)$

- $S_{\text {PTA }} \subseteq \operatorname{Loc} \times \mathbb{R}^{X}$ where $(\mathrm{l}, \mathrm{v}) \in \mathrm{S}_{\text {PTA }}$ if and only if $\mathrm{V} \triangleright \operatorname{inv}(\mathrm{I})$
- $\mathrm{s}_{\text {init }}=\left(\mathrm{l}_{\text {init }}, \underline{0}\right)$ actions of $M_{\text {PTA }}$ are the events of PTA and non-negative reals $\left(\Sigma \cup \mathbb{R}_{\geq 0}\right)$
- Steps: $S_{\text {PTA }} \rightarrow 2^{(\Sigma \cup \mathbb{R}) \times \operatorname{Dist}(S)}$ where $((l, v), a, \mu) \in$ Steps if and only
- time transition $a=t \geq 0, \mu(l, v+t)=1$ and $v+t^{\prime} \triangleright i n v(l)$ for all t' $\leq t$
- discrete transition $\mathrm{a}=\sigma$, there exists $(\mathrm{l}, \mathrm{g}, \sigma, \mathrm{p}) \in$ prob such that
(1) $v \triangleright g$
(2) for any $\left(I^{\prime}, v^{\prime}\right) \in S_{\text {PTA }}: \quad \mu\left(I^{\prime}, v^{\prime}\right)=\sum_{Y \subseteq X \wedge v[Y:=0]=v^{\prime}} p\left(I^{\prime}, Y\right)$
- $\mathrm{L}_{\text {PTA }}(\mathrm{l}, \mathrm{V})=\mathrm{L}(\mathrm{I})$
summation as multiple resets may give same clock valuation (e.g. resetting a clock that equals 0)

Time divergence

- Restrict to time divergent behaviour
- a common restriction imposed in real-time systems
- unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded during
- also called non-zeno behaviour
- A path of $M_{\text {PTA }}$ of the form: $w=s_{0}\left(a_{1}, \mu_{1}\right) s_{0}\left(a_{1}, \mu_{1}\right) s_{2}\left(a_{2}, \mu_{2}\right) \ldots$
- where $a_{i} \in \Sigma \cup \mathbb{R} \geq 0$
- duration up until the $(n+1)$ th state

$$
D_{\omega}(n+1)=\sum\left\{\left|a_{i}\right| 1 \leq i \leq n \wedge a_{i} \in \mathbb{R}_{\geq 0} \mid\right\}
$$

- A path ω is time divergent if for any $t \in \mathbb{R}_{\geq 0}$:
- there exists $\mathrm{j} \in \mathbb{N}$ such that $\mathrm{D}_{\omega}(\mathrm{j})>\mathrm{t}$

Time divergence

- An adversary of $M_{\text {PTA }}$ is divergent if for each state $s \in S_{\text {PTA }}$:
- the probability of divergent paths under A is 1
- i.e $\operatorname{Pr}^{A}{ }_{s}\left\{\omega \in \operatorname{Path}^{A}(\mathrm{~s}) \mid \omega\right.$ is divergent $\}=1$
- Probabilistic divergence motivation by following example
- any adversary has a non-divergent path:
- remain in $l_{\text {init }}$ and do not let 1 time unit elapse
- chance of such behaviour is 0

> Strong notion - all paths divergent would mean NO divergent adversaries for this example

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

PTCTL - Syntax

- Z - set of formula clocks

$-\phi::=$ true $|\mathrm{a}| \zeta \mid$ z. $\phi|\phi \wedge \phi| \neg \phi \mid \mathrm{P}_{\sim p}[\phi U \phi]$
"zone over XUZ"
"freeze quantifier"
- where a an atomic proposition, $\zeta \in \operatorname{zones}(X \cup Z), z \in Z$ and $p \in[0,1], \sim \in\{<,>, \leq, \geq\}$
- derived from PCTL [BdA95] and TCTL [AD94]

PTCTL - Examples

- $\mathrm{z} . \mathrm{P}_{>0.99}$ [packet2unsent U packet1 delivered $\wedge(\mathrm{z}<5)$]
- with probability greater than 0.99 , the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime
- $z . P_{>0.95}[(x \leq 3) U(z=8)]$
- with probability at least 0.95 , the system clock x does not exceed 3 before 8 time units elapse
- z. $P_{\leq 0.1}[G(f a i l u r e v(z \leq 60))]$
- the system fails after the first 60 time units have elapsed with probability at most 0.01

PTCTL - Semantics

- Let $(\mathrm{I}, \mathrm{v}) \in \mathrm{S}_{\text {PTA }}$ and $\varepsilon \in \mathbb{R}^{z}$ be a formula clock valuation

