
ESSLLI’10 Summer School, Copenhagen, August 2010

2

Course overview

•  5 lectures: Mon-Fri, 11am-12.30pm

−  Introduction
−  1 – Discrete time Markov chains
−  2 – Markov decision processes
−  3 – Continuous-time Markov chains
−  4 – Probabilistic model checking in practice
−  5 – Probabilistic timed automata

•  Course materials available here:
−  http://www.prismmodelchecker.org/lectures/esslli10/
−  lecture slides, reference list

Markov decision processes

Part 2

4

Other probabilistic models

•  What’s missing from DTMCs?

•  Nondeterminism
−  Markov decision processes (MDPs)…

•  Real-time
−  continuous-time Markov chains (CTMCs)

•  exponentially distributed delays
−  probabilistic timed automata (PTAs)

•  real-valued clocks, discrete probabilistic choice, nondeterminism

5

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

6

Nondeterminism

•  Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

•  Concurrency - scheduling of parallel components
−  e.g. randomised distributed algorithms - multiple probabilistic

processes operating asynchronously

•  Underspecification - unknown model parameters
−  e.g. a probabilistic communication protocol designed for

message propagation delays of between dmin and dmax

•  Unknown environments
−  e.g. probabilistic security protocols - unknown adversary

7

Markov decision processes

•  Markov decision processes (MDPs)
−  extension of DTMCs which allow nondeterministic choice

•  Like DTMCs:
−  discrete set of states representing possible configurations of

the system being modelled
−  transitions between states occur in discrete time-steps

•  Probabilities and nondeterminism
−  in each state, a nondeterministic  

choice between several discrete  
probability distributions over  
successor states

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

8

Markov decision processes

•  Formally, an MDP M is a tuple (S,sinit,Steps,L) where:
−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  Steps : S → 2Act×Dist(S) is the transition probability function

 where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

−  L : S → 2AP is a labelling with atomic propositions

•  Notes:
−  Steps(s) is always non-empty,  

i.e. no deadlocks
−  the use of actions to label  

distributions is optional

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

9

Simple MDP example

•  Modification of the simple DTMC communication protocol
−  after one step, process starts trying to send a message
−  then, a nondeterministic choice between: (a) waiting a step

because the channel is unready; (b) sending the message
−  if the latter, with probability 0.99 send successfully and stop
−  and with probability 0.01, message sending fails, restart

s1 s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}
start send

stop

wait

restart

10

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.5 1 0.5 1
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.5 1

0.5

1

Asynchronous parallel  
composition of two  

3-state DTMCs

Action labels 
omitted here

11

Paths and probabilities

•  A (finite or infinite) path through an MDP
−  is a sequence of states and action/distribution pairs
−  e.g. s0(a0,µ0)s1(a1,µ1)s2…
−  such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0
−  represents an execution (i.e. one possible behaviour) of the

system which the MDP is modelling
−  note that a path resolves both types of choices:

nondeterministic and probabilistic

•  To consider the probability of some behaviour of the MDP
−  first need to resolve the nondeterministic choices
−  …which results in a DTMC
−  …for which we can define a probability measure over paths

12

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

13

Adversaries

•  An adversary resolves nondeterministic choice in an MDP
−  also known as “schedulers”, “strategies” or “policies”

•  Formally:
−  an adversary A of an MDP M is a function mapping every finite

 path ω= s0(a1,µ1)s1...sn to an element of Steps(sn)

•  For each A can define a probability measure PrA
s over paths

−  constructed through an infinite state DTMC (PathA
fin(s),s,PA

s)
−  states of the DTMC are the finite paths of A starting in state s
−  initial state is s (the path starting in s of length 0)
−  PA

s(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ)
−  PA

s(ω,ω’)=0 otherwise

14

Adversaries - Examples

•  Consider the simple MDP below
−  note that s1 is the only state for which |Steps(s)| > 1
−  i.e. s1 is the only state for which an adversary makes a choice
−  let µb and µc denote the probability distributions associated

with actions b and c in state s1

•  Adversary A1
−  picks action c the first time
−  A1(s0s1)=(c,µc)

•  Adversary A2
−  picks action b the first time, then c

−  A2(s0s1)=(b,µb), A2(s0s1s1)=(c,µc), A2(s0s1s0s1)=(c,µc)

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

15

Adversaries - Examples

•  Fragment of DTMC for adversary A1
−  A1 picks action c the first time

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0s1 s0

0.5
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s3 0.5

1

1

16

Adversaries - Examples

•  Fragment of DTMC for adversary A2
−  A2 picks action b, then c

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s3 0.5
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s3 0.5

