# Probabilistic Model Checking 

Marta Kwiatkowska<br>Gethin Norman<br>Dave Parker<br><br>University of Oxford

Part 10 - Implementation of
Probabilistic Model Checking

## Overview

- Implementation of probabilistic model checking
- overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
- introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
- introduction, operations, vectors, matrices, performance, ...


## Implementation overview

- Overview of the probabilistic model checking process
- two distinct phases: model construction, model checking
- three different models, two different logics, various methods
- but... all these processes have much in common



## Model construction



## Model checking



Two distinct classes of techniques: graph-based algorithms
iterative numerical computation

## Underlying operations

- Key objects/operations for probabilistic model checking
- Graph-based algorithms
- underlying transition relation of DTMC/MDP/CTMC
- manipulation of transition relation and state sets
- Iterative numerical computation
- transition matrix of DTMC/MDP/CTMC, real-valued vectors
- manipulation of real-valued matrices and vectors
- in particular: matrix-vector multiplication


## State-space explosion

- Models of real-life systems are typically huge
- familiar problem for verification/model checking techniques
- State-space explosion problem
- linear increase in size of system can result in an exponential increase in the size of the model
- e.g. n parallel components of size m, can give up to $m^{n}$ states
- Need efficient ways of storing models, sets of states, etc.
- and efficient ways of constructing, manipulating them
- Here, we will focus on symbolic approaches


## Symbolic data structures

- Distinguish between explicit and symbolic storage
- Symbolic data structures
- usually based on binary decision diagrams (BDDs) or variants
- avoid explicit enumeration of data by exploiting regularity
- potentially very compact storage (but not always)
- Sets of states:
- explicit: bit vectors, symbolic: BDDs
- Real-valued vectors:
- explicit: arrays of reals (in practice, doubles/floats)
- symbolic: multi-terminal BDDs (MTBDDs)
- Real-valued matrices:
- explicit: sparse matrices
- symbolic: MTBDDs


## Overview

- Implementation of probabilistic model checking
- overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
- introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
- introduction, operations, vectors, matrices, performance, ...


## Representations of Boolean formulas

- Propositional formula: $f=\left(x_{1} \vee x_{2}\right) \wedge x_{3}$

Truth table

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |



Binary decision diagram


## Binary decision trees

- Graphical representation of Boolean functions
$-f\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}$
- Binary tree with two types of nodes
- Non-terminal nodes
- labelled with a Boolean variable $x_{i}$
- two children: 1 ("then", solid line) and 0 ("else", dotted line)
- Terminal nodes (or "leaf" nodes)
- labelled with 0 or 1
- To read the value of $f\left(x_{1}, \ldots, x_{n}\right)$
- start at root (top) node
- take "then" edge if $x_{i}=1$
- take "else" edge if $x_{i}=0$

- result given by leaf node


## Binary decision diagrams

- Binary decision diagrams (BDDs) [Bry86]
- based on binary decison trees, but reduced and ordered
- sometimes called reduced ordered BDDs (ROBDDs)
- actually directed acyclic graphs (DAGs), not trees
- compact, canonical representation for Boolean functions
- Variable ordering
- a BDD assumes a fixed total ordering over its set of Boolean variables
- e.g. $x_{1}<x_{2}<x_{3}$
- along any path through the BDD, variables appear at most once each and always in the correct order



## BDD reduction rule 1

- Rule 1: Merge identical terminal nodes

- Example:



## BDD reduction rule 2

- Rule 2: Merge isomorphic nodes, redirect incoming nodes

- Example:



## BDD reduction rule 3

- Rule 3: Remove redundant nodes (with identical children)

- Example:



## Canonicity

- BDDs are a canonical representation for Boolean functions
- two Boolean functions are equivalent if and only if the BDDs which represent them are isomorphic
- uniqueness relies on: reduced BDDs, fixed variable ordered

- Important implications for implementation efficiency
- can be tested in linear (or even constant) time


## BDD variable ordering

- BDD size can be very sensitive to the variable ordering - example: $f=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee\left(x_{3} \wedge y_{3}\right)$