PTCTL - Semantics of until

- $\omega, \mathcal{E} \vDash \phi_{1} \cup \phi_{2}$ if and only if there exists $i \in \mathbb{N}$ and $t \in D_{\omega}(i+1)-D_{\omega}(i)$ such that
$-\omega(\mathrm{i})+\mathrm{t}, \varepsilon+\left(\mathrm{D}_{\omega}(\mathrm{i})+\mathrm{t}\right) \vDash \phi_{2}$
$-\forall \mathrm{t}^{\prime} \leq \mathrm{t} . \omega(\mathrm{i})+\mathrm{t}^{\prime}, \varepsilon+\left(\mathrm{D}_{\omega}(\mathrm{i})+\mathrm{t}^{\prime}\right) \vDash \phi_{1} \vee \phi_{2}$
$-\forall \mathrm{j}<\mathrm{i} . \forall \mathrm{t}^{\prime} \leq \mathrm{D}_{\omega}(\mathrm{j}+1)-\mathrm{D}_{\omega}(\mathrm{j}) \cdot \omega(\mathrm{j})+\mathrm{t}^{\prime}, \mathcal{E}+\left(\mathrm{D}_{\omega}(\mathrm{j})+\mathrm{t}^{\prime}\right) \vDash \phi_{1} \vee \phi_{2}$
- Condition " $\phi_{1} \vee \phi_{2}$ " different from PCTL and CSL
- usually ϕ_{2} becomes true and ϕ_{1} is true until this point
- difference due to the density of the time domain
- to allow for open intervals use disjunction $\phi_{1} \vee \phi_{2}$
- for example consider $x \leq 5 U x>5$ and $x<5 U x \geq 5$

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

The region graph

- Region graph construction for PTAs [KNSS02]
- adapt the region graph construction for TAs [ACD93]
- construction dependent on PTCTL formula under study
- For a PTA and PTCTL formula ϕ
- construct a time-abstract, finite-state MDPR(ϕ)
- translate PTCTL formula ϕ to PCTL (denoted Φ)
$-\phi$ is preserved via region quotient
- ϕ holds in a state of $M_{\text {PTA }}$ if and only if Φ holds in the corresponding state of $R(\phi)$
- model check $R(\phi)$ using standard methods for MDPs

The region graph - Clock equivalence

- Construction of region graph based on clock equivalence
- let c be largest constant appearing in PTA or PTCTL formula
- let $\lfloor t\rfloor$ denotes the integral part of t
- t and t ' agree on their integral parts if and only if
(1) $\lfloor t\rfloor=\left\lfloor t^{\prime}\right\rfloor$
(2) both t and t' are integers or neither is an integer
- The clock valuations v and v' are clock equivalent ($\mathrm{v} \cong$ v') if:
- for all $x \in X$ one of the following conditions hold:
(a) $v(x)$ and $v^{\prime}(x)$ agree on their integral parts
(b) $\mathrm{v}(\mathrm{x})>\mathrm{c}$ and $\mathrm{v}^{\prime}(\mathrm{x})>\mathrm{c}$
- for all $x, y \in X$ one of the following conditions hold:
(a) $v(x)-v\left(x^{\prime}\right)$ and $v^{\prime}(x)-v^{\prime}\left(x^{\prime}\right)$ agree on their integral parts
(b) $v(x)-v\left(x^{\prime}\right)>c$ and $v^{\prime}(x)-v^{\prime}\left(x^{\prime}\right)>c$

Region graph - Clock equivalence

Region graph - Clock equivalence

- Fundamental result : if $v \cong v^{\prime}$, then $v \triangleright \zeta \Leftrightarrow v^{\prime} \triangleright \zeta$
- follows $\alpha \triangleright \zeta$ is well defined (where α equivalence class)
- β is the successor class of α, written $\operatorname{succ}(\alpha)=\beta$, if
- for each $v \in \alpha$, there exists $t>0$ such that $(v+t, \varepsilon+t) \in \beta$ and $\left(\mathrm{v}+\mathrm{t}^{\prime}, \mathcal{E}+\mathrm{t}^{\prime}\right) \in \alpha \cup \beta$ for all $\mathrm{t}^{\prime}<\mathrm{t}$

The region graph

- Region graph MDP $\left(\mathrm{S}_{\mathrm{R}},\left(\mathrm{I}_{\text {init }}, 0\right)\right.$, Steps $\left.s_{R}, \mathrm{~L}_{\mathrm{R}}\right)$
- $(I, \alpha) \in S_{R}$ if I is a location and α equivalence class of clock valuations over $X \cup Z$ such that $\alpha \triangleright \operatorname{inv}(I)$

action set $\{s u c c\} \cup \Sigma$ (succ corresponds to time passage)

