Lecture 3
 Discrete-time Markov Chains...

Dr. Dave Parker

Department of Computer Science
University of Oxford

Next few lectures...

- Today:
- Discrete-time Markov chains (continued)
- Mon 2pm:
- Probabilistic temporal logics
- Wed 3pm:
- PCTL model checking for DTMCs
- Thur 12 pm :
- PRISM

Overview

- Transient state probabilities
- Long-run / steady-state probabilities
- Qualitative properties
- repeated reachability
- persistence

Transient state probabilities

- What is the probability, having started in state s, of being in state s' at time k?
- i.e. after exactly k steps/transitions have occurred
- this is the transient state probability: $\pi_{\mathrm{s}, \mathrm{k}}\left(\mathrm{s}^{\prime}\right)$
- Transient state distribution: $\underline{\pi}_{s, k}$
- vector $\underline{\Pi}_{s, k}$ i.e. $\pi_{s, k}\left(s^{\prime}\right)$ for all states s^{\prime}
- Note: this is a discrete probability distribution
- so we have $\Pi_{s, k}: S \rightarrow[0,1]$
- rather than e.g. $\operatorname{Pr}_{s}: \Sigma_{\text {Path(s) }} \rightarrow[0,1]$ where $\Sigma_{\text {Path(s) }} \subseteq 2^{\text {Path(s) }}$

Transient distributions

$\mathrm{k}=1$:

Computing transient probabilities

- Transient state probabilities:
$-\pi_{s, k}\left(s^{\prime}\right)=\Sigma_{s,}{ }^{\prime \prime} \mathrm{P}$ P($\left.s^{\prime \prime}, s^{\prime}\right) \cdot \pi_{s, k-1}\left(s^{\prime \prime}\right)$
- (i.e. look at incoming transitions)
- Computation of transient state distribution:
- $\underline{\Pi}_{s, 0}$ is the initial probability distribution
- e.g. in our case $\underline{\Pi}_{s, 0}\left(s^{\prime}\right)=1$ if $s^{\prime}=s$ and $\underline{\Pi}_{s, 0}\left(s^{\prime}\right)=0$ otherwise
$-\underline{\Pi}_{s, k}=\underline{\Pi}_{s, k-1} \cdot \mathbf{P}$
- i.e. successive vector-matrix multiplications

Computing transient probabilities

$$
\mathbf{P}=\left[\begin{array}{cccccc}
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0.5 & 0 & 0.25 & 0 & 0.25 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\Pi}_{50,0}=[1,0,0,0,0,0] \\
& \underline{\Pi}_{50,1}=\left[0, \frac{1}{2}, 0, \frac{1}{2}, 0,0\right] \\
& \underline{\Pi}_{50,2}=\left[\frac{1}{4}, 0, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}, 0\right] \\
& \underline{\Pi}_{50,3}=\left[0, \frac{1}{8}, 0, \frac{5}{8}, \frac{1}{8}, \frac{1}{8}\right]
\end{aligned}
$$

Computing transient probabilities

- $\underline{\Pi}_{s, k}=\underline{\Pi}_{s, k-1} \cdot \mathbf{P}=\underline{\Pi}_{s, 0} \cdot P^{k}$
- $\mathrm{k}^{\text {th }}$ matrix power: P^{k}
- \mathbf{P} gives one-step transition probabilities
- P^{k} gives probabilities of k-step transition probabilities
- i.e. $\mathrm{P}^{\mathrm{k}}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)=\pi_{\mathrm{s}, \mathrm{k}}\left(\mathrm{s}^{\prime}\right)$
- A possible optimisation: iterative squaring
- e.g. $\mathbf{P}^{8}=\left(\left(\mathbf{P}^{2}\right)^{2}\right)^{2}$
- only requires log k multiplications
- but potentially inefficient, e.g. if \mathbf{P} is large and sparse
- in practice, successive vector-matrix multiplications preferred