## BDDs - Some notation

- Boolean functions
- for a BDD A, the function represented by $A$ is denoted $f_{A}$
- Restriction
- for a BDD A, Boolean variable $x$ in A, and Boolean value $b$
$-\left.A\right|_{x=b}$ denotes the BDD representing the function $f_{A}$ restricted to the case where $\mathrm{x}=\mathrm{b}$
- extends easily to multiple variables
$-\left.A\right|_{x 1=b 1, x 2=b 2}=\left.\left(\left.A\right|_{x 1=b 1}\right)\right|_{x 2=b 2}$
- Shannon's Law: recursive expansion of BDDs
- let $x$ be the top-most Boolean variable in a BDD A
$-f_{A}=\neg x \wedge f_{A \mid x=0} \vee x \wedge f_{A \mid x=1}$



## Manipulating BDDs

- Need efficient ways to manipulate Boolean functions
- while they are represented as BDDs
- i.e. algorithms which are applied directly to the BDDs
- Basic operations on Boolean functions:
- negation ( $\neg$ ), conjunction ( $\wedge$ ), disjunction ( $\vee$ ), etc.
- can all be applied directly to BDDs
- Key operation on BDDs: Apply(op, A, B)
- where $A$ and $B$ are BDDs and op is a binary operator over Boolean values, e.g. $\wedge, \vee$, etc.
- Apply(op, A, B) returns the BDD representing function $f_{A}$ op $f_{B}$
- often just use infix notation, e.g. Apply( $\wedge, A, B)=A \wedge B$


## The Apply operation

- Apply(op, A, B): recursive depth-first traversal of A and B
- let $x$ be the top-most variable in the two BDDs
- reusing Shannon's Law: we have the following as a basis:
$-f_{A}$ op $f_{B}=\neg x \wedge\left(f_{A \mid x=0}\right.$ op $\left.f_{B \mid x=0}\right) \vee x \wedge\left(f_{A \mid x=1}\right.$ op $\left.f_{B \mid x=1}\right)$



## Apply - Example

- Example: $\operatorname{Apply}(\vee, \mathrm{A}, \mathrm{B})$

Argument BDDs, with node labels:
Recursive calls to Apply:


## Apply - Example

- Example: $\operatorname{Apply}(\mathrm{V}, \mathrm{A}, \mathrm{B})$
- recursive call structure implicitly defines resulting BDD



## Apply - Example

- Example: $\operatorname{Apply}(\mathrm{V}, \mathrm{A}, \mathrm{B})$
- but the resulting BDD needs to be reduced
- in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up



## More on BDD operations

- Complexity for the Apply operator
- C = Apply(op, A, B)
$-|C|=$ size of BDD C $=$ number of nodes $=O(|A| \cdot|B|)$
- since at most one recursive call for each pair of nodes
- for a good implementation, time complexity is also $|\mathrm{A}| \cdot|\mathrm{B}|$
- Quantification ( $\exists, \forall$ ) over Boolean variables
- can be computed in terms of restriction
- for Boolean variable $x$ and BDD A: $\exists x .\left.\left.A \equiv A\right|_{x=0} \vee A\right|_{x=1}$
- extends easily to multi-variable quantification
$-\exists\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot A \equiv \exists x_{1} \cdot\left(\exists x_{2} \cdot\left(\ldots \cdot\left(\exists x_{n} \cdot A\right)\right)\right)$


## Implementation of BDDs

- Store all BDDs currently in use as one multi-rooted BDD
- no duplicate BDD subtrees, even across multiple BDDs
- every time a new node is created, check for existence first
- sometimes called the "unique table"
- implemented as set of hash tables, one per Boolean variable
- need: node referencing/dereferencing, garbage collection
- Efficiency implications
- very significant memory savings
- trivial checking of BDD equality (pointer comparison)
- Caching of BDD operation results for reuse
- store result of every BDD operation (memory dependent)
- applied at every step of recursive BDD operations
- relies on fast check for BDD equality


