Lecture 3 Discrete-time Markov Chains...

Dr. Dave Parker

Department of Computer Science University of Oxford

Next few lectures...

- Today:
 - Discrete-time Markov chains (continued)
- Mon 2pm:
 - Probabilistic temporal logics
- Wed 3pm:
 - PCTL model checking for DTMCs
- Thur 12pm:
 - PRISM

Overview

- Transient state probabilities
- Long-run / steady-state probabilities
- Qualitative properties
 - repeated reachability
 - persistence

Transient state probabilities

- What is the probability, having started in state s, of being in state s' at time k?
 - i.e. after exactly k steps/transitions have occurred
 - this is the transient state probability: $\pi_{s,k}(s')$
- Transient state distribution: $\underline{\pi}_{s,k}$
 - vector $\underline{\pi}_{s,k}$ i.e. $\pi_{s,k}(s')$ for all states s'

- Note: this is a discrete probability distribution
 - − so we have $\underline{\pi}_{s,k}$: S → [0,1]
 - rather than e.g. $Pr_s : \Sigma_{Path(s)} \rightarrow [0,1]$ where $\Sigma_{Path(s)} \subseteq 2^{Path(s)}$

Transient distributions

Computing transient probabilities

- Transient state probabilities:
 - $\ \pi_{s,k}(s') = \Sigma_{s'' \in S} \ P(s'',s') \ \cdot \ \pi_{s,k-1}(s'')$
 - (i.e. look at incoming transitions)
- Computation of transient state distribution:
 - $\underline{\pi}_{s,0}$ is the initial probability distribution
 - e.g. in our case $\underline{\pi}_{s,0}(s') = 1$ if s' = s and $\underline{\pi}_{s,0}(s') = 0$ otherwise

$$- \underline{\pi}_{s,k} = \underline{\pi}_{s,k-1} \cdot \mathbf{P}$$

i.e. successive vector-matrix multiplications

Computing transient probabilities

. . .

$$\begin{split} \underline{\pi}_{s0,0} &= \left[1,0,0,0,0,0 \right] \\ \underline{\pi}_{s0,1} &= \left[0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0 \right] \\ \underline{\pi}_{s0,2} &= \left[\frac{1}{4}, 0, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}, 0 \right] \\ \underline{\pi}_{s0,3} &= \left[0, \frac{1}{8}, 0, \frac{5}{8}, \frac{1}{8}, \frac{1}{8} \right] \end{split}$$

Computing transient probabilities

•
$$\underline{\pi}_{s,k} = \underline{\pi}_{s,k-1} \cdot \mathbf{P} = \underline{\pi}_{s,0} \cdot \mathbf{P}^k$$

- kth matrix power: **P**^k
 - P gives one-step transition probabilities
 - P^k gives probabilities of k-step transition probabilities

- i.e.
$$P^{k}(s,s') = \pi_{s,k}(s')$$

- A possible optimisation: iterative squaring
 - $\text{ e.g. } \mathbf{P}^8 = ((\mathbf{P}^2)^2)^2$
 - only requires log k multiplications
 - but potentially inefficient, e.g. if **P** is large and sparse
 - in practice, successive vector-matrix multiplications preferred

Notion of time in DTMCs

- Two possible views on the timing aspects of a system modelled as a DTMC:
- Discrete time-steps model time accurately
 - e.g. clock ticks in a model of an embedded device
 - or like dice example: interested in number of steps (tosses)
- Time-abstract
 - no information assumed about the time transitions take
 - e.g. simple Zeroconf model
- In the latter case, transient probabilities are not very useful
- In both cases, often beneficial to study long-run behaviour

Long-run behaviour

- Consider the limit: $\underline{\pi}_{s} = \lim_{k \to \infty} \underline{\pi}_{s,k}$
 - where $\underline{\pi}_{s,k}$ is the transient state distribution at time k having starting in state s
 - this limit, where it exists, is called the limiting distribution
- Intuitive idea
 - the percentage of time, in the long run, spent in each state
 - e.g. reliability: "in the long-run, what percentage of time is the system in an operational state"

