
Probabilistic Model CheckingProbabilistic Model Checking

Part 10 Part 10 -- Implementation ofImplementation of
Probabilistic Model CheckingProbabilistic Model Checking

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of University of OxfordOxford

2

Overview

• Implementation of probabilistic model checking
− overview, key operations, symbolic vs. explicit

• Binary decision diagrams (BDDs)
− introduction, operations, sets, transition relations, …

• Multi-terminal BDDs (MTBDDs)
− introduction, operations, vectors, matrices, performance, …

3

Implementation overview

• Overview of the probabilistic model checking process
− two distinct phases: model construction, model checking
− three different models, two different logics, various methods
− but… all these processes have much in common

Model
construction

High-level
model

Model

ResultModel
checking

Property
PRISM

language
description

PCTL or CSL
formula

DTMC, MDP
or CTMC

4

Model construction

PRISM
language

description graph-based
algorithm

Translation
from

high-level
language

Reachability:
building set
of reachable

states

Model construction

ModelHigh-level
model

matrix
manipulation

DTMC, MDP
or CTMC

5

Model checking

Precomputation
algorithms

Bottom strongly
connected
component

computation

Model checking

Solution of linear
equation systems

(iterative methods)

Solution of linear
optimisation problems

(iterative methods)

Uniformisation-based
iterative methods

Basic set
operations

Model
Result

Property

DTMC, MDP
or CTMC

PCTL or CSL
formula

Two distinct classes of techniques:
graph-based algorithms

iterative numerical computation

6

Underlying operations

• Key objects/operations for probabilistic model checking

• Graph-based algorithms
− underlying transition relation of DTMC/MDP/CTMC
− manipulation of transition relation and state sets

• Iterative numerical computation
− transition matrix of DTMC/MDP/CTMC, real-valued vectors
− manipulation of real-valued matrices and vectors
− in particular: matrix-vector multiplication

7

State-space explosion

• Models of real-life systems are typically huge
− familiar problem for verification/model checking techniques

• State-space explosion problem
− linear increase in size of system can result in an exponential

increase in the size of the model
− e.g. n parallel components of size m, can give up to mn states

• Need efficient ways of storing models, sets of states, etc.
− and efficient ways of constructing, manipulating them

• Here, we will focus on symbolic approaches

8

Symbolic data structures

• Distinguish between explicit and symbolic storage
• Symbolic data structures

− usually based on binary decision diagrams (BDDs) or variants
− avoid explicit enumeration of data by exploiting regularity
− potentially very compact storage (but not always)

• Sets of states:
− explicit: bit vectors, symbolic: BDDs

• Real-valued vectors:
− explicit: arrays of reals (in practice, doubles/floats)
− symbolic: multi-terminal BDDs (MTBDDs)

• Real-valued matrices:
− explicit: sparse matrices
− symbolic: MTBDDs

9

Overview

• Implementation of probabilistic model checking
− overview, key operations, symbolic vs. explicit

• Binary decision diagrams (BDDs)
− introduction, operations, sets, transition relations, …

• Multi-terminal BDDs (MTBDDs)
− introduction, operations, vectors, matrices, performance, …

10

Representations of Boolean formulas

• Propositional formula: f = (x1 ∨ x2) ∧ x3

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Binary decision treeTruth table

Binary decision diagram

11

Binary decision trees

• Graphical representation of Boolean functions
− f(x1,…,xn) : {0,1}n → {0,1}

• Binary tree with two types of nodes
• Non-terminal nodes

− labelled with a Boolean variable xi

− two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
• Terminal nodes (or “leaf” nodes)

− labelled with 0 or 1
• To read the value of f(x1,…,xn)

− start at root (top) node
− take “then” edge if xi=1
− take “else” edge if xi=0
− result given by leaf node

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2

12

Binary decision diagrams

• Binary decision diagrams (BDDs) [Bry86]
− based on binary decison trees, but reduced and ordered
− sometimes called reduced ordered BDDs (ROBDDs)
− actually directed acyclic graphs (DAGs), not trees
− compact, canonical representation for Boolean functions