## BDDs to represent sets of states

- Consider a state space $S$ and some subset $S^{\prime} \subseteq S$
- We can represent $S^{\prime}$ by its characteristic function $X_{S^{\prime}}$
$-X_{S^{\prime}}: S \rightarrow\{0,1\}$ where $X_{S^{\prime}}(s)=1$ if and only if $s \in S^{\prime}$
- Assume we have an encoding of $S$ into $n$ Boolean variables
- this is always possible for a finite set $S$
- e.g. enumerate the elements of $S$ and use a binary encoding
- (note: there may be more efficient encodings though)
- So $X_{S^{\prime}}$ can be seen as a function $X_{S^{\prime}}\left(X_{1}, \ldots x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}$
- which is simply a Boolean function
- which can therefore be represented as a BDD


## BDD and sets of states - Example

- State space $\mathrm{S}:\{0,1,2,3\}$
- Encoding of S: $\{000,001,010,011,100,101,110,111\}$
- Subset S' $\subseteq$ S: $\{011,101,111\}$

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

BDD:


## Set operations with BDDs

- Set operations can be expressed in terms of Boolean operations on the characteristic functions of sets
- for sets A and B, represented by BDDs A and B
- Set union: $A \cup B$, in BDDs: $A \vee B$
$-X_{A \cup B}(s)=X_{A}(s) \vee X_{B}(s)$
- Set intersection: $A \cap B$, in BDDs: $A \wedge B$

$$
-X_{A \cap B}(s)=X_{A}(s) \wedge X_{B}(s)
$$

- Set complement: $S \backslash A$, in BDDs: $\neg A$
$-X_{S \mid A}(s)=\neg X_{A}(s)$


## BDDs and transition relations

- Transition relations can also be represented by their characteristic function, but over pairs of states
- relation: $\mathrm{R} \subseteq \mathrm{S} \times \mathrm{S}$
- characteristic function: $X_{R}: S \times S \rightarrow\{0,1\}$
- For an encoding of state space $S$ into $n$ Boolean variables
- we have Boolean function $f_{R}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right):\{0,1\}^{2 n} \rightarrow\{0,1\}$
- which can be represented by a BDD
- Row and column variables
- for efficiency reasons, we interleave the row variables $x_{1}, . ., x_{n}$ and column variables $y_{1}, \ldots, y_{n}$
- i.e. we use function $f_{R}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right):\{0,1\}^{2 n} \rightarrow\{0,1\}$


## BDDs and transition relations

- Example:
- 4 states: $0,1,2,3$
- Encoding: $0 \mapsto 00,1 \mapsto 01,2 \mapsto 10,3 \mapsto 11$


| Transition | $x_{1}$ | $x_{2}$ | $y_{1}$ | $y_{2}$ | $x_{1} y_{1} x_{2} y_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,1)$ | 0 | 0 | 0 | 1 | 0001 |
| $(0,2)$ | 0 | 0 | 1 | 0 | 0100 |
| $(1,0)$ | 0 | 1 | 0 | 0 | 0010 |
| $(2,3)$ | 1 | 0 | 1 | 1 | 1101 |
| $(3,1)$ | 1 | 1 | 0 | 1 | 1011 |
| $(3,2)$ | 1 | 1 | 1 | 0 | 1110 |



## Forward image

- Fundamental operation for model checking
- for set of states $S$, transition relation $R \subseteq S \times S$, subset $T \subseteq S$, $\operatorname{Image}(T)$ is the set of states that can be reached from T in one step
- Express in terms of Boolean functions over states
$-\mathrm{T}: \mathrm{S} \rightarrow\{0,1\}, \mathrm{R}: \mathrm{S} \times \mathrm{S} \rightarrow\{0,1\}$, Image_T:S $\boldsymbol{S}\{0,1\}$
- Image_T(s') = ヨs.T(s) $\wedge$ R(s,s')
- For an encoding of state space $S$ into $n$ Boolean variables
- express in terms of Boolean functions over Boolean variables
- row variables $x_{1}, . ., x_{n}$ and column variables $y_{1}, \ldots, y_{n}$
- Image_ $T\left(y_{1}, \ldots, y_{n}\right)=\exists\left(x_{1}, \ldots, x_{n}\right) . T\left(x_{1}, . ., x_{n}\right) \wedge R\left(x_{1}, . ., x_{n}, y_{1}, \ldots, y_{n}\right)$
- Translate directly into BDDs
- Image_T = $\exists\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}\right) . \mathrm{T} \wedge \mathrm{R}$


