
ESSLLI’10 Summer School, Copenhagen, August 2010 



2 

Course overview 

•  5 lectures: Mon-Fri, 11am-12.30pm 

−  Introduction 
−  1 – Discrete time Markov chains 
−  2 – Markov decision processes 
−  3 – Continuous-time Markov chains 
−  4 – Probabilistic model checking in practice 
−  5 – Probabilistic timed automata 

•  Course materials available here: 
−  http://www.prismmodelchecker.org/lectures/esslli10/ 
−  lecture slides, reference list 



Markov decision processes 

Part 2 
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Other probabilistic models 

•  What’s missing from DTMCs? 

•  Nondeterminism 
−  Markov decision processes (MDPs)… 

•  Real-time 
−  continuous-time Markov chains (CTMCs) 

•  exponentially distributed delays 
−  probabilistic timed automata (PTAs) 

•  real-valued clocks, discrete probabilistic choice, nondeterminism 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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Nondeterminism 

•  Some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example: 

•  Concurrency - scheduling of parallel components 
−  e.g. randomised distributed algorithms - multiple probabilistic 

processes operating asynchronously 

•  Underspecification - unknown model parameters 
−  e.g. a probabilistic communication protocol designed for 

message propagation delays of between dmin and dmax  

•  Unknown environments 
−  e.g. probabilistic security protocols - unknown adversary 
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Markov decision processes 

•  Markov decision processes (MDPs) 
−  extension of DTMCs which allow nondeterministic choice 

•  Like DTMCs: 
−  discrete set of states representing possible configurations of 

the system being modelled 
−  transitions between states occur in discrete time-steps 

•  Probabilities and nondeterminism 
−  in each state, a nondeterministic  

choice between several discrete  
probability distributions over  
successor states 
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Markov decision processes 

•  Formally, an MDP M is a tuple (S,sinit,Steps,L) where:  
−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  Steps : S → 2Act×Dist(S) is the transition probability function 

 where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S 

−  L : S → 2AP is a labelling with atomic propositions 

•  Notes: 
−  Steps(s) is always non-empty,  

i.e. no deadlocks 
−  the use of actions to label  

distributions is optional 
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Simple MDP example 

•  Modification of the simple DTMC communication protocol 
−  after one step, process starts trying to send a message 
−  then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message 
−  if the latter, with probability 0.99 send successfully and stop 
−  and with probability 0.01, message sending fails, restart 
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Example - Parallel composition 
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Paths and probabilities 

•  A (finite or infinite) path through an MDP 
−  is a sequence of states and action/distribution pairs 
−  e.g. s0(a0,µ0)s1(a1,µ1)s2… 
−  such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0 
−  represents an execution (i.e. one possible behaviour) of the 

system which the MDP is modelling 
−  note that a path resolves both types of choices: 

nondeterministic and probabilistic 

•  To consider the probability of some behaviour of the MDP 
−  first need to resolve the nondeterministic choices 
−  …which results in a DTMC 
−  …for which we can define a probability measure over paths 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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Adversaries 

•  An adversary resolves nondeterministic choice in an MDP 
−  also known as “schedulers”, “strategies” or “policies” 

•  Formally: 
−  an adversary A of an MDP M is a function mapping every finite 

 path ω= s0(a1,µ1)s1...sn to an element of Steps(sn) 

•  For each A can define a probability measure PrA
s over paths 

−  constructed through an infinite state DTMC (PathA
fin(s),s,PA

s) 
−  states of the DTMC are the finite paths of A starting in state s 
−  initial state is s (the path starting in s of length 0) 
−  PA

s(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ) 
−  PA

s(ω,ω’)=0 otherwise 
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Adversaries - Examples 

•  Consider the simple MDP below 
−  note that s1 is the only state for which |Steps(s)| > 1 
−  i.e. s1 is the only state for which an adversary makes a choice 
−  let µb and µc denote the probability distributions associated 

with actions b and c in state s1 

•  Adversary A1 
−  picks action c the first time 
−  A1(s0s1)=(c,µc) 

•  Adversary A2 
−  picks action b the first time, then c 

−  A2(s0s1)=(b,µb),  A2(s0s1s1)=(c,µc),  A2(s0s1s0s1)=(c,µc) 
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Adversaries - Examples 