1

1

s0s1s1s2s2

s0s1s1s3s3

17

Memoryless adversaries

•  Memoryless adversaries always pick same choice in a state
−  also known as: positional, Markov, simple
−  formally, for adversary A:
−  A(s0(a1,µ1)s1...sn) depends only on sn

−  resulting DTMC can be mapped to a |S|-state DTMC

•  From previous example:
−  adversary A1 (picks c in s1) is memoryless, A2 is not

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a
s1 s0

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} 1 a
c

a

a

18

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

19

PCTL for MDPs

•  The temporal logic PCTL can also describe MDP properties
•  Identical syntax to the DTMC case:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

•  Semantics are also the same as DTMCs for:
−  atomic propositions, logical operators, path formulas

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

20

PCTL semantics for MDPs

•  Semantics of the probabilistic operator P
−  can only define probabilities for a specific adversary A
−  s ⊨ P~p [ψ] means “the probability, from state s, that ψ is true

for an outgoing path satisfies ~p for all adversaries A”
−  formally s ⊨ P~p [ψ] ⇔ ProbA(s, ψ) ~ p for all adversaries A
−  where ProbA(s, ψ) = PrA

s { ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ ProbA(s, ψ) ~ p

21

Minimum and maximum probabilities

•  Letting:
−  pmax(s, ψ) = supA ProbA(s, ψ)
−  pmin(s, ψ) = infA ProbA(s, ψ)

•  We have:
−  if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ pmin(s, ψ) ~ p
−  if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ pmax(s, ψ) ~ p

•  Model checking P~p[ψ] reduces to the computation over all
adversaries of either:
−  the minimum probability of ψ holding
−  the maximum probability of ψ holding

•  Crucial result for model checking PCTL on MDPs
−  memoryless adversaries suffice, i.e. there are always

memoryless adversaries Amin and Amax for which:
−  ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ)

22

Quantitative properties

•  For PCTL properties with P as the outermost operator
−  quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]
−  i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
−  corresponds to an analysis of best-case or worst-case

behaviour of the system
−  model checking is no harder since compute the values of pmin

(s, ψ) or pmax(s, ψ) anyway
−  useful to spot patterns/trends

•  Example: CSMA/CD protocol
−  “min/max probability

 that a message is sent
 within the deadline”

23

Other classes of adversary

•  A more general semantics for PCTL over MDPs
−  parameterise by a class of adversaries Adv

•  Only change is:
−  s ⊨Adv P~p [ψ] ⇔ ProbA(s, ψ) ~ p for all adversaries A ∈ Adv

•  Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

•  Alternatively, take Adv to be the set of all fair adversaries
−  path fairness: if a state is occurs on a path infinitely often,

then each non-deterministic choice occurs infinite often
−  see e.g. [BK98]

24

Some real PCTL examples

•  Byzantine agreement protocol
−  Pmin=? [F (agreement ∧ rounds≤2)]
−  “what is the minimum probability that agreement is reached

within two rounds?”

•  CSMA/CD communication protocol
−  Pmax=? [F collisions=k]
−  “what is the maximum probability of k collisions?”

•  Self-stabilisation protocols
−  Pmin=? [F≤t stable]
−  “what is the minimum probability of reaching a stable state

within k steps?”

25

PCTL model checking for MDPs

•  Algorithm for PCTL model checking [BdA95]
−  inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

•  Basic algorithm same as PCTL model checking for DTMCs
−  proceeds by induction on parse tree of φ
−  non-probabilistic operators (true, a, ¬, ∧) straightforward

•  Only need to consider P~p [ψ] formulas
−  reduces to computation of pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
−  dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}
−  these slides cover the case pmin(s, φ1 U φ2), i.e. ~ ∈ {≥,>}
−  case for maximum probabilities is very similar
−  next (X φ) and bounded until (φ1 U≤k φ2) are straightforward

extensions of the DTMC case

26

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

27

PCTL until for MDPs

•  Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S
•  First identify all states where the probability is 1 or 0

−  “precomputation” algorithms, yielding sets Syes, Sno

•  Then compute (min) probabilities for remaining states (S?)
−  either: solve linear programming problem
−  or: approximate with an iterative solution method
−  or: use policy iteration

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

Example:
P≥p [F a]

≡
P≥p [true U a]

28

PCTL until - Precomputation

•  Identify all states where pmin(s, φ1 U φ2) is 1 or 0
−  Syes = Sat(P≥1 [φ1 U φ2]), Sno = Sat(¬ P>0 [φ1 U φ2])