• Variable ordering
− a BDD assumes a fixed total ordering

over its set of Boolean variables
− e.g. x1<x2<x3

− along any path through the BDD,
variables appear at most once each
and always in the correct order

x2

x1

0 1

x3

13

BDD reduction rule 1

• Rule 1: Merge identical terminal nodes

• Example:

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3 x3 x3

x2

0 0 0

14

BDD reduction rule 2

• Rule 2: Merge isomorphic nodes, redirect incoming nodes

• Example:

x2

x1

x3

0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3

x2

xj

xi xi

xj xj

xi xi

xj xj

xi

xj

15

BDD reduction rule 3

• Rule 3: Remove redundant nodes (with identical children)

• Example:

x2

x1

x3

0 1

x3

x2 x2

x1

0 1

x3

xi

xj xj

16

Canonicity

• BDDs are a canonical representation for Boolean functions
− two Boolean functions are equivalent if and only if the BDDs

which represent them are isomorphic
− uniqueness relies on: reduced BDDs, fixed variable ordered

• Important implications for implementation efficiency
− can be tested in linear (or even constant) time

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

0 1

x3

17

BDD variable ordering

• BDD size can be very sensitive to the variable ordering
− example: f = (x1∧y1) ∨ (x2∧y2) ∨ (x3∧y3)

x2

x1

x3

10

x3 x3 x3

x2

y1 y1y1 y1

y2 y2

y3

x1

y1

x2

y2

x3

y3

0 1

x1<y1<x2<y2< x3<y3

2n+2 nodes

x1<x2<x3<y1< y2<y3

2n+1 nodes

18

BDDs - Some notation

• Boolean functions
− for a BDD A, the function represented by A is denoted fA

• Restriction
− for a BDD A, Boolean variable x in A, and Boolean value b
− A|x=b denotes the BDD representing the function fA restricted

to the case where x=b
− extends easily to multiple variables
− A|x1=b1,x2=b2 = (A|x1=b1)|x2=b2

• Shannon’s Law: recursive expansion of BDDs
− let x be the top-most Boolean variable in a BDD A
− fA = ¬x ∧ fA|x=0 ∨ x ∧ fA|x=1

x2

x1

0 1

x3

19

Manipulating BDDs

• Need efficient ways to manipulate Boolean functions
− while they are represented as BDDs
− i.e. algorithms which are applied directly to the BDDs

• Basic operations on Boolean functions:
− negation (¬), conjunction (∧), disjunction (∨), etc.
− can all be applied directly to BDDs

• Key operation on BDDs: Apply(op, A, B)
− where A and B are BDDs and op is a binary operator over

Boolean values, e.g. ∧, ∨, etc.
− Apply(op, A, B) returns the BDD representing function fA op fB

− often just use infix notation, e.g. Apply(∧, A, B) = A ∧ B

20

The Apply operation

• Apply(op, A, B): recursive depth-first traversal of A and B
− let x be the top-most variable in the two BDDs
− reusing Shannon’s Law: we have the following as a basis:

− fA op fB = ¬x ∧ (fA|x=0 op fB|x=0) ∨ x ∧ (fA|x=1 op fB|x=1)

x2

x1

0 1

x3

x4

x1

0 1

x3

x4

A B

∨

21

Apply - Example

• Example: Apply(∨, A, B)

∨

x2

x1

0 1

x3

x4

A

A1

A2

A3

A4 A5

A6

x1

0 1

x3

x4

B

B1

B2

B3 B4

B5

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4A5,B2A3,B2

A5,B4A4,B3

Argument BDDs, with node labels: Recursive calls to Apply:

22

Apply - Example

• Example: Apply(∨, A, B)
− recursive call structure implicitly defines resulting BDD

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4A5,B2A3,B2

A5,B4A4,B3

23

Apply - Example

• Example: Apply(∨, A, B)
− but the resulting BDD needs to be reduced
− in fact, we can do this as part of the recursive Apply

operation, implementing reduction rules bottom-up

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4A5,B2A3,B2

A5,B4A4,B3

x2

x1

0 1

x3

x4

24

More on BDD operations

• Complexity for the Apply operator
− C = Apply(op, A, B)
− |C| = size of BDD C = number of nodes = O(|A|·|B|)
− since at most one recursive call for each pair of nodes
− for a good implementation, time complexity is also |A|·|B|

