Probabilistic Model Checking

Marta Kwiatkowska Gethin Norman Dave Parker

University of Oxford

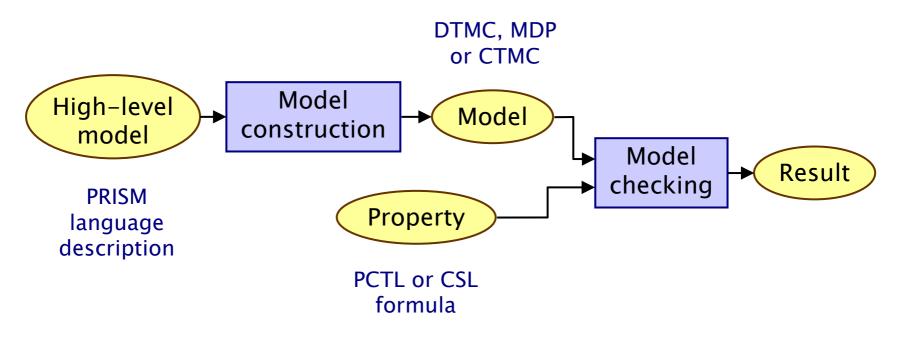
Part 10 – Implementation of Probabilistic Model Checking

Overview

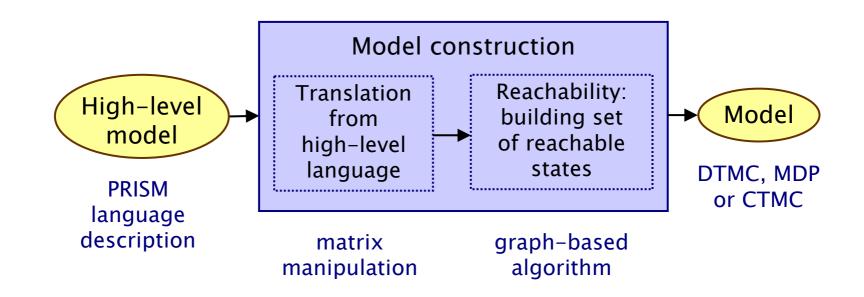
- Implementation of probabilistic model checking
 - overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
 - introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
 - introduction, operations, vectors, matrices, performance, ...

Implementation overview

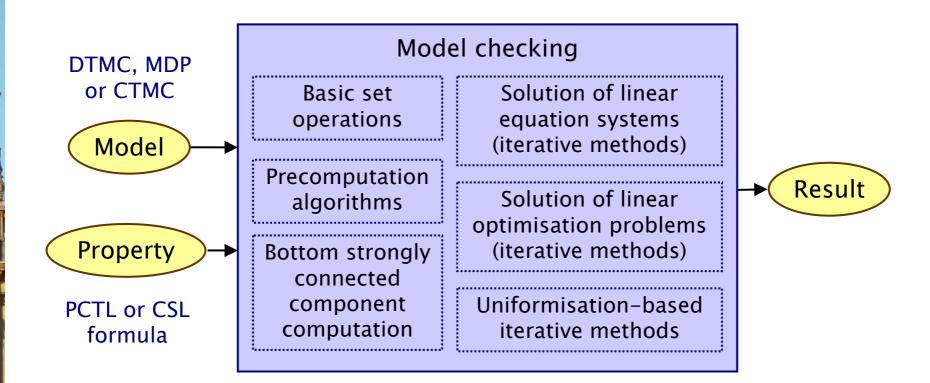
- Overview of the probabilistic model checking process
 - two distinct phases: model construction, model checking
 - three different models, two different logics, various methods
 - but... all these processes have much in common



Model construction



Model checking



Two distinct classes of techniques: graph-based algorithms iterative numerical computation

Underlying operations

- Key objects/operations for probabilistic model checking
- Graph-based algorithms
 - underlying transition relation of DTMC/MDP/CTMC
 - manipulation of transition relation and state sets
- Iterative numerical computation
 - transition matrix of DTMC/MDP/CTMC, real-valued vectors
 - manipulation of real-valued matrices and vectors
 - in particular: matrix-vector multiplication

State-space explosion

- Models of real-life systems are typically huge
 - familiar problem for verification/model checking techniques
- State-space explosion problem
 - linear increase in size of system can result in an exponential increase in the size of the model
 - e.g. n parallel components of size m, can give up to mⁿ states
- Need efficient ways of storing models, sets of states, etc.
 - and efficient ways of constructing, manipulating them
- Here, we will focus on symbolic approaches