## Reachability

- Basic breadth-first search algorithm to compute the set of reachable states
- inputs: initial state $s_{\text {init }}$, transition relation $R$ (in fact, Image)
- output: set $T$ of all states reachable from $s_{i n i t}$ in $R$


$$
\begin{aligned}
& \text { done }=\text { false } \\
& T=\left\{s_{\text {init }}\right\} \\
& \text { while (done }==\text { false }) \\
& \quad T^{\prime}=T \cup \text { Image }(T) \\
& \quad \text { if }\left(T^{\prime}==T\right) \text { done }=\text { true } \\
& \quad T=T^{\prime} \\
& \text { endwhile } \\
& \text { return } T
\end{aligned}
$$

## Reachability with BDDs

- Translate directly into BDD operations:
- inputs: BDD init for set $\left\{s_{\text {init }}\right\}$, BDD $R$ for transition relation
- output: BDD T representing all reachable states



## Overview

- Implementation of probabilistic model checking
- overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
- introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
- introduction, operations, vectors, matrices, performance, ...


## Multi-terminal binary decision diagrams

- Multi-terminal BDDs (MTBDDs), sometimes called ADDs
- extension of BDDs to represent real-valued functions
- like BDDs, an MTBDD $M$ is associated with $n$ Boolean variables
- MTBDD M represents a function $f_{M}\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow \mathbb{R}$

For clarity, we omit the zero terminal node and any incoming edges


| $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{f}_{\mathrm{M}}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 3 |
| 0 | 1 | 0 | 9 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 4 |
| 1 | 0 | 1 | 4 |
| 1 | 1 | 0 | 9 |
| 1 | 1 | 1 | 0 |

## Operations on MTBDDs

- The BDD operation Apply extends easily to MTBDDs
- For MTBDDs $A, B$ and binary operation op over the reals:
- Apply(op, A, B) returns the MTBDD representing $f_{A}$ op $f_{B}$
- examples for op: $+,-, \times, \min , \max , \ldots$
- often just use infix notation, e.g. Apply(+, A, B) = A + B
- BDDs are just an instance of MTBDDs
- in this case, can use Boolean ops too, e.g. Apply( $\vee$, A, B)
- The recursive algorithm for implementing Apply on BDDs
- can be reused for Apply on MTBDDs


## Some other MTBDD operations

- Threshold(A, ~, c)
- for MTBDD A, relational operator op and bound $c \in \mathbb{R}$
- converts MTBDD to BDD based on threshold ~c
- i.e. builds BDD representing function $f_{A} \sim c$
- e.g. computing the underlying transition relation from the probability matrix of a DTMC: $R=\operatorname{Threshold}(P,>, 0)$
- Abstract(op, $\left.\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}, \mathrm{A}\right)$
- for MTBDD A, variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and commutative/associative binary operator over reals op
- analogue of existential/universal quantification for BDDs
- e.g. Abstract(+, \{x\}, A) constructs the MTBDD representing the function $f_{A \mid x=0}+f_{A \mid x=1}$
- e.g. for BDD A: $\exists\left(x_{1}, . ., x_{n}\right) \cdot A \equiv \operatorname{Abstract}\left(\vee,\left\{x_{1}, \ldots, x_{n}\right\}, A\right)$


## MTBDDs to represent vectors

- In the same way that BDDs can represent sets of states...
- MTBDDs can represent real-valued vectors over states S
- e.g. a vector of probabilities $\operatorname{Prob}(s, \psi)$ for each state $s \in S$
- assume we have an encoding of $S$ into $n$ Boolean variables
- then vector $\underline{v}: S \rightarrow \mathbb{R}$ is a function $f_{v}\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow \mathbb{R}$