•  Fragment of DTMC for adversary A1 
−  A1 picks action c the first time 
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Adversaries - Examples 

•  Fragment of DTMC for adversary A2 
−  A2 picks action b, then c 
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Memoryless adversaries 

•  Memoryless adversaries always pick same choice in a state 
−  also known as: positional, Markov, simple 
−  formally, for adversary A: 
−  A(s0(a1,µ1)s1...sn) depends only on sn 

−  resulting DTMC can be mapped to a |S|-state DTMC 

•  From previous example: 
−  adversary A1 (picks c in s1) is memoryless, A2 is not 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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PCTL for MDPs 

•  The temporal logic PCTL can also describe MDP properties 
•  Identical syntax to the DTMC case: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulas) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulas) 

•  Semantics are also the same as DTMCs for: 
−  atomic propositions, logical operators, path formulas 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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PCTL semantics for MDPs 

•  Semantics of the probabilistic operator P 
−  can only define probabilities for a specific adversary A 
−  s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is true 

for an outgoing path satisfies ~p for all adversaries A” 
−  formally  s ⊨ P~p [ ψ ]  ⇔  ProbA(s, ψ) ~ p for all adversaries A 
−  where ProbA(s, ψ) = PrA

s { ω ∈ PathA(s) | ω ⊨ ψ } 

s 

¬ψ 

ψ ProbA(s, ψ) ~ p 
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Minimum and maximum probabilities 

•  Letting: 
−  pmax(s, ψ) = supA ProbA(s, ψ) 
−  pmin(s, ψ) = infA ProbA(s, ψ) 

•  We have: 
−  if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ]  ⇔  pmin(s, ψ) ~ p  
−  if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ]  ⇔  pmax(s, ψ) ~ p 

•  Model checking P~p[ ψ ] reduces to the computation over all 
adversaries of either: 
−  the minimum probability of ψ holding 
−  the maximum probability of ψ holding 

•  Crucial result for model checking PCTL on MDPs 
−  memoryless adversaries suffice, i.e. there are always 

memoryless adversaries Amin and Amax for which: 
−  ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ)  
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Quantitative properties 

•  For PCTL properties with P as the outermost operator 
−  quantitative form (two types): Pmin=? [ ψ ] and Pmax=? [ ψ ] 
−  i.e. “what is the minimum/maximum probability (over all 

adversaries) that path formula ψ is true?” 
−  corresponds to an analysis of best-case or worst-case 

behaviour of the system 
−  model checking is no harder since compute the values of pmin

(s, ψ) or pmax(s, ψ) anyway  
−  useful to spot patterns/trends 

•  Example: CSMA/CD protocol 
−  “min/max probability 

 that a message is sent 
 within the deadline” 
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Other classes of adversary 

•  A more general semantics for PCTL over MDPs 
−  parameterise by a class of adversaries Adv 

•  Only change is: 
−  s ⊨Adv P~p [ψ]  ⇔  ProbA(s, ψ) ~ p for all adversaries A ∈ Adv 

•  Original semantics obtained by taking Adv to be the set of 
all adversaries for the MDP 

•  Alternatively, take Adv to be the set of all fair adversaries 
−  path fairness: if a state is occurs on a path infinitely often, 

then each non-deterministic choice occurs infinite often 
−  see e.g. [BK98] 
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Some real PCTL examples 

•  Byzantine agreement protocol 
−  Pmin=? [ F (agreement ∧ rounds≤2) ] 
−  “what is the minimum probability that agreement is reached 

within two rounds?” 

•  CSMA/CD communication protocol 
−  Pmax=? [ F collisions=k ] 
−  “what is the maximum probability of k collisions?”  