Symbolic data structures

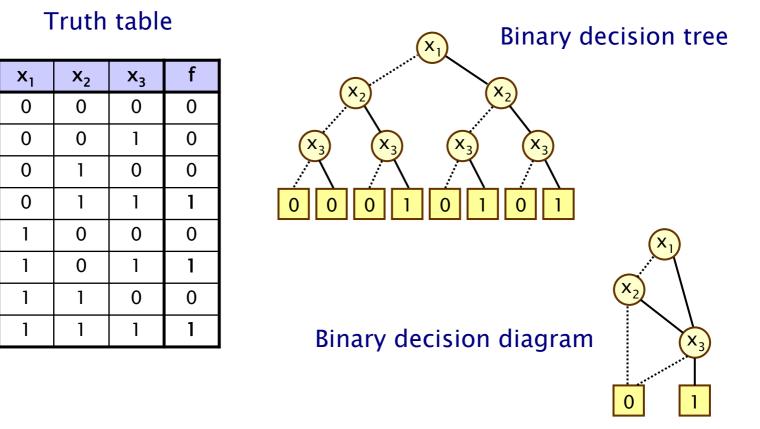
- Distinguish between explicit and symbolic storage
- Symbolic data structures
 - usually based on binary decision diagrams (BDDs) or variants
 - avoid explicit enumeration of data by exploiting regularity
 - potentially very compact storage (but not always)
- Sets of states:
 - explicit: bit vectors, symbolic: BDDs
- Real-valued vectors:
 - explicit: arrays of reals (in practice, doubles/floats)
 - symbolic: multi-terminal BDDs (MTBDDs)
- Real-valued matrices:
 - explicit: sparse matrices
 - symbolic: MTBDDs

Overview

- Implementation of probabilistic model checking
 - overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
 - introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
 - introduction, operations, vectors, matrices, performance, ...

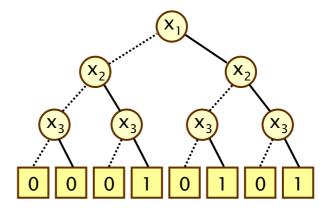
Representations of Boolean formulas

• Propositional formula: $f = (x_1 \lor x_2) \land x_3$



Binary decision trees

- Graphical representation of Boolean functions
 - $\ f(x_1,...,x_n) : \{0,1\}^n \to \{0,1\}$
- Binary tree with two types of nodes
- Non-terminal nodes
 - labelled with a Boolean variable x_i
 - two children: 1 ("then", solid line) and 0 ("else", dotted line)
- Terminal nodes (or "leaf" nodes)
 - labelled with 0 or 1
- To read the value of $f(x_1,...,x_n)$
 - start at root (top) node
 - take "then" edge if $x_i = 1$
 - take "else" edge if $x_i = 0$
 - result given by leaf node

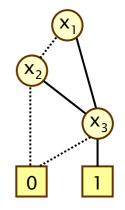


Binary decision diagrams

- Binary decision diagrams (BDDs) [Bry86]
 - based on binary decison trees, but reduced and ordered
 - sometimes called reduced ordered BDDs (ROBDDs)
 - actually directed acyclic graphs (DAGs), not trees
 - compact, canonical representation for Boolean functions

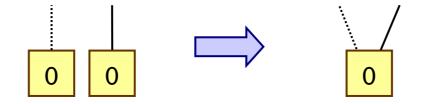
Variable ordering

- a BDD assumes a fixed total ordering over its set of Boolean variables
- $e.g. x_1 < x_2 < x_3$
- along any path through the BDD, variables appear at most once each and always in the correct order

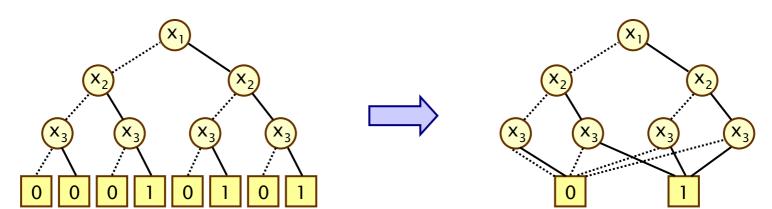


BDD reduction rule 1

• Rule 1: Merge identical terminal nodes

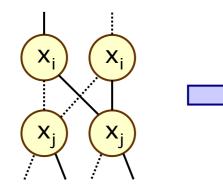


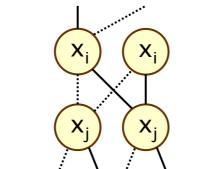
• Example:

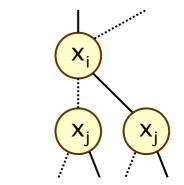


BDD reduction rule 2

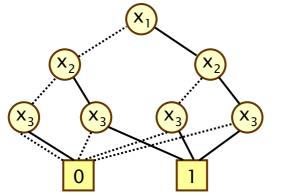
• Rule 2: Merge isomorphic nodes, redirect incoming nodes