Vector v
[0,3,9,0,4,4,9,0]

| $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathbf{i}$ | $\mathrm{f}_{\mathrm{v}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 1 | 0 | 2 | 9 |
| 0 | 1 | 1 | 3 | 0 |
| 1 | 0 | 0 | 4 | 4 |
| 1 | 0 | 1 | 5 | 4 |
| 1 | 1 | 0 | 6 | 9 |
| 1 | 1 | 1 | 7 | 0 |

MTBDD v


## MTBDDs to represent matrices

- MTBDDs can be used to represent real-valued matrices indexed over a set of states $S$
- e.g. the transition probability/rate matrix of a DTMC/CTMC
- For an encoding of state space S into n Boolean variables
- a vector $\underline{v}: S \rightarrow \mathbb{R}$ is a function $f_{v}\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow \mathbb{R}$
- a matrix $\mathbf{M}$ maps pairs of states to reals i.e. $\mathbf{M}: S \times S \rightarrow \mathbb{R}$
- this becomes: $\mathrm{f}_{\mathrm{M}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right):\{0,1\}^{2 \mathrm{n}} \rightarrow \mathbb{R}$
- Row and column variables
- for efficiency reasons, we interleave the row variables $x_{1}, . ., x_{n}$ and column variables $y_{1}, \ldots, y_{n}$
- i.e. we use function $f_{M}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right):\{0,1\}^{2 n} \rightarrow \mathbb{R}$


## Matrices and MTBDDs - Example

Matrix M $\left[\begin{array}{cccc}0 & 8 & 0 & 5 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0\end{array}\right]$

MTBDD M


## Matrices and MTBDDs - Recursion

- Descending one level in the MTBDD (i.e. setting $x_{i}=b$ )
- splits the matrix represented by the MTBDD in half
- row variables ( $x_{i}$ ) give horizontal split
- column variables ( $y_{i}$ ) give vertical split



## Matrices and MTBDDs - Recursion

$$
\text { Matrix } \mathbf{M}\left[\begin{array}{ll|ll}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
\hline 0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

MTBDD M


## Matrices and MTBDDs - Regularity

| Ma |  | $\left[\begin{array}{l} 0 \\ 2 \\ 0 \\ 0 \end{array}\right.$ | $\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$ |  | ma | MTBDD M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry in M | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{y}_{1}$ | $\mathrm{y}_{2}$ | $\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{2} \mathrm{y}_{2}$ | $\mathrm{f}_{\mathrm{M}}$ | - |
| $(0,1)=8$ | 0 | 0 | 0 | 1 | 0001 | 8 | - |
| $(1,0)=2$ | 0 | 1 | 0 | 0 | 0010 | 2 | $\mathrm{y}_{2} \mathrm{y}_{2}$ |
| $(0,3)=5$ | 0 | 0 | 1 | 1 | 0101 | 5 | 1 |
| $(1,3)=5$ | 0 | 1 | 1 | 1 | 0111 | 5 | 8  |
| $(2,3)=5$ | 1 | 0 | 1 | 1 | 1101 | 5 |  |
| $(3,2)=2$ | 1 | 1 | 1 | 0 | 1110 | 2 | $\dagger$ |

## Matrices and MTBDDs - Regularity



## Matrices and MTBDDs - Sparseness

| Ma | M |  | $\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 5 \\ 5 \\ \hline 5 \end{array}$ |  |  | MTBDD M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry in M | $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $\mathrm{y}_{1}$ | $y_{2}$ | $\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{2} \mathrm{y}_{2}$ | $\mathrm{f}_{\mathrm{M}}$ |  |
| $(0,1)=8$ | 0 | 0 | 0 | 1 | 0001 | 8 | + |
| $(1,0)=2$ | 0 | 1 | 0 | 0 | 0010 | 2 |  |
| $(0,3)=5$ | 0 | 0 | 1 | 1 | 0101 | 5 |  |
| $(1,3)=5$ | 0 | 1 | 1 | 1 | 0111 | 5 | 8 2 5 |
| $(2,3)=5$ | 1 | 0 | 1 | 1 | 1101 | 5 |  |
| $(3,2)=2$ | 1 | 1 | 1 | 0 | 1110 | 2 | dge goes |