• Quantification (∃, ∀) over Boolean variables
− can be computed in terms of restriction
− for Boolean variable x and BDD A: ∃x.A ≡ A|x=0 V A|x=1

− extends easily to multi-variable quantification
− ∃(x1,x2,…,xn).A ≡ ∃x1.(∃x2.(…(∃xn.A)))

25

Implementation of BDDs

• Store all BDDs currently in use as one multi-rooted BDD
− no duplicate BDD subtrees, even across multiple BDDs
− every time a new node is created, check for existence first
− sometimes called the “unique table”
− implemented as set of hash tables, one per Boolean variable
− need: node referencing/dereferencing, garbage collection

• Efficiency implications
− very significant memory savings
− trivial checking of BDD equality (pointer comparison)

• Caching of BDD operation results for reuse
− store result of every BDD operation (memory dependent)
− applied at every step of recursive BDD operations
− relies on fast check for BDD equality

26

BDDs to represent sets of states

• Consider a state space S and some subset S’ ⊆ S

• We can represent S’ by its characteristic function χS’

− χS’ : S → {0,1} where χS’(s) = 1 if and only if s ∈ S’

• Assume we have an encoding of S into n Boolean variables
− this is always possible for a finite set S
− e.g. enumerate the elements of S and use a binary encoding
− (note: there may be more efficient encodings though)

• So χS’ can be seen as a function χS’(x1,…xn) : {0,1}n → {0,1}
− which is simply a Boolean function
− which can therefore be represented as a BDD

27

BDD and sets of states - Example

• State space S: {0, 1, 2, 3}
• Encoding of S: {000, 001, 010, 011, 100, 101, 110, 111}
• Subset S’ ⊆ S: {011, 101, 111}

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Truth table: BDD:

28

Set operations with BDDs

• Set operations can be expressed in terms of Boolean
operations on the characteristic functions of sets
− for sets A and B, represented by BDDs A and B

• Set union: A ∪ B, in BDDs: A ∨ B
− χA∪B(s) = χA(s) ∨ χB(s)

• Set intersection: A ∩ B, in BDDs: A ∧ B
− χA∩B(s) = χA(s) ∧ χB(s)

• Set complement: S ∖ A, in BDDs: ¬A
− χS\A(s) = ¬χA(s)

29

BDDs and transition relations

• Transition relations can also be represented by their
characteristic function, but over pairs of states
− relation: R ⊆ S × S
− characteristic function: χR : S × S → {0,1}

• For an encoding of state space S into n Boolean variables
− we have Boolean function fR(x1,…,xn,y1,…,yn) : {0,1}2n → {0,1}
− which can be represented by a BDD

• Row and column variables
− for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn

− i.e. we use function fR(x1,y1,…,xn,yn) : {0,1}2n → {0,1}

30

BDDs and transition relations

• Example:
− 4 states: 0, 1, 2, 3
− Encoding: 0↦00, 1↦01, 2↦10, 3↦11

y1

x1

1 0

x2

y1

x2

y2y2

x2

Transition x1 x2 y1 y2 x1y1x2y2

(0,1)
(0,2)
(1,0)
(2,3)

0 0

(3,1)

1

(3,2)

0 0
00010

1
0

0

1
0 1 0

0

0100
0010
1101
1011

1 0 1

1 1110
1 1 1
1 1 0

0 1

32

31

Forward image

• Fundamental operation for model checking
− for set of states S, transition relation R ⊆ S × S,

subset T ⊆ S, Image(T) is the set of states that
can be reached from T in one step

• Express in terms of Boolean functions over states
− T : S → {0,1}, R : S × S → {0,1}, Image_T : S → {0,1}
− Image_T(s’) = ∃s . T(s) ∧ R(s,s’)

• For an encoding of state space S into n Boolean variables
− express in terms of Boolean functions over Boolean variables
− row variables x1,..,xn and column variables y1,…,yn