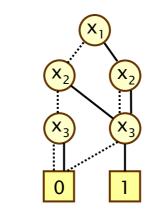






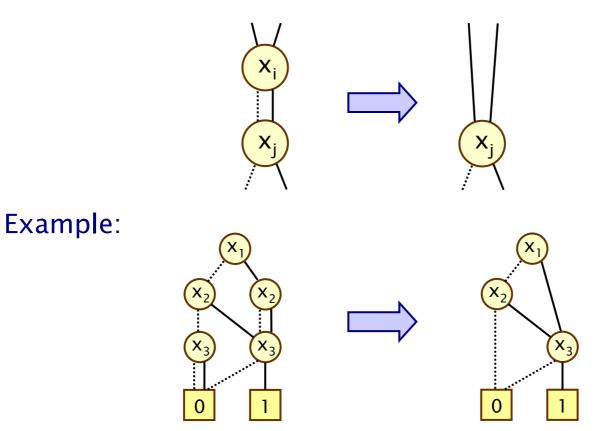
• Example:





BDD reduction rule 3

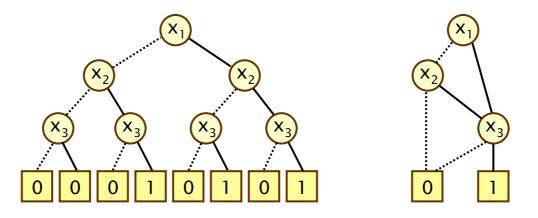
• Rule 3: Remove redundant nodes (with identical children)



•

Canonicity

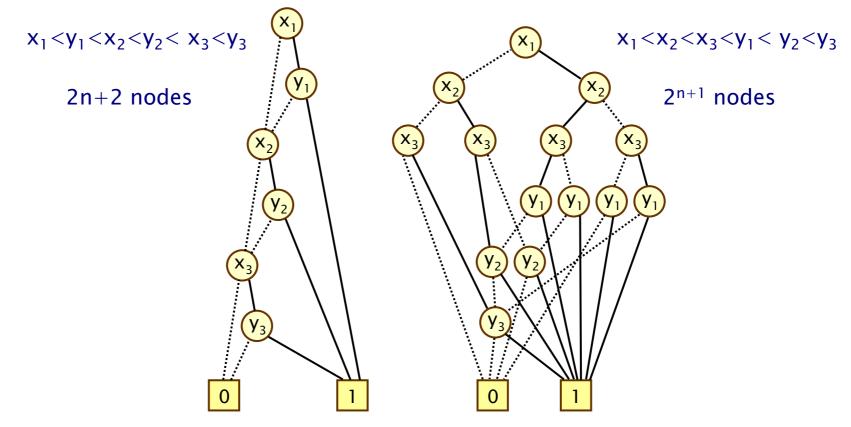
- BDDs are a canonical representation for Boolean functions
 - two Boolean functions are equivalent if and only if the BDDs which represent them are isomorphic
 - uniqueness relies on: reduced BDDs, fixed variable ordered



- Important implications for implementation efficiency
 - can be tested in linear (or even constant) time

BDD variable ordering

• BDD size can be very sensitive to the variable ordering - example: $f = (x_1 \land y_1) \lor (x_2 \land y_2) \lor (x_3 \land y_3)$



BDDs – Some notation

Boolean functions

- for a BDD A, the function represented by A is denoted f_A

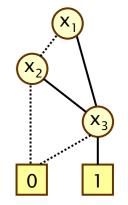
Restriction

- for a BDD A, Boolean variable x in A, and Boolean value b
- $A|_{x=b}$ denotes the BDD representing the function f_A restricted to the case where x=b
- extends easily to multiple variables

$$- |A|_{x_1=b_1,x_2=b_2} = (A|_{x_1=b_1})|_{x_2=b_2}$$

- Shannon's Law: recursive expansion of BDDs
 - let x be the top-most Boolean variable in a BDD A

$$- \mathbf{f}_{\mathsf{A}} = \neg \mathbf{x} \land \mathbf{f}_{\mathsf{A}|\mathsf{x}=\mathbf{0}} \lor \mathbf{x} \land \mathbf{f}_{\mathsf{A}|\mathsf{x}=\mathbf{1}}$$



Manipulating BDDs

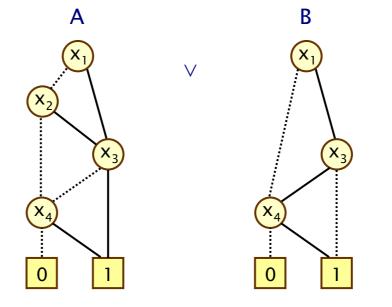
- Need efficient ways to manipulate Boolean functions
 - while they are represented as BDDs
 - i.e. algorithms which are applied directly to the BDDs
- Basic operations on Boolean functions:
 - negation (\neg), conjunction (\land), disjunction (\lor), etc.
 - can all be applied directly to BDDs
- Key operation on BDDs: Apply(op, A, B)
 - where A and B are BDDs and op is a binary operator over Boolean values, e.g. $\land, \lor,$ etc.
 - Apply(op, A, B) returns the BDD representing function f_A op f_B
 - often just use infix notation, e.g. Apply(\land , A, B) = A \land B