Limiting distribution

• Example:

$$\begin{split} \underline{\pi}_{s0,0} &= \left[1,0,0,0,0,0 \right] \\ \underline{\pi}_{s0,1} &= \left[0,\frac{1}{2},0,\frac{1}{2},0,0 \right] \\ \underline{\pi}_{s0,2} &= \left[\frac{1}{4},0,\frac{1}{8},\frac{1}{2},\frac{1}{8},0 \right] \\ \underline{\pi}_{s0,3} &= \left[0,\frac{1}{8},0,\frac{5}{8},\frac{1}{8},\frac{1}{8} \right] \\ \dots \end{split}$$

$$\underline{\pi}_{s0} = \left[0, 0, \frac{1}{12}, \frac{2}{3}, \frac{1}{6}, \frac{1}{12}\right]$$

Long-run behaviour

- Questions:
 - when does this limit exist?
 - does it depend on the initial state/distribution?

- Need to consider underlying graph
 - (V,E) where V are vertices and $E \subseteq VxV$ are edges
 - $V = S \text{ and } E = \{ (s,s') \text{ s.t. } P(s,s') > 0 \}$

Graph terminology

- A state s' is reachable from s if there is a finite path starting in s and ending in s'
- A subset T of S is strongly connected if, for each pair of states s and s' in T, s' is reachable from s passing only through states in T
- A strongly connected component (SCC) is a maximally strongly connected set of states (i.e. no superset of it is also strongly connected)
- A bottom strongly connected component (BSCC) is an SCC
 T from which no state outside T is reachable from T
- Alternative terminology: "s communicates with s'", "communicating class", "closed communicating class"

Example – (B)SCCs

Graph terminology

 Markov chain is irreducible if all its states belong to a single BSCC; otherwise reducible

- A state s is periodic, with period d, if
 - the greatest common divisor of the set { $n \mid f_s^{(n)} > 0$ } equals d
 - where $f_s^{(n)}$ is the probability of, when starting in state s, returning to state s in exactly n steps
- A Markov chain is aperiodic if its period is 1

Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC...
 - limiting distribution always exists
 - and is independent of initial state/distribution
- These are known as steady-state probabilities
 - (or equilibrium probabilities)
 - effect of initial distribution has disappeared, denoted $\underline{\pi}$
- These probabilities can be computed as the unique solution of the linear equation system:

$$\underline{\pi} \cdot P = \underline{\pi}$$
 and $\sum_{s \in S} \underline{\pi}(s) = 1$

Steady-state - Balance equations

Known as balance equations

$$\underline{\pi} \cdot \mathbf{P} = \underline{\pi}$$
 and $\sum_{s \in S} \underline{\pi}(s) = 1$

Steady-state - Example

- Let $\underline{\mathbf{x}} = \underline{\mathbf{\pi}}$
- Solve: $\underline{\mathbf{x}} \cdot \mathbf{P} = \underline{\mathbf{x}}, \ \Sigma_{s} \underline{\mathbf{x}}(s) = 1$

Steady-state - Example

• Let $\underline{\mathbf{x}} = \underline{\mathbf{\pi}}$

• Solve:
$$\underline{\mathbf{x}} \cdot \mathbf{P} = \underline{\mathbf{x}}, \ \Sigma_{s} \underline{\mathbf{x}}(s) = 1$$

 $\underline{x} \approx [0.332215, 0.335570, 0.003356, 0.328859]$

Long-run percentage of time spent in the state "try" \approx 33.6%

Long-run percentage of time spent in "fail"/"succ" $\approx 0.003356 + 0.328859 \approx 33.2\%$

Periodic DTMCs

• For (finite, irreducible) periodic DTMCs, this limit:

$$\underline{\mathbf{\Pi}}_{s}(s') = \lim_{k \to \infty} \underline{\mathbf{\Pi}}_{s,k}(s')$$

does not exist, but this limit does:

$$\lim_{n \to \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} \underline{\pi}_{s,k}(s')$$

(and where both limits exist, e.g. for aperiodic DTMCs, these 2 limits coincide)

 Steady-state probabilities for these DTMCs can be computed by solving the same set of linear equations:

$$\underline{\pi} \cdot \mathbf{P} = \underline{\pi}$$
 and $\sum_{s \in S} \underline{\pi}(s) = 1$