− Image_T(y1,…,yn) = ∃(x1,..,xn) . T(x1,..,xn) ∧ R(x1,..,xn, y1,…,yn)
• Translate directly into BDDs

− Image_T = ∃(x1,..,xn).T ∧ R

32

Reachability

• Basic breadth-first search algorithm to compute the set of
reachable states
− inputs: initial state sinit, transition relation R (in fact, Image)
− output: set T of all states reachable from sinit in R

done = false
T = {sinit}
while (done == false)

T’ = T ∪ Image(T)
if (T’ == T) done = true
T = T’

endwhile
return T

sinit

33

Reachability with BDDs

• Translate directly into BDD operations:
− inputs: BDD init for set {sinit}, BDD R for transition relation
− output: BDD T representing all reachable states

done = false
T = init
while (done == false)

T’ = T ∨ ∃(x1,..,xn).T ∧ R
if (T’ == T) done = true
T = T’

endwhile
return T

Forward image

Easy thanks to
canonicity of BDDs

BDD Apply

34

Overview

• Implementation of probabilistic model checking
− overview, key operations, symbolic vs. explicit

• Binary decision diagrams (BDDs)
− introduction, operations, sets, transition relations, …

• Multi-terminal BDDs (MTBDDs)
− introduction, operations, vectors, matrices, performance, …

35

Multi-terminal binary decision diagrams

• Multi-terminal BDDs (MTBDDs), sometimes called ADDs
− extension of BDDs to represent real-valued functions
− like BDDs, an MTBDD M is associated with n Boolean variables
− MTBDD M represents a function fM(x1,…,xn) : {0,1}n → ℝ

x1 x2 x3 fM

0 0 0 0
0 0 1 3
0 1 0 9
0 1 1 0
1 0 0 4
1 0 1 4
1 1 0 9
1 1 1 0

x2

x1

3 9

x3x3

x2

4

M
For clarity, we omit
the zero terminal

node and any
incoming edges

e.g.

36

Operations on MTBDDs

• The BDD operation Apply extends easily to MTBDDs

• For MTBDDs A, B and binary operation op over the reals:
− Apply(op, A, B) returns the MTBDD representing fA op fB

− examples for op: +, -, ×, min, max, …
− often just use infix notation, e.g. Apply(+, A, B) = A + B

• BDDs are just an instance of MTBDDs
− in this case, can use Boolean ops too, e.g. Apply(∨, A, B)

• The recursive algorithm for implementing Apply on BDDs
− can be reused for Apply on MTBDDs

37

Some other MTBDD operations

• Threshold(A, ~, c)
− for MTBDD A, relational operator op and bound c ∈ ℝ
− converts MTBDD to BDD based on threshold ~c
− i.e. builds BDD representing function fA ~ c
− e.g. computing the underlying transition relation from the

probability matrix of a DTMC: R = Threshold(P, >, 0)

• Abstract(op, {x1,…,xn}, A)
− for MTBDD A, variables {x1,…,xn} and commutative/associative

binary operator over reals op
− analogue of existential/universal quantification for BDDs
− e.g. Abstract(+, {x}, A) constructs the MTBDD representing the

function fA|x=0 + fA|x=1

− e.g. for BDD A: ∃(x1,..,xn).A ≡ Abstract(∨, {x1,…,xn}, A)

38

MTBDDs to represent vectors

• In the same way that BDDs can represent sets of states…
− MTBDDs can represent real-valued vectors over states S
− e.g. a vector of probabilities Prob(s, ψ) for each state s ∈ S
− assume we have an encoding of S into n Boolean variables
− then vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ

x2

x1

3 9

x3x3

x2

4

MTBDD v
x1 x2 x3 i fv

0 0 0 0
1
2
3
4
5
6
7

0
0 0 1 3
0 1 0 9
0 1 1 0
1 0 0 4
1 0 1 4
1 1 0 9
1 1 1 0

Vector v

[0,3,9,0,4,4,9,0]