The Apply operation

• Apply(op, A, B): recursive depth-first traversal of A and B

- let x be the top-most variable in the two BDDs
- reusing Shannon's Law: we have the following as a basis:

$$- \mathbf{f}_{A} \text{ op } \mathbf{f}_{B} = \neg \mathbf{x} \land (\mathbf{f}_{A|x=0} \text{ op } \mathbf{f}_{B|x=0}) \lor \mathbf{x} \land (\mathbf{f}_{A|x=1} \text{ op } \mathbf{f}_{B|x=1})$$

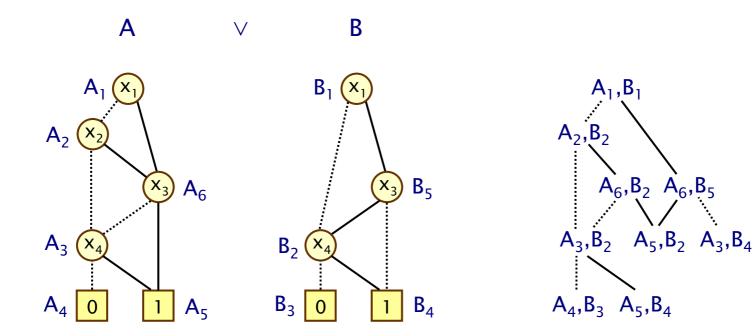


Apply – Example

• Example: Apply(∨, A, B)

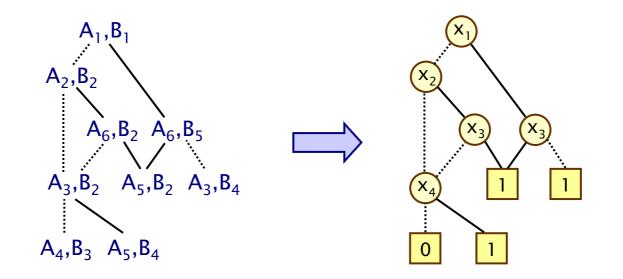
Argument BDDs, with node labels:

Recursive calls to Apply:



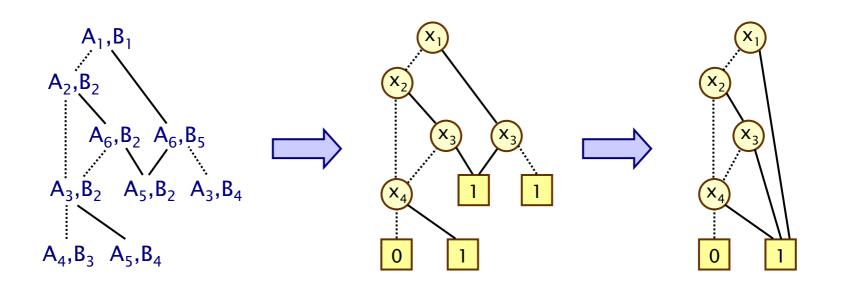
Apply – Example

- Example: Apply(∨, A, B)
 - recursive call structure implicitly defines resulting BDD



Apply – Example

- Example: Apply(∨, A, B)
 - but the resulting BDD needs to be reduced
 - in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up



More on BDD operations

- Complexity for the Apply operator
 - C = Apply(op, A, B)
 - $|C| = size of BDD C = number of nodes = O(|A| \cdot |B|)$
 - since at most one recursive call for each pair of nodes
 - for a good implementation, time complexity is also $|A| \cdot |B|$
- Quantification (\exists, \forall) over Boolean variables
 - can be computed in terms of restriction
 - for Boolean variable x and BDD A: $\exists x.A \equiv A|_{x=0} V A|_{x=1}$
 - extends easily to multi-variable quantification
 - $\exists (x_1, x_2, \dots, x_n) . A \equiv \exists x_1 . (\exists x_2 . (\dots (\exists x_n . A)))$

Implementation of BDDs

Store all BDDs currently in use as one multi-rooted BDD

- no duplicate BDD subtrees, even across multiple BDDs
- every time a new node is created, check for existence first
- sometimes called the "unique table"
- implemented as set of hash tables, one per Boolean variable
- need: node referencing/dereferencing, garbage collection
- Efficiency implications
 - very significant memory savings
 - trivial checking of BDD equality (pointer comparison)
- Caching of BDD operation results for reuse
 - store result of every BDD operation (memory dependent)
 - applied at every step of recursive BDD operations
 - relies on fast check for BDD equality