•  Self-stabilisation protocols  
−  Pmin=? [ F≤t stable ] 
−  “what is the minimum probability of reaching a stable state 

within k steps?” 
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PCTL model checking for MDPs 

•  Algorithm for PCTL model checking [BdA95] 
−  inputs:  MDP M=(S,sinit,Steps,L),  PCTL formula φ 
−  output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ 

•  Basic algorithm same as PCTL model checking for DTMCs 
−  proceeds by induction on parse tree of φ 
−  non-probabilistic operators (true, a, ¬, ∧) straightforward 

•  Only need to consider P~p [ ψ ] formulas 
−  reduces to computation of pmin(s, ψ) or pmax (s, ψ) for all s ∈ S 
−  dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤} 
−  these slides cover the case pmin(s, φ1 U φ2), i.e. ~ ∈ {≥,>} 
−  case for maximum probabilities is very similar 
−  next (X φ) and bounded until (φ1 U≤k φ2) are straightforward 

extensions of the DTMC case 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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PCTL until for MDPs 

•  Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S 
•  First identify all states where the probability is 1 or 0 

−  “precomputation” algorithms, yielding sets Syes, Sno 

•  Then compute (min) probabilities for remaining states (S?) 
−  either: solve linear programming problem 
−  or: approximate with an iterative solution method 
−  or: use policy iteration 
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PCTL until - Precomputation 

•  Identify all states where pmin(s, φ1 U φ2) is 1 or 0 
−  Syes = Sat(P≥1 [ φ1 U φ2 ]),  Sno = Sat(¬ P>0 [ φ1 U φ2 ]) 

•  Two graph-based precomputation algorithms: 
−  algorithm Prob1A computes Syes 

•  for all adversaries the probability of satisfying φ1 U φ2 is 1 
−  algorithm Prob0E computes Sno 

•  there exists an adversary for which the probability is 0 
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Method 1 - Linear programming 

•  Probabilities pmin(s, φ1 U φ2) for remaining states in the set 
S? = S \ (Syes ∪ Sno) can be obtained as the unique solution 
of the following linear programming (LP) problem: 

•  Simple case of a more general problem known as the 
stochastic shortest path problem [BT91] 

•  This can be solved with standard techniques 
−  e.g. Simplex, ellipsoid method, branch-and-cut 
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Example - PCTL until (LP) 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 

For S? = {x0, x1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 0.25·x0 + 0.5 
●  x1 ≤ 0.1·x0 + 0.5·x1 + 0.4 

s0 

s1 s2 

s3 
0.5 

0.25 

1 
1 

1 

{a} 

0.4 

0.5 

0.1 

0.25 

1 

Syes 

Sno 



31 

Example - PCTL until (LP) 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 

For S? = {x0, x1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 
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Example - PCTL until (LP) 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 

For S? = {x0, x1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 
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Example - PCTL until (LP) 

Let xi = pmin(si, F a) 
Syes: x2=1, Sno: x3=0 

For S? = {x0, x1} : 
Maximise x0+x1 subject to constraints: 

●  x0 ≤ x1 

●  x0 ≤ 2/3 
●  x1 ≤ 0.2·x0 + 0.8 
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Method 2 – Value iteration 

•  For probabilities pmin(s, φ1 U φ2) it can be shown that: 

−  pmin(s, φ1 U φ2) = limn→∞ xs
(n) where: 

•  This forms the basis for an (approximate) iterative solution 
−  iterations terminated when solution converges sufficiently 
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Example - PCTL until (value iteration) 

Compute: pmin(si, F a) 
Syes = {x2}, Sno ={x3}, S? = {x0, x1} 

  [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0, 0, 1, 0 ] 

n=1:  [ min(0,0.25·0+0.5), 
        0.1·0+0.5·0+0.4, 1, 0 ] 

   = [ 0, 0.4, 1, 0 ] 
n=2:  [ min(0.4,0.25·0+0.5), 
    0.1·0+0.5·0.4+0.4, 1, 0 ] 

   = [ 0.4, 0.6, 1, 0 ] 
n=3:  … 
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Example - PCTL until (value iteration) 

  [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0.000000, 0.000000, 1, 0 ] 
n=1:  [ 0.000000, 0.400000, 1, 0 ] 
n=2:  [ 0.400000, 0.600000, 1, 0 ] 
n=3:  [ 0.600000, 0.740000, 1, 0 ] 
n=4:  [ 0.650000, 0.830000, 1, 0 ] 
n=5:  [ 0.662500, 0.880000, 1, 0 ] 
n=6:  [ 0.665625, 0.906250, 1, 0 ] 
n=7:  [ 0.666406, 0.919688, 1, 0 ] 
n=8:  [ 0.666602, 0.926484, 1, 0 ] 
n=9:  [ 0.666650, 0.929902, 1, 0 ] 

… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 

    ≈ [ 2/3, 14/15, 1, 0 ] 
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Example - Value iteration + LP 

  [ x0
(n),x1

(n),x2
(n),x3

(n) ] 
n=0:  [ 0.000000, 0.000000, 1, 0 ] 
n=1:  [ 0.000000, 0.400000, 1, 0 ] 
n=2:  [ 0.400000, 0.600000, 1, 0 ] 
n=3:  [ 0.600000, 0.740000, 1, 0 ] 
n=4:  [ 0.650000, 0.830000, 1, 0 ] 
n=5:  [ 0.662500, 0.880000, 1, 0 ] 
n=6:  [ 0.665625, 0.906250, 1, 0 ] 
n=7:  [ 0.666406, 0.919688, 1, 0 ] 
n=8:  [ 0.666602, 0.926484, 1, 0 ] 
n=9:  [ 0.666650, 0.929902, 1, 0 ] 

… 
n=20:  [ 0.666667, 0.933332, 1, 0 ] 
n=21:  [ 0.666667, 0.933332, 1, 0 ] 

    ≈ [ 2/3, 14/15, 1, 0 ] 
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Method 3 - Policy iteration 

•  Value iteration: 
−  iterates over (vectors of) probabilities 

•  Policy iteration: 
−  iterates over adversaries (“policies”) 

•  1. Start with an arbitrary (memoryless) adversary A 
•  2. Compute the reachability probabilities ProbA(F a) for A 
•  3. Improve the adversary in each state 
•  4. Repeat 2/3 until no change in adversary 

•  Termination: 
−  finite number of memoryless adversaries 
−  improvement in (minimum) probabilities each time 
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Method 3 - Policy iteration 

•  1. Start with an arbitrary (memoryless) adversary A 
−  pick some Steps(s) for each state s ∈ S 

•  2. Compute the reachability probabilities ProbA(F a) for A 
−  probabilistic reachability on a DTMC 
−  i.e. solve linear equation system 

•  3. Improve the adversary in each state 

•  4. Repeat 2/3 until no change in adversary 
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Example - Policy iteration 

Arbitrary policy A: 
Compute: ProbA(F a) 
Let xi = ProbA(si, F a) 
x2=1, x3=0 and: 
•  x0 = x1 

•  x1 = 0.1·x0 + 0.5·x1 + 0.4 
Solution: 
ProbA(F a) = [ 1, 1, 1, 0 ] 
Refine A in state s0: 
min{1(1), 0.5(1)+0.25(0)+0.25(1)} 
= min{1, 0.75} = 0.75 
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Example - Policy iteration 

Refined policy A’: 
Compute: ProbA’(F a) 
Let xi = ProbA’(si, F a) 
x2=1, x3=0 and: 
•  x0 = 0.25·x0 + 0.5 
•  x1 = 0.1·x0 + 0.5·x1 + 0.4 
Solution: 
ProbA’(F a) = [ 2/3, 14/15, 1, 0 ] 
This is optimal 
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Example - Policy iteration 
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PCTL model checking - Summary 

•  Computation of set Sat(Φ) for MDP M and PCTL formula Φ 
−  recursive descent of parse tree 
−  combination of graph algorithms, numerical computation 

•  Probabilistic operator P: 
−  X Φ : one matrix-vector multiplication, O(|S|2) 
−  Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2) 
−  Φ1 U Φ2 : linear programming problem, polynomial in |S| 

(assuming use of linear programming) 

•  Complexity:  
−  linear in |Φ| and polynomial in |S| 
−  S is states in MDP, assume |Steps(s)| is constant 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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LTL model checking for MDPs 

•  We consider lower/upper bounds for an LTL formula ψ: 
−  pmin(s, ψ) = infA∈Adv ProbA(s, ψ) 
−  pmax(s, ψ) = supA∈Adv ProbA(s, ψ) 

•  To model check an LTL formula ψ on an MDP M 
−  1. Convert problem to one needing maximum probabilities 