- probabilistic transition function Steps $_{R}: S_{R} \times 2(\{s u c c\} \cup \Sigma) \times \operatorname{Dist}\left(S_{R}\right)$
$-(\operatorname{succ}, \mu) \in \operatorname{Steps}_{\mathrm{R}}(\mathrm{I}, \alpha) \Leftrightarrow \operatorname{succ}(\alpha) \triangleright \operatorname{inv}(\mathrm{I})$ and $\mu(\mathrm{l}, \operatorname{succ}(\alpha))=1$
$-(\sigma, \mu) \in \operatorname{Steps}_{\mathrm{R}}(\mathrm{l}, \alpha) \Leftrightarrow \exists(\mathrm{l}, \mathrm{g}, \sigma, \mathrm{p}) \in$ prob such that $\alpha \triangleright \mathrm{g}$ and for any $\left(I^{\prime}, \beta\right) \in S_{R}$:

$$
\mu\left(I^{\prime}, \beta\right)=\sum_{Y \subseteq X \wedge \alpha[Y:=0]=\beta} p\left(I^{\prime}, Y\right)
$$

- $\mathrm{L}_{\mathrm{R}}(\mathrm{l}, \alpha)=\mathrm{L}(\mathrm{I})$

Region graph -Example

- PTCTL formula: z. $_{\sim}$ pp true $\mathrm{U}(\mathrm{sr}<4)$]

$$
(\mathrm{di}, \mathrm{x}=\mathrm{z}=0) \xrightarrow{\text { succ }}(\mathrm{di}, 0<\mathrm{x}=\mathrm{z}<1) \xrightarrow{\text { succ }}(\mathrm{di}, \mathrm{x}=\mathrm{z}=1) \xrightarrow{\text { succ }}(\mathrm{di}, 1<\mathrm{x}=\mathrm{z}<2)
$$

Region graph - Model checking

- Problem
- prohibitive complexity (exponential in number of clocks and size of largest constant)
- not implemented (even for timed automata)
- Improved approach based on zones instead of regions
- symbolic states $(1, \zeta)$ where ζ is a zone
- zones are unions of regions
- Two approaches based on:
- forwards reachability [KNSS02]
- backwards reachability [KNSW07]

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

Symbolic model checking

- Conventional symbolic model checking relies on computing
- post(S') the states that can be reached from a state in S' in a single step
- pre(S') the states that can reach S^{\prime} in a single step
- Extend these operators to include time passage
- dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
- tpost(S') the states that can be reached from a state in S' by letting time elapse
- dpre[e](S') the states that can reach S' by traversing the edge e
- tpre(S') the states that can reach S' by letting time elapse

Symbolic model checking

- Symbolic states (I, ζ) where
$-I \in$ Loc (location)
- ζ is a zone over PTA clocks and formula clocks
- generally fewer zones than regions
- $\operatorname{tpost}(I, \zeta)=(I, \tau \zeta \wedge \operatorname{inv}(I))$
$-\nearrow \zeta$ can be reached from ζ by letting time pass
$-\ulcorner$ - $\operatorname{inv}(\mathrm{I})$ must satisfy the invariant of the location I
- tpre $(\mathrm{l}, \zeta)=(\mathrm{l}, \iota \zeta \wedge \operatorname{inv}(\mathrm{l}))$
$-\measuredangle \zeta$ can reach ζ by letting time pass
$-\swarrow \zeta \wedge \operatorname{inv}(\mathrm{I})$ must satisfy the invariant of the location I

Symbolic model checking

- Edge $e=\left(l, g, \sigma, p, l^{\prime}, X\right)$
$-I$ is the source
$-g$ is the guard
$-\sigma$ is the event
- I^{\prime} is the target
-X is the clock reset
- dpost[e] $(\mathrm{I}, \zeta)=\left(l^{\prime},(\zeta \wedge \mathrm{g})[\mathrm{X}:=0]\right)$
$-\zeta \wedge \mathrm{g}$ satisfy the guard of the edge
- $(\zeta \wedge \mathrm{g})[\mathrm{X}:=0]$ reset the clocks X
- dpre[e] $\left(\mathrm{I}^{\prime}, \zeta^{\prime}\right)=\left(\mathrm{I},[\mathrm{X}:=0] \zeta^{\prime} \wedge(\mathrm{g} \wedge \operatorname{inv}(\mathrm{l}))\right)$
$-[X:=0] \zeta^{\prime}$ the clocks X were reset
$-[X:=0] \zeta^{\prime} \wedge(g \wedge \operatorname{inv}(I))$ satisfied guard and invariant of I

Symbolic model checking - Forwards

- Based on the operation post[e] $(I, \zeta)=\operatorname{tpost}(d \operatorname{post}[e](I, \zeta))$
$-\left(I^{\prime}, v^{\prime}\right) \in \operatorname{post}[e](I, \zeta)$ if there exists $(I, v) \in(I, \zeta)$ such that after traversing edge e and letting time pass one can reach (l^{\prime}, v^{\prime})
- Forwards algorithm (part 1)
- start with initial state $S_{F}=\left\{\operatorname{tpost}\left(l_{\text {init }}, \underline{0}\right)\right\}$ then iterate
for each symbolic state $(I, \zeta) \in S_{F}$ and edge e add post[e] $(1, \zeta)$ to S_{F}
- until set of symbolic states S_{F} does not change
- To ensure termination need to take c-closure of each zone encountered (c largest constant in the PTA)