BDDs to represent sets of states

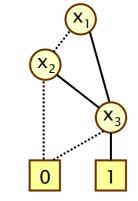
- Consider a state space S and some subset $S' \subseteq S$
- We can represent S' by its characteristic function $\chi_{S'}$ - $\chi_{S'}$: S \rightarrow {0,1} where $\chi_{S'}(s) = 1$ if and only if $s \in S'$
- Assume we have an encoding of S into n Boolean variables
 - this is always possible for a finite set S
 - e.g. enumerate the elements of S and use a binary encoding
 - (note: there may be more efficient encodings though)
- So $\chi_{S'}$ can be seen as a function $\chi_{S'}(x_1, \dots x_n) : \{0,1\}^n \rightarrow \{0,1\}$
 - which is simply a Boolean function
 - which can therefore be represented as a BDD

BDD and sets of states – Example

- State space S: {0, 1, 2, 3}
- Encoding of S: {000, 001, 010, 011, 100, 101, 110, 111}
- Subset S' \subseteq S: {011, 101, 111}

x ₁	X ₂	X ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

BDD:



Set operations with BDDs

- Set operations can be expressed in terms of Boolean operations on the characteristic functions of sets
 - for sets A and B, represented by BDDs A and B
- Set union: A \cup B, in BDDs: A \vee B

$$-\chi_{A\cup B}(s) = \chi_A(s) \lor \chi_B(s)$$

- Set intersection: A \cap B, in BDDs: A \wedge B
 - $-\ \chi_{A\cap B}(s)\,=\,\chi_{A}(s)\,\wedge\,\chi_{B}(s)$
- Set complement: S \setminus A, in BDDs: $\neg A$

$$- \ \chi_{S \setminus A}(s) = \ \neg \chi_A(s)$$

BDDs and transition relations

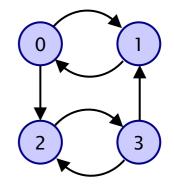
- Transition relations can also be represented by their characteristic function, but over pairs of states
 - relation: $R \subseteq S \times S$
 - − characteristic function: χ_R : S × S → {0,1}
- For an encoding of state space S into n Boolean variables
 - we have Boolean function $f_R(x_1,...,x_n,y_1,...,y_n)$: {0,1}²ⁿ \rightarrow {0,1}
 - which can be represented by a $\ensuremath{\mathsf{BDD}}$

Row and column variables

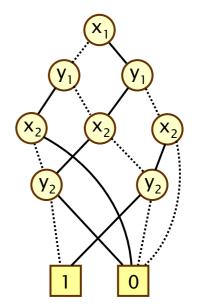
- for efficiency reasons, we interleave the row variables $x_1,...,x_n$ and column variables $y_1,...,y_n$
- i.e. we use function $f_R(x_1, y_1, ..., x_n, y_n) : \{0, 1\}^{2n} \rightarrow \{0, 1\}$

BDDs and transition relations

- Example:
 - 4 states: 0, 1, 2, 3
 - Encoding: $0 \mapsto 00$, $1 \mapsto 01$, $2 \mapsto 10$, $3 \mapsto 11$



Transition	x ₁	x ₂	y 1	У ₂	$x_1y_1x_2y_2$
(0,1)	0	0	0	1	0001
(0,2)	0	0	1	0	0100
(1,0)	0	1	0	0	0010
(2,3)	1	0	1	1	1101
(3,1)	1	1	0	1	1011
(3,2)	1	1	1	0	1110



Forward image

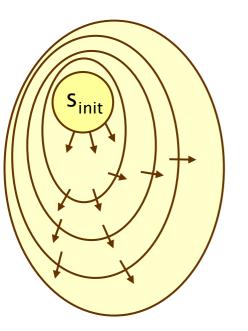
- Fundamental operation for model checking
 - for set of states S, transition relation $R \subseteq S \times S$, subset $T \subseteq S$, Image(T) is the set of states that can be reached from T in one step
- Express in terms of Boolean functions over states
 - $-T: S \rightarrow \{0,1\}, R: S \times S \rightarrow \{0,1\}, Image_T: S \rightarrow \{0,1\}$

- Image_T(s') = $\exists s . T(s) \land R(s,s')$

- For an encoding of state space S into n Boolean variables
 - express in terms of Boolean functions over Boolean variables
 - row variables x_1, \dots, x_n and column variables y_1, \dots, y_n
 - Image_T(y₁,...,y_n) = $\exists (x_1,...,x_n) \ . \ T(x_1,...,x_n) \land R(x_1,...,x_n, y_1,...,y_n)$
- Translate directly into BDDs
 - $\text{Image}_T = \exists (x_1, ..., x_n) . T \land R$