39

MTBDDs to represent matrices

• MTBDDs can be used to represent real-valued matrices
indexed over a set of states S
− e.g. the transition probability/rate matrix of a DTMC/CTMC

• For an encoding of state space S into n Boolean variables
− a vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ
− a matrix M maps pairs of states to reals i.e. M : S × S→ℝ
− this becomes: fM(x1,…,xn,y1,…,yn) : {0,1}2n → ℝ

• Row and column variables
− for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn

− i.e. we use function fM(x1,y1,…,xn,yn) : {0,1}2n → ℝ

40

Matrices and MTBDDs - Example

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8
(1,0) = 2
(0,3) = 5
(1,3) = 5

0 0

(2,3) = 5

1

(3,2) = 2

8
0 1

00010
0
1

0

1

2
0 0 1

1

0010
0101
0111
1101

5
0 1 1 5

1 1110
1 0 1 5
1 1 0 2

Matrix M MTBDD M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0200
5000
5002
5080

y1

x1

8 2

x2

y1

5

x2

y2 y2y2

41

Matrices and MTBDDs - Recursion

• Descending one level in the MTBDD (i.e. setting xi=b)
− splits the matrix represented by the MTBDD in half
− row variables (xi) give horizontal split
− column variables (yi) give vertical split

M|x=0,y=0 M|x=0,y=1

M|x=1,y=0 M|x=1,y=1

M|x=0

M|x=1

M

42

Matrices and MTBDDs - Recursion

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8
(1,0) = 2
(0,3) = 5
(1,3) = 5

0 0

(2,3) = 5

1

(3,2) = 2

8
0 1

00010
0
1

0

1

2
0 0 1

1

0010
0101
0111
1101

5
0 1 1 5

1 1110
1 0 1 5
1 1 0 2

Matrix M MTBDD M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0200
5000
5002
5080

y1

x1

8 2

x2

y1

5

x2

y2 y2y2

43

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8
(1,0) = 2
(0,3) = 5
(1,3) = 5

0 0

(2,3) = 5

1

(3,2) = 2

8
0 1

00010
0
1

0

1

2
0 0 1

1

0010
0101
0111
1101

5
0 1 1 5

1 1110
1 0 1 5
1 1 0 2

Matrix M MTBDD M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0200
5000
5002
5080

y1

x1

8 2

x2

y1

5

x2

y2 y2y2

Repeated
submatrices

Shared
MTBDD node

44

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8
(1,0) = 2
(0,3) = 5
(1,3) = 5

0 0

(2,3) = 5

1

(3,2) = 2

8
20 1

00010
0
1

0

1
0 0 1

1

0010
0101
0111
1101

5
0 1 1 5

1 1110
1 0 1 5
1 1 0 2

Matrix M MTBDD M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0200
5000
5002
5080

y1

x1

8 2

x2

y1

5

x2

y2 y2y2

Identical
adjacent

submatrices

MTBDD node
removed

45

Matrices and MTBDDs - Sparseness

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8
(1,0) = 2
(0,3) = 5
(1,3) = 5

0 0

(2,3) = 5

1

(3,2) = 2

8
0 1

00010
0
1

0

1

2
0 0 1

1

0010
0101
0111
1101

5
0 1 1 5

1 1110
1 0 1 5
1 1 0 2

Matrix M MTBDD M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0200
5000
5002
5080

y1

x1

8 2

x2

y1

5

x2

y2 y2y2

Blocks of
zeros

Edge goes
straight to
zero node

46

MTBDD matrix/vector operations

• Pointwise addition/multiplication and scalar multiplication
− can be implemented with the Apply operator
− Matrices: A + B, MTBDDs: Apply(+, A, B)

• Matrix-matrix multiplication A·B
− can be expressed recursively based on 4-way matrix splits

− which forms the basis of an MTBDD implementation
− various optimisations are possible

• Matrix-matrix multiplication A·v is done in similar fashion

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

43

21

43

21

43

21
CC
CC

BB
BB

AA
AA A1 = B1·C1 + B2 · C3, etc.