Symbolic model checking - Forwards

- Forwards algorithm (part 2)
- construct finite state MDP ($\mathrm{S}_{\mathrm{F}},\left(\mathrm{l}_{\text {init }}, 0\right)$, Steps $\left._{\mathrm{F}}, \mathrm{L}_{\mathrm{F}}\right)$
- states S_{F} (returned from first part of the algorithm)
- $L_{F}(I, \zeta)=L(I)$ for all $(I, \zeta) \in S_{F}$
$-\mu \in \operatorname{Steps}_{\mathrm{F}}(\mathrm{l}, \zeta)$ if and only if there exists a probabilistic edge (l,g, σ, p) of PTA such that for any $\left(l^{\prime}, \zeta^{\prime}\right) \in Z:$
$\mu\left(I^{\prime}, \zeta^{\prime}\right)=\sum\left\{\left|p\left(I^{\prime}, X\right)\right|\left(I, g, \sigma, p, I^{\prime}, X\right) \in \operatorname{edges}(p) \wedge \operatorname{post}[e](I, \zeta)=\left(I^{\prime}, \zeta^{\prime}\right) \mid\right\}$
summation over all the edges of (l, g, σ, p) such that applying post to (I, ζ) leads to the symbolic state ($\left.l^{\prime}, \zeta^{\prime}\right)$

Symbolic model checking - Forwards

- Only obtain upper bounds on maximum probabilities
- caused by when edges are combined
- Suppose post $\left[e_{1}\right](l, \zeta)=\left(l_{1}, \zeta_{1}\right)$ and post $\left[e_{2}\right](I, \zeta)=\left(I_{2}, \zeta_{2}\right)$
- where e_{1} and e_{2} from the same probabilistic edge
- By definition of post
- there exists $\left(\mathrm{l}, \mathrm{v}_{\mathrm{i}}\right) \in(\mathrm{I}, \zeta)$ such that a state in $\left(\mathrm{l}_{\mathrm{i}}, \zeta_{\mathrm{i}}\right)$ can be reached by traversing the edge e_{i} and letting time pass
- Problem
- we combine these transitions but are $\left(1, \mathrm{v}_{1}\right)$ and $\left(\mathrm{I}, \mathrm{v}_{2}\right)$ the same?
- may not exist states in (I, ζ) for which both edges are enabled

Symbolic model checking - Forwards

- Maximum probability of reaching I_{3} is 0.5 in the PTA
- for the left branch need to take the first transition when $x=1$
- for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
- can reach I_{3} via either branch from $\left(\mathrm{I}_{0}, \mathrm{x}=\mathrm{y}\right)$

Symbolic model checking - Forwards

- Main result [KNSS02]
- obtain time-abstract, finite-state MDP over zones
- bound on maximum reachability probabilities only
- can model check the MDP using standard methods
- loss of on-the fly, must construct MDP first
- Implementations
- KRONOS pre-processor into PRISM input language, outputs time-abstract MDP [DKN02]
- Explicit, using Difference Bound Matrices (DBMs), to PRISM input language [WK05]
- Symbolic, using Difference Decision Diagrams (DDDs), via MTBDD-coded PTA syntax directly to PRISM engine [WK05]

Symbolic model checking - Backwards

- Based on pre as opposed to post

$$
\text { pre }[\mathrm{e}](\mathrm{I}, \zeta)=\mathrm{dpre}[\mathrm{e}](\text { tpre }(\mathrm{l}, \zeta))
$$

- Suppose pre $\left[\mathrm{e}_{1}\right]\left(\mathrm{I}_{1}, \zeta_{1}{ }^{\prime}\right)=\left(\mathrm{I}, \zeta_{1}\right)$ and $\operatorname{pre}\left[\mathrm{e}_{2}\right]\left(\mathrm{I}_{2}, \zeta_{2}{ }^{\prime}\right)=\left(\mathrm{I}, \zeta_{2}\right)$
- where e_{1} and e_{2} from the same probabilistic edge
- By definition of pre
- for all $\left(I, v_{i}\right) \in\left(I, \zeta_{i}\right)$, a state in $\left(I_{i}, \zeta_{i}{ }^{\prime}\right)$ can be reached by traversing the edge e_{i} and letting time pass
- therefore, for any (I, v) in the intersection $\left(\mathrm{I}, \zeta_{1} \cap \zeta_{2}\right)$ $\left(l_{i}, \zeta_{i}{ }^{\prime}\right)$ can be reached by traversing the edge e_{i} and letting time pass for both $i=1$ and $i=2$
- To preserve the probabilistic branching structure
- use both pre and intersection operations
- unlike the forwards approach results precise