•  pmin(s, ψ) = 1 - pmax
 (s, ¬ψ) 

−  2. Construct product MDP M⊗A 
•  of MDP M and deterministic Rabin automaton A for ψ (or ¬ψ)  

−  3. Identify accepting end components (ECs) of M⊗A 
•  an end component is the analogue of a bottom strongly 

connected component (BSCC) in a DTMC 
−  4. Compute maximum probability of reaching accepting ECs 

•  Complexity: doubly exponential in |ψ|, polynomial in |M| 
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Costs and rewards for MDPs 

•  Can use costs and rewards in similar fashion to DTMCs: 

•  Augment MDPs with rewards (or costs) 
−  (but often assign to states/actions, not states/transitions) 

•  Extend logic PCTL with R operator 
−  semantics extended in same way as P operator 
−  e.g. s ⊨ R~r [ F Φ ]  ⇔  ExpA(s, XFΦ) ~ r for all adversaries A 
−  quantitative properties: Rmin=? […] and Rmax=? […] 

•  Examples: 
−  “the minimum expected queue size after exactly 90 seconds” 
−  “the maximum expected power consumption over one hour” 
−  the maximum expected time for the algorithm to terminate 
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Model checking MDP reward formulas 

•  Instantaneous: R~r [ I=k ] 
−  similar to the computation of bounded until probabilities 
−  solution of recursive equations 

•  Cumulative: R~r [ C≤k ] 
−  extension of bounded until computation 
−  solution of recursive equations 

•  Reachability: R~r [ F φ ] 
−  similar to the case for P operator and until 
−  graph-based precomputation (identify ∞-reward states) 
−  then linear programming problem (or value iteration) 
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Overview (Part 2) 

•  Markov decision processes (MDPs) 

•  Adversaries & probability spaces 

•  PCTL for MDPs 

•  PCTL model checking 

•  Further model checking (LTL, costs & rewards) 

•  Case study: Firewire root contention 
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Case study: FireWire protocol 

•  FireWire (IEEE 1394) 
−  high-performance serial bus for networking 

multimedia devices; originally by Apple 
−  "hot-pluggable" - add/remove  

devices at any time 
−  no requirement for a single PC (need acyclic topology) 

•  Root contention protocol 
−  leader election algorithm, when nodes join/leave 
−  symmetric, distributed protocol 
−  uses electronic coin tossing and timing delays 
−  nodes send messages: "be my parent" 
−  root contention: when nodes contend leadership 
−  random choice: "fast"/"slow" delay before retry 
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FireWire example 
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FireWire leader election 

R 
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FireWire root contention 

Root 
contention 
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FireWire root contention 

Root 
contention 

R 
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FireWire analysis 

•  Probabilistic model checking 
−  model constructed and analysed using PRISM 
−  timing delays taken from standard 
−  model includes: 

•  concurrency: messages between nodes and wires 
•  underspecification of delays (upper/lower bounds) 

−  max. model size: 170 million states 

•  Analysis: 
−  verified that root contention always 

resolved with probability 1 
−  investigated time taken for leader election 
−  and the effect of using biased coin 

•  based on a conjecture by Stoelinga 
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FireWire: Analysis results 

“minimum probability 
of electing leader 

by time T” 
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FireWire: Analysis results 

“minimum probability 
of electing leader 

by time T” 

(short wire length) 

Using a biased coin 
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FireWire: Analysis results 

“maximum expected 
time to elect a leader” 

(short wire length) 

Using a biased coin 
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FireWire: Analysis results 

“maximum expected 
time to elect a leader” 

(short wire length) 

Using a biased coin 
is beneficial! 
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Summary 

•  Markov decision processes (MDPs) 
−  extend DTMCs with nondeterminism 
−  to model concurrency, underspecification, … 

•  An adversary resolve nondeterminism in an MDP 
−  induce a probability space over paths 
−  consider minimum/maximum probabilities over all adversaries 

•  Property specifications 
−  use e.g. PCTL or LTL, as for DTMCs 
−  but quantify over all adversaries 

•  Model checking algorithms 
−  covered three basic techniques for MDPs: linear programming, 

value iteration, or policy iteration 

•  Tomorrow: continuous-time Markov chains (CTMCs) 