Notion of time in DTMCs

- Two possible views on the timing aspects of a system modelled as a DTMC:
- Discrete time-steps model time accurately
- e.g. clock ticks in a model of an embedded device
- or like dice example: interested in number of steps (tosses)
- Time-abstract
- no information assumed about the time transitions take
- e.g. simple Zeroconf model
- In the latter case, transient probabilities are not very useful
- In both cases, often beneficial to study long-run behaviour

Long-run behaviour

- Consider the limit: $\underline{\pi}_{s}=\lim _{\mathrm{k} \rightarrow \infty} \underline{\Pi}_{s, \mathrm{k}}$
- where $\underline{\Pi}_{s, k}$ is the transient state distribution at time k having starting in state s
- this limit, where it exists, is called the limiting distribution
- Intuitive idea
- the percentage of time, in the long run, spent in each state
- e.g. reliability: "in the long-run, what percentage of time is the system in an operational state"

Limiting distribution

- Example:

$$
\begin{aligned}
& \underline{\Pi}_{50,0}=[1,0,0,0,0,0] \\
& \underline{\Pi}_{50,1}=\left[0, \frac{1}{2}, 0, \frac{1}{2}, 0,0\right] \\
& \underline{\Pi}_{50,2}=\left[\frac{1}{4}, 0, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}, 0\right] \\
& \underline{\Pi}_{s 0,3}=\left[0, \frac{1}{8}, 0, \frac{5}{8}, \frac{1}{8}, \frac{1}{8}\right] \\
& \ldots \\
& \underline{\Pi}_{s 0}=\left[0,0, \frac{1}{12}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12}\right]
\end{aligned}
$$

Long-run behaviour

- Questions:
- when does this limit exist?
- does it depend on the initial state/distribution?

- Need to consider underlying graph
- (V,E) where V are vertices and $\mathrm{E} \subseteq \mathrm{VxV}$ are edges
$-\mathrm{V}=\mathrm{S}$ and $\mathrm{E}=\left\{\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\right.$ s.t. $\left.\mathrm{P}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)>0\right\}$

Graph terminology

- A state s' is reachable from s if there is a finite path starting in s and ending in s '
- A subset T of S is strongly connected if, for each pair of states s and s ' in T, s ' is reachable from s passing only through states in T
- A strongly connected component (SCC) is a maximally strongly connected set of states (i.e. no superset of it is also strongly connected)
- A bottom strongly connected component (BSCC) is an SCC T from which no state outside T is reachable from T
- Alternative terminology: "s communicates with s'", "communicating class", "closed communicating class"

Example - (B)SCCs

Graph terminology

- Markov chain is irreducible if all its states belong to a single BSCC; otherwise reducible

- A state s is periodic, with period d, if
- the greatest common divisor of the set $\left\{n\left|f_{s}{ }^{(n)}\right\rangle 0\right\}$ equals d
- where $f_{s}\left({ }^{(n)}\right.$ is the probability of, when starting in state s, returning to state s in exactly n steps
- A Markov chain is aperiodic if its period is 1

Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC...
- limiting distribution always exists
- and is independent of initial state/distribution
- These are known as steady-state probabilities
- (or equilibrium probabilities)
- effect of initial distribution has disappeared, denoted 프
- These probabilities can be computed as the unique solution of the linear equation system:

$$
\underline{\pi} \cdot P=\underline{\pi} \quad \text { and } \quad \sum_{s \in S} \underline{\pi}(s)=1
$$

Steady-state - Balance equations

- Known as balance equations

$$
\underline{\pi} \cdot P=\underline{\pi} \quad \text { and } \quad \sum_{s \in S} \underline{\pi}(s)=1
$$

- That is:

$$
-\underline{\Pi}\left(s^{\prime}\right)=\Sigma_{s \in S} \underline{\Pi}(s) \cdot P\left(s, s^{\prime}\right)
$$

$-\Sigma_{\mathrm{s} \in \mathrm{S}} \underline{\Pi}(\mathrm{s})=1$
normalisation