Symbolic model checking - Backwards

- Backwards Algorithm for PTCTL model checking
- Input: PTA, PTCTL property ϕ
- Output: set of symbolic states Sat(ϕ)
$-\operatorname{Sat}(\mathrm{a}) \quad:=\{(\mathrm{I}, \operatorname{inv}(\mathrm{I})) \mid I \in \operatorname{Loc}$ and $\mathrm{a} \in \mathrm{L}(\mathrm{I})\}$
$-\operatorname{Sat}(\zeta) \quad:=\{(1, \operatorname{inv}(I) \wedge \zeta) \mid I \in \operatorname{Loc}\}$
$-\operatorname{Sat}(\neg \phi) \quad:=\left\{\left(1, \operatorname{inv}(\mathrm{I}) \wedge\left(\vee_{(\mathrm{I}, \zeta) \in \operatorname{Sat}(\phi)} \neg \zeta\right) \mid I \in \operatorname{Loc}\right\}\right.$
$-\operatorname{Sat}\left(\phi_{1} \vee \phi_{2}\right) \quad:=\operatorname{Sat}\left(\phi_{1}\right) \cup \operatorname{Sat}\left(\phi_{2}\right)$
$-\operatorname{Sat}(z . \phi) \quad:=\{(1,[z:=0] \zeta) \mid(I, \zeta) \in \operatorname{Sat}(\phi)\}$
$-\operatorname{Sat}\left(\mathrm{P}_{\sim p}\left[\phi_{1} \cup \phi_{2}\right]\right):=?$

Symbolic model checking - Backwards

- Remains to compute the set of states $\operatorname{Sat}\left(\mathrm{P}_{\sim p}\left[\phi_{1} U \phi_{2}\right]\right)$
- sufficient to consider maximum or minimum probability
- Recall from the MDP lecture
- if $\sim \in\{<, \leq\}$, then $s, \varepsilon \vDash \mathrm{P}_{\sim p}\left[\phi_{1} U \phi_{2}\right] \Leftrightarrow \mathrm{p}_{\max }\left(\mathrm{s}, \varepsilon, \phi_{1} U \phi_{2}\right) \sim \mathrm{p}$
- if $\sim \in\{\geq,>\}$, then $s, \varepsilon \vDash P_{\sim p}\left[\phi_{1} U \phi_{2}\right] \Leftrightarrow p_{\text {min }}\left(s, \varepsilon, \phi_{1} U \phi_{2}\right) \sim p$
where

$$
\begin{aligned}
& \mathrm{p}_{\text {max }}\left(\mathrm{s}, \varepsilon, \phi_{1} \cup \phi_{2}\right)=\sup _{A \in \operatorname{AdV}} \operatorname{Pr}_{\mathrm{s}}\left\{\omega \in \operatorname{Path}^{\mathrm{A}}(\mathrm{~s}) \mid \omega, \varepsilon \vDash \phi_{1} \cup \phi_{2}\right\} \\
& \left.\mathrm{p}_{\min }\left(\mathrm{s}, \varepsilon, \phi_{1} \cup \phi_{2}\right)=\inf _{\mathrm{A} \in \operatorname{Adv} \operatorname{Pr}^{\mathrm{A}}\left\{\left(\omega \in \operatorname{Path}^{\mathrm{A}}(\mathrm{~s}) \mid \omega, \varepsilon \vDash \phi_{1} \cup \phi_{2}\right\}\right.}\right\}
\end{aligned}
$$

Backwards - Maximum probabilities

- Based on classical backwards exploration for TAs
- iteratively apply pre operations
- Qualitative case (probability bound 0 or 1)
- graph based analysis
- uses methods for finite state MDPs [dA97a, dAKN+00]
- Quantitative case (probability bound in interval $(0,1)$)
- construct finite-state MDP during backwards exploration
- states: symbolic states generated during exploration
- transitions: induced by those of the PTA
- compute maximal probability for all states of the original PTA through maximum reachability probabilities of the MDP

Backwards - Maximum probabilities

- Basic algorithm for $\mathrm{P}_{\sim p}\left[\phi_{1} \cup \phi_{2}\right]$
- start with the set of symbolic states $S_{B}=\operatorname{Sat}\left(\phi_{2}\right)$ then iterate
for each symbolic state $(I, \zeta) \in S_{B}$ and edge e add pre[e] $(1, \zeta)$ to S_{B}
until set of symbolic states S_{B} does not change
- Slightly more complicated...
- Restrict to states in $\operatorname{Sat}\left(\phi_{1}\right)$
- Retain the probabilistic branching structure
- keep track of which symbolic states are constructed through which edges of the PTA and take conjunctions of relevant symbolic states
- relevant symbolic states are those generated by traversing edges taken from the same probabilistic edge