Reachability

- Basic breadth-first search algorithm to compute the set of reachable states
 - inputs: initial state s_{init}, transition relation R (in fact, Image)
 - output: set T of all states reachable from s_{init} in R



```
done = false

T = \{s_{init}\}
while (done == false)

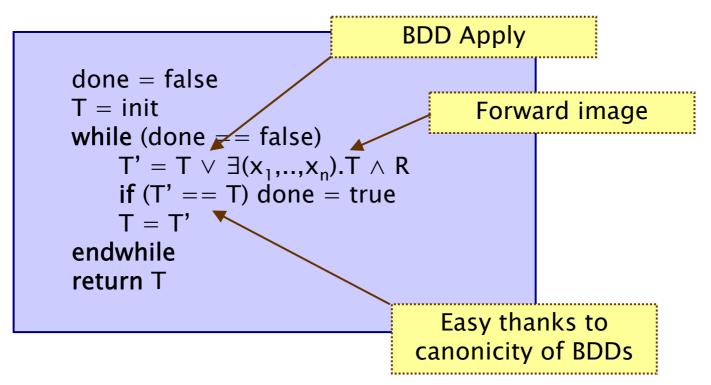
T' = T \cup Image(T)
if (T' == T) done = true

T = T'
endwhile

return T
```

Reachability with BDDs

- Translate directly into BDD operations:
 - inputs: BDD init for set $\{s_{init}\}$, BDD R for transition relation
 - output: BDD T representing all reachable states

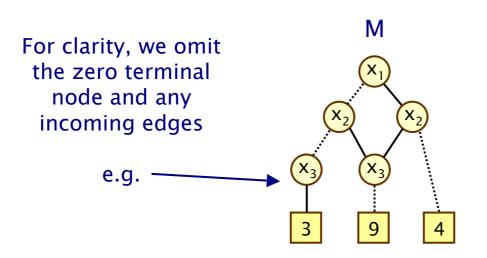


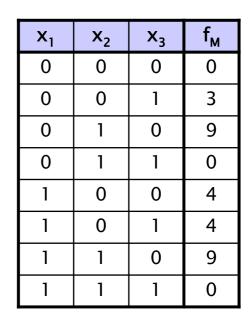
Overview

- Implementation of probabilistic model checking
 - overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
 - introduction, operations, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
 - introduction, operations, vectors, matrices, performance, ...

Multi-terminal binary decision diagrams

- Multi-terminal BDDs (MTBDDs), sometimes called ADDs
 - extension of BDDs to represent real-valued functions
 - like BDDs, an MTBDD M is associated with n Boolean variables
 - MTBDD M represents a function $f_M(x_1,...,x_n)$: $\{0,1\}^n \rightarrow \mathbb{R}$





Operations on MTBDDs

- The BDD operation Apply extends easily to MTBDDs
- For MTBDDs A, B and binary operation op over the reals:
 - Apply(op, A, B) returns the MTBDD representing f_A op f_B
 - examples for op: +, -, \times , min, max, ...
 - often just use infix notation, e.g. Apply(+, A, B) = A + B
- BDDs are just an instance of MTBDDs
 - in this case, can use Boolean ops too, e.g. Apply(\lor , A, B)
- The recursive algorithm for implementing Apply on BDDs
 can be reused for Apply on MTBDDs

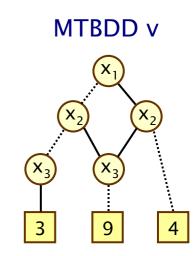
Some other MTBDD operations

- Threshold(A, ~, c)
 - for MTBDD A, relational operator op and bound $c \in \mathbb{R}$
 - converts MTBDD to BDD based on threshold \sim c
 - i.e. builds BDD representing function $f_A \sim c$
 - e.g. computing the underlying transition relation from the probability matrix of a DTMC: R = Threshold(P, >, 0)
- Abstract(op, $\{x_1, \dots, x_n\}$, A)
 - for MTBDD A, variables $\{x_1,...,x_n\}$ and commutative/associative binary operator over reals op
 - analogue of existential/universal quantification for BDDs
 - e.g. Abstract(+, {x}, A) constructs the MTBDD representing the function $f_{A\mid x=0}^{} + f_{A\mid x=1}^{}$
 - e.g. for BDD A: $\exists (x_1,..,x_n) A \equiv Abstract(\lor, \{x_1,...,x_n\}, A)$

MTBDDs to represent vectors

- In the same way that BDDs can represent sets of states...
 - MTBDDs can represent real-valued vectors over states S
 - e.g. a vector of probabilities $Prob(s, \psi)$ for each state $s \in S$
 - assume we have an encoding of S into n Boolean variables
 - then vector $\underline{v} : S \to \mathbb{R}$ is a function $f_v(x_1, ..., x_n) : \{0, 1\}^n \to \mathbb{R}$

f_v X_1 X_2 X₃



Vector <u>v</u>

[0,3,9,0,4,4,9,0]

MTBDDs to represent matrices

- MTBDDs can be used to represent real-valued matrices indexed over a set of states S
 - e.g. the transition probability/rate matrix of a DTMC/CTMC