Steady-state - Example

- Let $\underline{x}=\underline{\pi}$
- Solve: $\underline{x} \cdot \mathbf{P}=\underline{x}, \Sigma_{s} \underline{x}(s)=1$

$P=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \underline{x} \approx[0.332215,0.335570, \\
& 0.003356,0.328859 \text {] }
\end{aligned}
$$

Steady-state - Example

- Let $\underline{x}=\underline{\pi}$
- Solve: $\underline{x} \cdot \mathbf{P}=\underline{x}, \Sigma_{s} \underline{x}(s)=1$

$P=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \underline{x} \approx[0.332215,0.335570, \\
& \text { 0.003356, 0.328859] }
\end{aligned}
$$

Long-run percentage of time spent in the state "try" $\approx 33.6 \%$

Long-run percentage of time spent in "fail"/"succ"
$\approx 0.003356+0.328859$
$\approx 33.2 \%$

Periodic DTMCs

- For (finite, irreducible) periodic DTMCs, this limit:

$$
\underline{\boldsymbol{\Pi}}_{s}\left(s^{\prime}\right)=\lim _{k \rightarrow \infty} \underline{\boldsymbol{\Pi}}_{s, k}\left(s^{\prime}\right)
$$

- does not exist, but this limit does:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} \underline{\Pi}_{s, k}\left(s^{\prime}\right)
$$

(and where both limits exist, e.g. for aperiodic DTMCs, these 2 limits coincide)

- Steady-state probabilities for these DTMCs can be computed by solving the same set of linear equations:

$$
\underline{\pi} \cdot P=\underline{\pi} \quad \text { and } \quad \sum_{s \in S} \underline{\pi}(s)=1
$$

Steady-state - General case

- General case: reducible DTMC
- compute vector \underline{I}_{s}
- (note: distribution depends on initial state s)
- Compute BSCCs for DTMC; then two cases to consider:
- (1) s is in a BSCC T
- compute steady-state probabilities \underline{x} in sub-DTMC for T
$-\underline{I}_{s}\left(s^{\prime}\right)=\underline{x}\left(s^{\prime}\right)$ if s^{\prime} in T
- $\underline{\Pi}_{s}\left(s^{\prime}\right)=0$ if s^{\prime} not in T
- (2) s is not in any BSCC
- compute steady-state probabilities $\underline{\mathrm{x}}_{\top}$ for sub-DTMC of each BSCC T and combine with reachability probabilities to BSCCs
$-\underline{\Pi}_{s}\left(s^{\prime}\right)=\operatorname{ProbReach}(s, T) \cdot \underline{x}_{T}\left(s^{\prime}\right)$ if s^{\prime} is in BSCC T
- In $_{s}\left(s^{\prime}\right)=0$ if s^{\prime} is not in a BSCC

Steady-state - Example 2

- $\underline{\Pi}_{s}$ depends on initial state s

$$
\begin{aligned}
& \underline{\Pi}_{s 3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
& \underline{\Pi}_{s 4}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& \underline{\Pi}_{s 2}=\underline{\Pi}_{s 5}=\left[0,0, \frac{1}{2}, 0,0, \frac{1}{2}\right] \\
& \underline{\Pi}_{s 0}=\left[0,0, \frac{1}{12}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12}\right]
\end{aligned}
$$

$$
\underline{\Pi}_{s 1}=\ldots
$$

Qualitative properties

- Quantitative properties:
- "what is the probability of event A?"
- Qualititative properties:
- "the probability of event A is 1 " ("almost surely A ")
- or: "the probability of event A is >0 " ("possibly A")
- For finite DTMCs, qualititative properties do not depend on the transition probabilities - only need underlying graph
- e.g. to determine "is target set T reached with probability 1?" (see DTMC model checking lecture)
- computing BSCCs of a DTMCs yields information about long-run qualitative properties...