47

Sparse matrices

• Explicit data structure for matrices with many zero entries
− assume a matrix P of size n × n with nnz non-zero elements
− store three arrays: val and col (of size nnz) and row (of size n)
− for each matrix entry (r,c)=v, c and v are stored in col/val
− entries are grouped by row, with pointers stored in row
− also possible to group by column

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅⋅

⋅⋅⋅
⋅⋅

=

1
7.03.0

1
5.05.0

 P

0.5 1 0.3 10.70.5val

1 2 0 033col

0 3 5 62row

48

Sparse matrices

• Advantages
− compact storage (proportional to number of non-zero entries)
− fast access to matrix entries
− especially if usually need an entire row at once
− (which is the case for e.g. matrix-vector multiplication)

• Disadvantage
− less effficient to manipulate (i.e. add/delete matrix entries)

• Storage requirements
− for a matrix of size n × n with nnz non-zero elements
− assume reals are 8 byte doubles, indices are 4 byte integers
− we need 8·nnz+4·nnz+4·n = 12·nnz+4·n bytes

49

Sparse matrices vs. MTBDDs

• Storage requirements
− MTBDDs: each node is 20 bytes
− sparse matrices: 12·nnz+4·n bytes (n states, nnz transitions)

• Case study: Kanban manufacturing system, N jobs
− store transition rate matrix R of the corresponding CTMCs

N States
(n)

Transitions
(nnz)

MTBDD
(KB)

Sparse matrix
(KB)

3 58,400 446,400
3,979,850

24,460,016
115,708,992
450,455,040

1,507,898,700

5,459
4 454,475

48
96

123
154
186

48,414
5 2,546,432 296,588
6 11,261,376 1,399,955
7 41,644,800 5,441,445
8 133,865,325 287 13,193,599

50

Implementation in PRISM

• PRISM is a symbolic probabilistic model checker
− the key underlying data structures are MTBDDs (and BDDs)

• In fact, has multiple numerical computation engines

− MTBDDs: storage/analysis of very large models (given
structure/regularity), numerical computation can blow up

− Sparse matrices: fastest solution for smaller models (<106

states), prohibitive memory consumption for larger models

− Hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)

51

Summing up…

• Implementation of probabilistic model checking
− graph-based algorithms, e.g. reachability, precomputation
− manipulation of sets of states, transition relations
− iterative numerical computation
− key operation: matrix-vector multiplication

• Binary decision diagrams (BDDs)
− representation for Boolean functions
− efficient storage/manipulation of sets, transition relations

• Multi-terminal BDDs (MTBDDs)
− extension of BDDs to real-valued functions
− efficient storage/manipulation of real-valued vectors,

matrices (assuming structure and regularity)
− can be much more compact than (explicit) sparse matrices

	Probabilistic Model Checking
	Overview
	Implementation overview
	Model construction
	Model checking
	Underlying operations
	State-space explosion
	Symbolic data structures
	Overview
	Representations of Boolean formulas
	Binary decision trees
	Binary decision diagrams
	BDD reduction rule 1
	BDD reduction rule 2
	BDD reduction rule 3
	Canonicity
	BDD variable ordering
	BDDs - Some notation
	Manipulating BDDs
	The Apply operation
	Apply - Example
	Apply - Example
	Apply - Example
	More on BDD operations
	Implementation of BDDs
	BDDs to represent sets of states
	BDD and sets of states - Example
	Set operations with BDDs
	BDDs and transition relations
	BDDs and transition relations
	Forward image
	Reachability
	Reachability with BDDs
	Overview
	Multi-terminal binary decision diagrams
	Operations on MTBDDs
	Some other MTBDD operations
	MTBDDs to represent vectors
	MTBDDs to represent matrices
	Matrices and MTBDDs - Example
	Matrices and MTBDDs - Recursion
	Matrices and MTBDDs - Recursion
	Matrices and MTBDDs - Regularity
	Matrices and MTBDDs - Regularity
	Matrices and MTBDDs - Sparseness
	MTBDD matrix/vector operations
	Sparse matrices
	Sparse matrices
	Sparse matrices vs. MTBDDs
	Implementation in PRISM
	Summing up…