• For an encoding of state space S into n Boolean variables

- a vector $\underline{v} : S \to \mathbb{R}$ is a function $f_v(x_1,...,x_n) : \{0,1\}^n \to \mathbb{R}$
- a matrix M maps pairs of states to reals i.e. $M:S \times S {\rightarrow}\, \mathbb{R}$
- this becomes: $f_M(x_1,...,x_n,y_1,...,y_n): \{0,1\}^{2n} \rightarrow \mathbb{R}$

Row and column variables

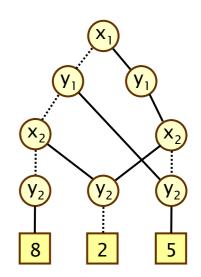
- for efficiency reasons, we interleave the row variables $x_1,...,x_n$ and column variables $y_1,...,y_n$
- i.e. we use function $f_M(x_1,y_1,...,x_n,y_n) : \{0,1\}^{2n} \rightarrow \mathbb{R}$

Matrices and MTBDDs – Example

Matrix M

0	8	0	5	
2	0	0	5 5 5 0	
0	0	0	5	
0	0	2	0	

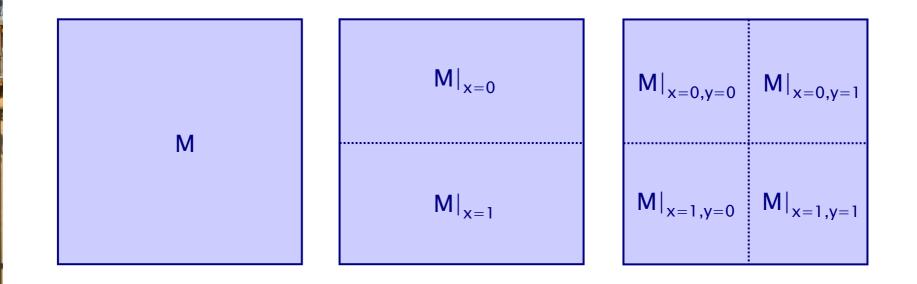
MTBDD M



Entry in M	x ₁	x ₂	y 1	y ₂	$x_1y_1x_2y_2$	f _M
(0,1) = 8	0	0	0	1	0001	8
(1,0) = 2	0	1	0	0	0010	2
(0,3) = 5	0	0	1	1	0101	5
(1,3) = 5	0	1	1	1	0111	5
(2,3) = 5	1	0	1	1	1101	5
(3,2) = 2	1	1	1	0	1110	2

Matrices and MTBDDs - Recursion

- Descending one level in the MTBDD (i.e. setting $x_i = b$)
 - splits the matrix represented by the MTBDD in half
 - row variables (x_i) give horizontal split
 - column variables (y_i) give vertical split



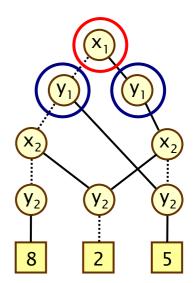
Matrices and MTBDDs - Recursion

Matrix M

0	8	0	5	
2	0	0	5	
0	0	0	5	
0	0	2	0_	

Entry in M f_м **X**₁ $x_1y_1x_2y_2$ X_2 **y**₁ **Y**₂ (0,1) = 8(1,0) = 2(0,3) = 5(1,3) = 5(2,3) = 5(3,2) = 2

MTBDD M



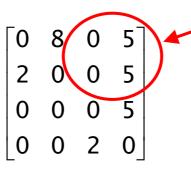
Matrices and MTBDDs - Regularity

Repeated submatrices MTBDD M Matrix M Entry in M f_м $x_1y_1x_2y_2$ X_1 X_2 **y**₁ **Y**₂ (0,1) = 8(1,0) = 2**y**₂ **Y**₂ (0,3) = 5(1,3) = 5(2,3) = 5(3,2) = 2

Shared MTBDD node

Matrices and MTBDDs - Regularity

Matrix M



. Identical adjacent submatrices

MTBDD M

Entry in M	x ₁	x ₂	y ₁	У ₂	$\mathbf{x}_1\mathbf{y}_1\mathbf{x}_2\mathbf{y}_2$	f _м
(0,1) = 8	0	0	0	1	0001	8
(1,0) = 2	0	1	0	0	0010 🔸	2
(0,3) = 5	0	0	1	1	0101	5
(1,3) = 5	0	1	1	1	0111	5
(2,3) = 5	1	0	1	1	1101	5
(3,2) = 2	1	1	1	0	1110	2