Steady-state - General case

- General case: reducible DTMC
 - compute vector $\underline{\pi}_s$
 - (note: distribution depends on initial state s)
- Compute BSCCs for DTMC; then two cases to consider:
- (1) s is in a BSCC T
 - compute steady-state probabilities \underline{x} in sub-DTMC for T
 - $\underline{\pi}_{s}(s') = \underline{x(s')}$ if s' in T
 - $\underline{\pi}_s(s') = 0$ if s' not in T
- (2) s is not in any BSCC
 - compute steady-state probabilities \underline{x}_T for sub-DTMC of each BSCC T and combine with reachability probabilities to BSCCs
 - $\underline{\pi}_{s}(s') = ProbReach(s, T) \cdot \underline{x}_{T}(s')$ if s' is in BSCC T
 - $\underline{\pi}_{s}(s') = 0$ if s' is not in a BSCC

Steady-state - Example 2

Qualitative properties

- Quantitative properties:
 - "what is the probability of event A?"
- Qualititative properties:
 - "the probability of event A is 1" ("almost surely A")
 - or: "the probability of event A is > 0" ("possibly A")
- For finite DTMCs, qualititative properties do not depend on the transition probabilities – only need underlying graph
 - e.g. to determine "is target set T reached with probability 1?" (see DTMC model checking lecture)
 - computing BSCCs of a DTMCs yields information about long-run qualitative properties...

Fundamental property

- Fundamental property of (finite) DTMCs...
- With probability 1, a BSCC will be reached and all of its states visited infinitely often

• Formally:

 $\begin{array}{rl} - \ Pr_{s0} \left(\begin{array}{c} s_0 s_1 s_2 ... \end{array} \middle| \ \exists \ i \geq 0, \ \exists \ BSCC \ T \ such \ that \\ \forall \ j \geq i \ s_j \in T \ and \\ \forall \ s \in T \ s_k = s \ for \ infinitely \ many \ k \) \ = \ 1 \end{array}$

Zeroconf example

- 2 BSCCs: {s₆}, {s₈}
- Probability of trying to acquire a new address infinitely often is 0

Aside: Infinite Markov chains

Infinite-state random walk

- Value of probability p does affect qualitative properties
 - ProbReach(s, $\{s_0\}$) = 1 if $p \le 0.5$
 - ProbReach(s, {s₀}) < 1 if p > 0.5

Repeated reachability

Repeated reachability:

- "always eventually...", "infinitely often..."

• $\Pr_{s0}(s_0s_1s_2... \mid \forall i \ge 0 \exists j \ge i s_j \in B)$

- where $B \subseteq S$ is a set of states

- e.g. "what is the probability that the protocol successfully sends a message infinitely often?"
- Is this measurable? Yes...
 - set of satisfying paths is: $\bigcap_{n>0} \bigcup_{m>n} C_m$
 - where C_m is the union of all cylinder sets $Cyl(s_0s_1...s_m)$ for finite paths $s_0s_1...s_m$ such that $s_m \in B$

Qualitative repeated reachability

• $Pr_{s0}(s_0s_1s_2... | \forall i \ge 0 \exists j \ge i s_j \in B) = 1$ $Pr_{s0}($ "always eventually B") = 1

if and only if

• $T \cap B \neq \emptyset$ for each BSCC T that is reachable from s_0

Persistence

Persistence properties:

- "eventually forever..."

- $\mathsf{Pr}_{s0}\,(\,s_0s_1s_2...\mid \exists\ i{\geq}0\ \forall\ j{\geq}i\ s_j\in B\,)$

- where $B \subseteq S$ is a set of states

- e.g. "what is the probability of the leader election algorithm reaching, and staying in, a stable state?"
- e.g. "what is the probability that an irrecoverable error occurs?"
- Is this measurable? Yes...

Qualitative persistence

• $Pr_{s0}(s_0s_1s_2... | \exists i \ge 0 \forall j \ge i s_j \in B) = 1$ $Pr_{s0}($ "eventually forever B") = 1

if and only if

• $T \subseteq B$ for each BSCC T that is reachable from s_0

Summing up...

- Transient state probabilities
 - successive vector-matrix multiplications
- Long-run/steady-state probabilities
 - requires graph analysis
 - irreducible case: solve linear equation system
 - reducible case: steady-state for sub-DTMCs + reachability
- Qualitative properties
 - repeated reachability
 - persistence