## MTBDD matrix/vector operations

- Pointwise addition/multiplication and scalar multiplication
- can be implemented with the Apply operator
- Matrices: A + B, MTBDDs: Apply(+, A, B)
- Matrix-matrix multiplication $\mathbf{A} \cdot \mathbf{B}$
- can be expressed recursively based on 4-way matrix splits

$$
\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right] \quad A_{1}=B_{1} \cdot C_{1}+B_{2} \cdot C_{3} \text {, etc. }
$$

- which forms the basis of an MTBDD implementation
- various optimisations are possible
- Matrix-matrix multiplication $A \cdot \underline{v}$ is done in similar fashion


## Sparse matrices

- Explicit data structure for matrices with many zero entries
- assume a matrix P of size $\mathrm{n} \times \mathrm{n}$ with nnz non-zero elements
- store three arrays: val and col (of size nnz) and row (of size n)
- for each matrix entry ( $\mathrm{r}, \mathrm{c}$ ) = v, c and v are stored in col/val
- entries are grouped by row, with pointers stored in row
- also possible to group by column


$$
\mathbf{P}=\left[\begin{array}{cccc}
\cdot & 0.5 & \cdot & 0.5 \\
\cdot & \cdot & 1 & \cdot \\
0.3 & \cdot & \cdot & 0.7 \\
1 & \cdot & \cdot & \cdot
\end{array}\right]
$$

## Sparse matrices

- Advantages
- compact storage (proportional to number of non-zero entries)
- fast access to matrix entries
- especially if usually need an entire row at once
- (which is the case for e.g. matrix-vector multiplication)
- Disadvantage
- less effficient to manipulate (i.e. add/delete matrix entries)
- Storage requirements
- for a matrix of size $n \times n$ with nnz non-zero elements
- assume reals are 8 byte doubles, indices are 4 byte integers
- we need $8 \cdot n n z+4 \cdot n n z+4 \cdot n=12 \cdot n n z+4 \cdot n$ bytes


## Sparse matrices vs. MTBDDs

- Storage requirements
- MTBDDs: each node is 20 bytes
- sparse matrices: $12 \cdot n n z+4 \cdot n$ bytes ( $n$ states, nnz transitions)
- Case study: Kanban manufacturing system, N jobs
- store transition rate matrix R of the corresponding CTMCs

| $\mathbf{N}$ | States <br> $(\mathbf{n})$ | Transitions <br> $(\mathbf{n n z})$ | MTBDD <br> $($ KB $)$ | Sparse matrix <br> $($ (KB $)$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 58,400 | 446,400 | 48 | 5,459 |
| 4 | 454,475 | $3,979,850$ | 96 | 48,414 |
| 5 | $2,546,432$ | $24,460,016$ | 123 | 296,588 |
| 6 | $11,261,376$ | $115,708,992$ | 154 | $1,399,955$ |
| 7 | $41,644,800$ | $450,455,040$ | 186 | $5,441,445$ |
| 8 | $133,865,325$ | $1,507,898,700$ | 287 | $13,193,599$ |

## Implementation in PRISM

- PRISM is a symbolic probabilistic model checker
- the key underlying data structures are MTBDDs (and BDDs)
- In fact, has multiple numerical computation engines
- MTBDDs: storage/analysis of very large models (given structure/regularity), numerical computation can blow up
- Sparse matrices: fastest solution for smaller models (<106 states), prohibitive memory consumption for larger models
- Hybrid: combine MTBDD storage with explicit storage, ten-fold increase in analysable model size ( $\sim 10^{7}$ states)


## Summing up...

- Implementation of probabilistic model checking
- graph-based algorithms, e.g. reachability, precomputation
- manipulation of sets of states, transition relations
- iterative numerical computation
- key operation: matrix-vector multiplication
- Binary decision diagrams (BDDs)
- representation for Boolean functions
- efficient storage/manipulation of sets, transition relations
- Multi-terminal BDDs (MTBDDs)
- extension of BDDs to real-valued functions
- efficient storage/manipulation of real-valued vectors, matrices (assuming structure and regularity)
- can be much more compact than (explicit) sparse matrices