Fundamental property

- Fundamental property of (finite) DTMCs...
- With probability 1 , a BSCC will be reached and all of its states visited infinitely often

- Formally:

$$
\begin{aligned}
-\operatorname{Pr}_{s 0}\left(s_{0} s_{1} s_{2} \ldots\right. & \mid \exists i \geq 0, \exists \text { BSCC } T \text { such that } \\
& \forall j \geq i s_{j} \in T \text { and } \\
& \left.\forall s \in T s_{k}=s \text { for infinitely many } k\right)=1
\end{aligned}
$$

Zeroconf example

- 2 BSCCs: $\left\{\mathrm{s}_{6}\right\},\left\{\mathrm{s}_{8}\right\}$
- Probability of trying to acquire a new address infinitely often is 0

DP/Probabilistic Model Checking, Michaelmas 2011

Aside: Infinite Markov chains

- Infinite-state random walk

- Value of probability p does affect qualitative properties
$-\operatorname{ProbReach}\left(\mathrm{s},\left\{\mathrm{s}_{0}\right\}\right)=1$ if $\mathrm{p} \leq 0.5$
- ProbReach(s, $\left.\left\{\mathrm{s}_{0}\right\}\right)<1$ if $p>0.5$

Repeated reachability

- Repeated reachability:
- "always eventually...", "infinitely often..."
- $\operatorname{Pr}_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mid \forall \mathrm{i} \geq 0 \exists \mathrm{j} \geq \mathrm{i} \mathrm{s}_{\mathrm{j}} \in \mathrm{B}\right)$
- where $\mathrm{B} \subseteq \mathrm{S}$ is a set of states
- e.g. "what is the probability that the protocol successfully sends a message infinitely often?"
- Is this measurable? Yes...
- set of satisfying paths is: $\bigcap_{n \geq 0} \bigcup_{m \geq n} C_{m}$
- where C_{m} is the union of all cylinder sets $C y l\left(s_{0} S_{1} \ldots s_{m}\right)$ for finite paths $\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{m}}$ such that $\mathrm{s}_{\mathrm{m}} \in \mathrm{B}$

Qualitative repeated reachability

- $\operatorname{Pr}_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mid \forall \mathrm{i} \geq 0 \exists \mathrm{j} \geq \mathrm{i} \mathrm{s}_{\mathrm{j}} \in \mathrm{B}\right)=1$ $\mathrm{Pr}_{\text {s0 }}$ ("always eventually B ") $=1$
if and only if
- $\mathrm{T} \cap \mathrm{B} \neq \varnothing$ for each BSCC T that is reachable from s_{0}

Example:

$$
B=\left\{s_{3}, s_{4}, s_{5}\right\}
$$

Persistence

- Persistence properties:
- "eventually forever..."
- $\operatorname{Pr}_{\mathrm{s} 0}\left(\mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mid \exists \mathrm{i} \geq 0 \forall \mathrm{j} \geq \mathrm{i} \mathrm{s}_{\mathrm{j}} \in \mathrm{B}\right)$
- where $\mathrm{B} \subseteq \mathrm{S}$ is a set of states
- e.g. "what is the probability of the leader election algorithm reaching, and staying in, a stable state?"
- e.g. "what is the probability that an irrecoverable error occurs?"
- Is this measurable? Yes...

Qualitative persistence

- $\operatorname{Pr}_{50}\left(s_{0} s_{1} s_{2} \ldots \mid \exists i \geq 0 \forall j \geq i s_{j} \in B\right)=1$ $\operatorname{Pr}_{\text {s0 }}($ "eventually forever $\mathrm{B} ")=1$
if and only if
- $\mathrm{T} \subseteq \mathrm{B}$ for each BSCC T that is reachable from s_{0}

Example:
$B=\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\}$

Summing up...

- Transient state probabilities
- successive vector-matrix multiplications
- Long-run/steady-state probabilities
- requires graph analysis
- irreducible case: solve linear equation system
- reducible case: steady-state for sub-DTMCs + reachability
- Qualitative properties
- repeated reachability
- persistence