Backwards - Maximum probabilities

- Once the symbolic states S_{B} have been found
- Construct MDP (S_{B}, Steps $_{\mathrm{B}}, \mathrm{L}_{\mathrm{B}}$) no initial state as we have traversed backwards construction similar to forwards approach
- Find maximum probability of reaching $\operatorname{Sat}\left(\phi_{2}\right)$
- that is compute $p_{\max }\left(s_{B}, F a_{\text {Sat }(\$ 2)}\right)$ for all $s_{B} \in S_{B}$ where $\mathrm{a}_{\mathrm{Sat}(\$ 2)}$ is an atomic proposition labelling only those states in $\operatorname{Sat}\left(\phi_{2}\right)$
- For any state (I, v) of the PTA and formula clock valuation \mathcal{E} : $p_{\max }\left((1, v), \varepsilon, \phi_{1} \cup \phi_{2}\right)=\max \left\{p_{\max }\left(s_{B}, F a_{\text {sat }(\phi 2)}\right) \mid(I, v), \varepsilon \in s_{B} \wedge s_{B} \in S_{B}\right\}$

Backwards - Maximum probabilities

- Maximum probability of reaching I_{4}

predecessors from the same probabilistic backwards exploration: pre.
preserve probabilistic branching

Backwards - Maximum probabilities

- z. $P_{\sim p}[t r u e U s r \wedge z<4]$ maximum probability of sending the message before 4 time units have passed

for $\left(l_{\text {init }}, \underline{0}\right), 0$ given by $p_{\text {max }}((d i, 1 \leq d i \leq 2 \wedge z<3), F(s r, z<4))=0.995$ maximum probability of reaching sr $\wedge z<4$ from the initial state corresponds to taking discrete transitions as soon as enabled

Backwards - Minimum probabilities

- Problem: restriction to divergent adversaries
- minimum probability for until under divergent adversaries does not equal minimum under all adversaries
- Example:
- the minimum probability of formula clock reaching $\mathrm{z}>1$
- equals 1 under divergent adversaries
- equals 0 under all adversaries, e.g. consider any adversary which lets time converge to a value <1
- Maximum until probability under divergent adversaries does equal maximum under all adversaries
- just delay time divergence until after satisfaction

Backwards - Minimum probabilities

- Similar problem occurs for timed automata and TCTL
- $\phi_{1} \forall U \phi_{2}$ - all paths satisfy $\phi_{1} \cup \phi_{2}$
- all divergent paths satisfy "true U z>1"
- there exist non-divergent paths not satisfying "true $U z>1$ "
- cannot ignore time divergence when model checking
- $\phi_{1} \exists U \phi_{2}$ - there exists a path satisfying $\phi_{1} U \phi_{2}$
- there exists a path satisfying $\phi_{1} \cup \phi_{2}$ if and only if there exists a divergent path satisfying $\phi_{1} \cup \phi_{2}$
- (use same path but let time diverge after ϕ_{2} is reached)
- can ignore time-divergence when model checking

Backwards - Minimum probabilities

- Solution for timed automata and TCTL
- consider simple case of AF $\phi(=$ true $\forall U \phi)$:
- find state satisfying the dual formula EG $\neg \phi$
- (there exists a path for which $\neg \phi$ holds at all times)
- Compute states satisfying EG ϕ as the greatest fixpoint of

$$
H(X)=\phi \wedge z .(X \exists U z>c)
$$

- 0 iterations: all states
- 1 iteration: satisfy ϕ
- 2 iterations: can satisfy ϕ until c time units have passed, ...
$-k+1$ iterations: can satisfy ϕ until $k \cdot c$ time units have passed
- ... always satisfy ϕ
c is any constant greater than 0

Backwards - Qualitative minimum probabilities

maximum probability of satisfying $G \phi$ equals 1 (is not less than 1)

- Set of states satisfying $\neg P_{<1}[G \phi]$ is greatest fixpoint of

$$
\mathrm{H}(\mathrm{X})=\phi \wedge \mathrm{Z} . \neg \mathrm{P}_{<1}[X \cup(X \vee \mathrm{Z}>\mathrm{C})]
$$

maximum probability of satisfying $X U(X \vee z>c)$ equals 1

- 0 iterations: all states
-1 iteration: all states satisfying ϕ
- 2 iterations: all states for which the maximum probability of satisfying ϕ until c time units have passed equals $1 . .$.
$-k+1$ iterations: all states for which the maximum probability of satisfying ϕ until $k \cdot c$ time units have passed equals $1 . .$.
- ...all states for which the maximum probability of always satisfying ϕ equals 1