 $\begin{array}{c|c} (x_1) \\ (y_1) \\ (y_2) \\ (y_2)$

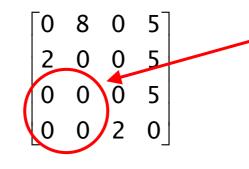
MTBDD node removed

Matrices and MTBDDs – Sparseness

Blocks of

zeros

Matrix M



MTBDD M

Edge goes straight to zero node

Entry in M	x ₁	X ₂	y ₁	y ₂	$\mathbf{x}_1\mathbf{y}_1\mathbf{x}_2\mathbf{y}_2$	f _M
(0,1) = 8	0	0	0	1	0001	8
(1,0) = 2	0	1	0	0	0010	2
(0,3) = 5	0	0	1	1	0101	5
(1,3) = 5	0	1	1	1	0111	5
(2,3) = 5	1	0	1	1	1101	5
(3,2) = 2	1	1	1	0	1110	2

MTBDD matrix/vector operations

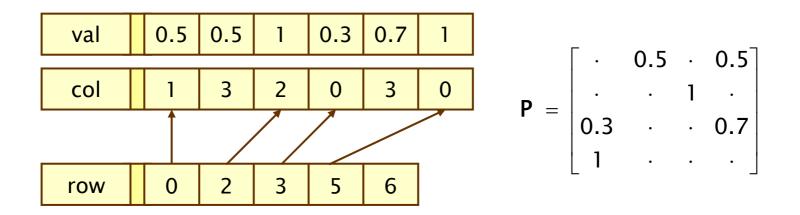
- Pointwise addition/multiplication and scalar multiplication
 - can be implemented with the Apply operator
 - Matrices: A + B, MTBDDs: Apply(+, A, B)
- Matrix-matrix multiplication A-B
 - can be expressed recursively based on 4-way matrix splits

$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{bmatrix} \qquad \mathbf{A}_1 = \mathbf{B}_1 \cdot \mathbf{C}_1 + \mathbf{B}_2 \cdot \mathbf{C}_3, \text{ etc.}$$

- which forms the basis of an MTBDD implementation
- various optimisations are possible
- Matrix-matrix multiplication $\mathbf{A} \cdot \underline{\mathbf{v}}$ is done in similar fashion

Sparse matrices

- Explicit data structure for matrices with many zero entries
 - assume a matrix **P** of size $n \times n$ with nnz non-zero elements
 - store three arrays: val and col (of size nnz) and row (of size n)
 - for each matrix entry (r,c)=v, c and v are stored in col/val
 - entries are grouped by row, with pointers stored in row
 - also possible to group by column



Sparse matrices

Advantages

- compact storage (proportional to number of non-zero entries)
- fast access to matrix entries
- especially if usually need an entire row at once
- (which is the case for e.g. matrix-vector multiplication)

Disadvantage

- less effficient to manipulate (i.e. add/delete matrix entries)

Storage requirements

- for a matrix of size $n \times n$ with nnz non-zero elements
- assume reals are 8 byte doubles, indices are 4 byte integers
- we need $8 \cdot nnz + 4 \cdot nnz + 4 \cdot n = 12 \cdot nnz + 4 \cdot n$ bytes

Sparse matrices vs. MTBDDs

- Storage requirements
 - MTBDDs: each node is 20 bytes
 - sparse matrices: $12 \cdot nnz + 4 \cdot n$ bytes (n states, nnz transitions)
- Case study: Kanban manufacturing system, N jobs
 - store transition rate matrix **R** of the corresponding CTMCs

Ν	States	Transitions	MTBDD	Sparse matrix
	(n)	(nnz)	(KB)	(KB)
3	58,400	446,400	48	5,459
4	454,475	3,979,850	96	48,414
5	2,546,432	24,460,016	123	296,588
6	11,261,376	115,708,992	154	1,399,955
7	41,644,800	450,455,040	186	5,441,445
8	133,865,325	1,507,898,700	287	13,193,599

Implementation in PRISM

- PRISM is a symbolic probabilistic model checker
 - the key underlying data structures are MTBDDs (and BDDs)
- In fact, has multiple numerical computation engines
 - MTBDDs: storage/analysis of very large models (given structure/regularity), numerical computation can blow up
 - Sparse matrices: fastest solution for smaller models (<10⁶ states), prohibitive memory consumption for larger models
 - Hybrid: combine MTBDD storage with explicit storage, ten-fold increase in analysable model size (~10⁷ states)

Summing up...

- Implementation of probabilistic model checking
 - graph-based algorithms, e.g. reachability, precomputation
 - manipulation of sets of states, transition relations
 - iterative numerical computation
 - key operation: matrix-vector multiplication
- Binary decision diagrams (BDDs)
 - representation for Boolean functions
 - efficient storage/manipulation of sets, transition relations
- Multi-terminal BDDs (MTBDDs)
 - extension of BDDs to real-valued functions
 - efficient storage/manipulation of real-valued vectors, matrices (assuming structure and regularity)
 - can be much more compact than (explicit) sparse matrices