•  Two graph-based precomputation algorithms:
−  algorithm Prob1A computes Syes

•  for all adversaries the probability of satisfying φ1 U φ2 is 1
−  algorithm Prob0E computes Sno

•  there exists an adversary for which the probability is 0

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [F a])

Sno = Sat(¬P>0 [F a])

Example:
P≥p [F a]

29

Method 1 - Linear programming

•  Probabilities pmin(s, φ1 U φ2) for remaining states in the set
S? = S \ (Syes ∪ Sno) can be obtained as the unique solution
of the following linear programming (LP) problem:

•  Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

•  This can be solved with standard techniques
−  e.g. Simplex, ellipsoid method, branch-and-cut

30

Example - PCTL until (LP)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 0.25·x0 + 0.5
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

31

Example - PCTL until (LP)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0

0

1

1 2/3
x0

x1

0

0

1

1

0.8

x0

x1

0

0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0
+ 0.8

32

Example - PCTL until (LP)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0

0

1

1

0.8

2/3

max

Solution:
(x0, x1)

=
(2/3, 14/15)

33

Example - PCTL until (LP)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :
Maximise x0+x1 subject to constraints:

●  x0 ≤ x1

●  x0 ≤ 2/3
●  x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0

0

1

1

0.8

2/3

max
Two memoryless

adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

34

Method 2 – Value iteration

•  For probabilities pmin(s, φ1 U φ2) it can be shown that:

−  pmin(s, φ1 U φ2) = limn→∞ xs
(n) where:

•  This forms the basis for an (approximate) iterative solution
−  iterations terminated when solution converges sufficiently

€

xs
(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? andn = 0

min(a,µ)∈Steps(s) µ(s')⋅ xs'
(n−1)

s'∈S
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ if s ∈ S? andn > 0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

35

Example - PCTL until (value iteration)

Compute: pmin(si, F a)
Syes = {x2}, Sno ={x3}, S? = {x0, x1}

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0, 0, 1, 0]

n=1: [min(0,0.25·0+0.5),
 0.1·0+0.5·0+0.4, 1, 0]

 = [0, 0.4, 1, 0]
n=2: [min(0.4,0.25·0+0.5),
 0.1·0+0.5·0.4+0.4, 1, 0]

 = [0.4, 0.6, 1, 0]
n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

36

Example - PCTL until (value iteration)

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
n=9: [0.666650, 0.929902, 1, 0]

…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]

 ≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

37

Example - Value iteration + LP

 [x0
(n),x1

(n),x2
(n),x3

(n)]
n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
n=9: [0.666650, 0.929902, 1, 0]

…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]

 ≈ [2/3, 14/15, 1, 0]

x0

x1

0

0
2/3

1

38

Method 3 - Policy iteration

•  Value iteration:
−  iterates over (vectors of) probabilities

•  Policy iteration:
−  iterates over adversaries (“policies”)

•  1. Start with an arbitrary (memoryless) adversary A
•  2. Compute the reachability probabilities ProbA(F a) for A
•  3. Improve the adversary in each state
•  4. Repeat 2/3 until no change in adversary

•  Termination:
−  finite number of memoryless adversaries
−  improvement in (minimum) probabilities each time

39

Method 3 - Policy iteration

•  1. Start with an arbitrary (memoryless) adversary A
−  pick some Steps(s) for each state s ∈ S

•  2. Compute the reachability probabilities ProbA(F a) for A
−  probabilistic reachability on a DTMC
−  i.e. solve linear equation system

•  3. Improve the adversary in each state

•  4. Repeat 2/3 until no change in adversary

40

Example - Policy iteration

Arbitrary policy A:
Compute: ProbA(F a)
Let xi = ProbA(si, F a)
x2=1, x3=0 and:
•  x0 = x1

•  x1 = 0.1·x0 + 0.5·x1 + 0.4
Solution:
ProbA(F a) = [1, 1, 1, 0]
Refine A in state s0:
min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

41

Example - Policy iteration

Refined policy A’:
Compute: ProbA’(F a)
Let xi = ProbA’(si, F a)
x2=1, x3=0 and:
•  x0 = 0.25·x0 + 0.5
•  x1 = 0.1·x0 + 0.5·x1 + 0.4
Solution:
ProbA’(F a) = [2/3, 14/15, 1, 0]
This is optimal