Backwards - Quantitative minimum probabilities

- For formulae of the form $\mathrm{F} \phi$ use the following result

$$
\begin{aligned}
\mathrm{p}_{\min }(\mathrm{s}, \mathrm{~F} \phi) & =1-\mathrm{p}_{\max }(\mathrm{s}, \mathrm{G} \neg \phi) \\
& =1-\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi \mathrm{U} \neg \mathrm{P}_{<1}[\mathrm{G} \neg \phi]\right)
\end{aligned}
$$

and the fact that we have already shown methods for

- computing maximum until probabilities
- the set of states satisfying $\neg \mathrm{P}_{<1}[G \phi]$
- Problem reduces to
- graph analysis (compute $\operatorname{Sat}\left(\neg \mathrm{P}_{<1}[\mathrm{G} \phi]\right)$)
- computation of maximum until probabilities (compute $\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi \mathrm{U} \neg \mathrm{P}_{<1}[\mathrm{G} \neg \phi]\right.$))

Backwards - Minimum probabilities

- For formulae of the form $\phi_{1} \cup \phi_{2}$ instead use

$$
\begin{aligned}
\mathrm{p}_{\min }\left(\mathrm{s}, \phi_{1} \cup \phi_{2}\right) & =1-\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi_{1} \mathrm{R} \neg \phi_{2}\right) \\
& =1-\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi_{2} \mathrm{U} \neg \mathrm{P}_{<1}\left[\neg \phi_{1} \mathrm{R} \neg \phi_{2}\right]\right)
\end{aligned}
$$

- operator R (release) is the dual of U (until)
$-\phi_{1} \cup \phi_{2} \equiv \neg\left(\neg \phi_{1} R \neg \phi_{2}\right)$
- Sat $\left(\neg \mathrm{P}_{<1}\left[\neg \phi_{1} R \neg \phi_{2}\right]\right)$ can be computed via a greatest fixpoint
- similar to the method for $\operatorname{Sat}\left(\neg P_{<1}[G \neg \phi]\right)$
- Problem reduces to
- graph analysis (compute Sat $\left(\neg \mathrm{P}_{<1}\left[\neg \phi_{1} \mathrm{R} \neg \phi_{2}\right]\right)$)
- computation of maximum until probabilities (compute $\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi_{2} \mathrm{U} \neg \mathrm{P}_{<1}\left[\neg \phi_{1} \mathrm{R} \neg \phi_{2}\right]\right.$))

Backwards - Minimum probabilities

- z. $\mathrm{P}_{\sim \mathrm{p}}[\mathrm{Fr} \mathrm{sr} \wedge \mathrm{z}<6]$ minimum probability of sending the message before 6 time units have passed
- first step is to find the set of states which satisfy the formula

$$
\neg P_{<1}[G \neg(\operatorname{sr} \wedge z<6)]=\neg P_{<1}[G \operatorname{si} \vee \operatorname{di} \vee(z \geq 6)]
$$

- following method described this set is computed as

$$
\{(s r, z \geq 6),(s i, x \leq 3 \wedge z \geq x+3),(d i, x \leq 2 \wedge z \geq x+3)\}
$$

- now find maximum probability of reaching this set of states while remaining in $\neg(s r \wedge z<6)$
- i.e. compute $\mathrm{p}_{\max }\left(\mathrm{s}, \neg \phi \mathrm{U} \neg \mathrm{P}_{<1}[\mathrm{G} \neg \phi]\right)$

Backwards - Minimum probabilities

- find maximum probability of reaching
$-(s r, z \geq 6),(s i, x \leq 3 \wedge z \geq x+3),(d i, x \leq 2 \wedge z \geq x+4)$
- while remaining in $\neg(\operatorname{sr} \wedge z<6)$

for $\left(l_{\text {init }}, 0,0\right.$ given by $p_{\text {max }}\left((d i, 1 \leq d i \leq 2), F a_{\text {target }}\right)=0.005$
minimum probability of reaching $\mathrm{sr} \wedge \mathrm{z}<6$ from the initial state corresponds to taking transitions as late as possible

Symbolic model checking - Backwards

- Main result [KNSO1b, KNSW04]
- obtain time-abstract, finite-state MDP over zones
- full PTCTL is preserved via quotient
- conjunctions of zones to preserve probabilistic branching
- not on-the fly, must construct MDP first
- Experimental implementation
- Implemented in Java, using Difference Bound Matrices (DBMs)
- Explicit, into PRISM input language
- Problem: need to consider non-convex zones
- represented as unions of convex zones, i.e. lists of DBMs
- expensive operations