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

42

Example - Policy iteration

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0

0

1

1

0.8

2/3

A

A’

x1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

43

PCTL model checking - Summary

•  Computation of set Sat(Φ) for MDP M and PCTL formula Φ
−  recursive descent of parse tree
−  combination of graph algorithms, numerical computation

•  Probabilistic operator P:
−  X Φ : one matrix-vector multiplication, O(|S|2)
−  Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)
−  Φ1 U Φ2 : linear programming problem, polynomial in |S| 

(assuming use of linear programming)

•  Complexity:
−  linear in |Φ| and polynomial in |S|
−  S is states in MDP, assume |Steps(s)| is constant

44

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

45

LTL model checking for MDPs

•  We consider lower/upper bounds for an LTL formula ψ:
−  pmin(s, ψ) = infA∈Adv ProbA(s, ψ)
−  pmax(s, ψ) = supA∈Adv ProbA(s, ψ)

•  To model check an LTL formula ψ on an MDP M
−  1. Convert problem to one needing maximum probabilities

•  pmin(s, ψ) = 1 - pmax
 (s, ¬ψ)

−  2. Construct product MDP M⊗A
•  of MDP M and deterministic Rabin automaton A for ψ (or ¬ψ)

−  3. Identify accepting end components (ECs) of M⊗A
•  an end component is the analogue of a bottom strongly

connected component (BSCC) in a DTMC
−  4. Compute maximum probability of reaching accepting ECs

•  Complexity: doubly exponential in |ψ|, polynomial in |M|

46

Costs and rewards for MDPs

•  Can use costs and rewards in similar fashion to DTMCs:

•  Augment MDPs with rewards (or costs)
−  (but often assign to states/actions, not states/transitions)

•  Extend logic PCTL with R operator
−  semantics extended in same way as P operator
−  e.g. s ⊨ R~r [F Φ] ⇔ ExpA(s, XFΦ) ~ r for all adversaries A
−  quantitative properties: Rmin=? […] and Rmax=? […]

•  Examples:
−  “the minimum expected queue size after exactly 90 seconds”
−  “the maximum expected power consumption over one hour”
−  the maximum expected time for the algorithm to terminate

47

Model checking MDP reward formulas

•  Instantaneous: R~r [I=k]
−  similar to the computation of bounded until probabilities
−  solution of recursive equations

•  Cumulative: R~r [C≤k]
−  extension of bounded until computation
−  solution of recursive equations

•  Reachability: R~r [F φ]
−  similar to the case for P operator and until
−  graph-based precomputation (identify ∞-reward states)
−  then linear programming problem (or value iteration)

48

Overview (Part 2)

•  Markov decision processes (MDPs)

•  Adversaries & probability spaces

•  PCTL for MDPs

•  PCTL model checking

•  Further model checking (LTL, costs & rewards)

•  Case study: Firewire root contention

49

Case study: FireWire protocol

•  FireWire (IEEE 1394)
−  high-performance serial bus for networking 

multimedia devices; originally by Apple
−  "hot-pluggable" - add/remove  

devices at any time
−  no requirement for a single PC (need acyclic topology)

•  Root contention protocol
−  leader election algorithm, when nodes join/leave
−  symmetric, distributed protocol
−  uses electronic coin tossing and timing delays
−  nodes send messages: "be my parent"
−  root contention: when nodes contend leadership
−  random choice: "fast"/"slow" delay before retry

50

FireWire example

51

FireWire leader election

R

52

FireWire root contention

Root
contention

53

FireWire root contention

Root
contention

R

54

FireWire analysis

•  Probabilistic model checking
−  model constructed and analysed using PRISM
−  timing delays taken from standard
−  model includes:

•  concurrency: messages between nodes and wires
•  underspecification of delays (upper/lower bounds)

−  max. model size: 170 million states 

•  Analysis:
−  verified that root contention always 

resolved with probability 1
−  investigated time taken for leader election
−  and the effect of using biased coin

•  based on a conjecture by Stoelinga

55

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

56

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

57

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

58

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

59

Summary

•  Markov decision processes (MDPs)
−  extend DTMCs with nondeterminism
−  to model concurrency, underspecification, …

•  An adversary resolve nondeterminism in an MDP
−  induce a probability space over paths
−  consider minimum/maximum probabilities over all adversaries

•  Property specifications
−  use e.g. PCTL or LTL, as for DTMCs
−  but quantify over all adversaries

•  Model checking algorithms
−  covered three basic techniques for MDPs: linear programming,

value iteration, or policy iteration

•  Tomorrow: continuous-time Markov chains (CTMCs)