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

Model checking - Digital clocks

- Durations can only take integer durations
- time domain is \mathbb{N} as opposed to $\mathbb{R}_{\geq 0}$
- Restricted to PTAs class of PTAs, zones must be:
- closed - do not feature strict inequalities
- diagonal-free - no comparisons between clocks ($x+c \leq y+d$)
- Based on ϵ-digitisation [HMP92]
- Preserves a subset of properties
- no nested PTCTL properties
- zones appearing in formulae closed and diagonal free
- Semantics is an MDP with finite state space
- need only count up to $\mathrm{C}_{\max }$ (max constant in PTA and formula)
- can employ model checking algorithms for PCTL against MDPs

Model checking - Digital clocks

$$
(\mathrm{di}, \mathrm{x}=\mathrm{z}=0) \longrightarrow(\mathrm{di}, \mathrm{x}=\mathrm{z}=1) \longrightarrow(\mathrm{di}, \mathrm{x}=\mathrm{z}=2)
$$

$$
(s i, x=0 \wedge z=1) \quad(s r, x=0 \wedge z=2)
$$

disc one clock tick f PTA

Model checking - Digital clocks

- Main result for digital semantics [KNPS06]
- for closed diagonal free PTAs digital semantics preserves minimum/maximum reachability probabilities
- only for initial state
- extends to formula of the form z.P ${ }_{\sim p}\left[\phi_{1} \cup \phi_{2}\right]$ if ϕ_{1} and ϕ_{2} contain only atomic propositions and closed diagonal-free zones
- extends to any state where all clocks have integer values
- Restriction to closed, diagonal-free found not to be important for many case studies
- Problem: inefficiency for some models, as large constants give rise to very large state spaces

Digital clocks - Probabilistic reachability

- Probabilistic reachability:
- with probability at least 0.999, a data packet is correctly delivered
- Probabilistic time-bounded reachability
- with probability 0.01 or less, a data packet is lost within 5 time units
- Probabilistic cost-bounded reachability
- with probability 0.75 or greater, a data packet is correctly delivered with at most 4 retransmissions
- Invariance:
- with probability 0.875 or greater, the system never aborts
- Bounded response:
- with probability 0.99 or greater, a data packet will always be delivered within 5 time units

Digital clocks - PTCTL not preserved

- Consider the PTCTL formula $\phi=z . P_{<1}\left[\right.$ true $\left.U\left(a_{11} \wedge z \leq 1\right)\right]$
$-a_{11}$ atomic proposition only true in location I_{1}
- Digital semantics:
- no state satisfies ϕ since for any state we have $\operatorname{Prob}^{A}\left(s, E[z:=0]\right.$, true $\left.U\left(a_{11} \wedge z \leq 1\right)\right)=1$ for some adversary A
- hence $P_{<1}$ [true $U \phi$] is trivially true in all states

Digital clocks - PTCTL not preserved

- Consider the PTCTL formula $\phi=z . P_{<1}\left[\right.$ true $\left.U\left(a_{11} \wedge z \leq 1\right)\right]$
$-a_{11}$ atomic proposition only true in location I_{1}
- Dense time semantics:
- any state $\left(l_{\text {init }}, v\right)$ where $v(x) \in(1,2)$ satisfies ϕ more than one time unit must pass before we can reach I_{1}
- hence $P_{<1}[$ true $U \phi]$ is not true in the initial state

Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
- syntax, semantics, examples
- PTCTL model checking
- the region graph
- forwards and backwards symbolic approaches
- digital clocks
- Costs and rewards

Costs and rewards

Add reward structure ($\mathrm{\rho}, \mathrm{l}$) to Probabilistic Timed Automata

- $\varrho:$ Loc $\rightarrow \mathbb{R}_{\geq 0}$ location reward function
- $\varrho(\mathrm{l})$ is the rate at which the reward is accumulated in location I
- $\mathbf{l}: \Sigma \rightarrow \mathbb{R}_{\geq 0}$ event reward function
- $\mathbf{l}(\sigma)$ is the reward associated with performing the event σ
- Generalisation of uniformly priced timed automata
- Special case reward is the elapsed time
$-\rho(I)=1$ for all locations $I \in \operatorname{Loc}$
$-\mathbf{l}(\sigma)=0$ for all events $\sigma \in \Sigma$

Expected reachability

- Expected reward of reaching set of target states
- digital clocks semantics preserves expected reachability [KNPS06]
- can use finite-state MDP algorithm
- no approach based on zones (yet)
- Expected reachability properties:
- the maximum expected time until a data packet is delivered
- the minimum expected time until a packet collision occurs
- the minimum expected number of retransmissions before the message is correctly delivered
- the minimum expected number of packets sent before failure
- the maximum expected number of lost messages within the first 200 seconds

Summing up...

- Probabilistic timed automata (PTAs)
- discrete probability distributions only
- useful in modelling protocols with timing delays and probability
- extension with continuous distributions exists, but model checking only approximate
- Implementation
- digital clocks via model checking for MDPs
- forward/backward, experimental implementations only
- still no satisfactory combination of symbolic probabilistic and real-time data structures
- More research needed...
- contribution to theory and practice

