Lecture 12 Markov Decision Processes

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- Paths, probabilities and adversaries
- End components

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
- discrete state space, transitions are discrete time-steps
- from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution

- DTMCs are fully probabilistic
- well suited to modelling, for example, simple random algorithms or synchronous probabilistic systems where components move in lock-step

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency - scheduling of parallel components
- e.g. randomised distributed algorithms - multiple probabilistic processes operating asynchronously
- Unknown environments
- e.g. probabilistic security protocols - unknown adversary
- Underspecification - unknown model parameters
- e.g. a probabilistic communication protocol designed for message propagation delays of between $\mathrm{d}_{\text {min }}$ and $\mathrm{d}_{\text {max }}$
- Abstraction
- e.g. partition DTMC into similar (but not identical) states

Probability vs. nondeterminism

- Labelled transition system
- $\left(\mathrm{S}, \mathrm{s}_{0}, \mathrm{R}, \mathrm{L}\right)$ where $\mathrm{R} \subseteq \mathrm{S} \times \mathrm{S}$
- choice is nondeterministic

- Discrete-time Markov chain
- $\left(\mathrm{S}, \mathrm{s}_{0}, \mathrm{P}, \mathrm{L}\right)$ where $\mathrm{P}: \mathrm{S} \times \mathrm{S} \rightarrow[0,1]$
- choice is probabilistic

- How to combine?

Markov decision processes

- Markov decision processes (MDPs)
- extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
- in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple ($\mathrm{S}, \mathrm{s}_{\text {init }}$,Steps,L) where:
- S is a finite set of states ("state space")
$-s_{\text {init }} \in S$ is the initial state
- Steps : S $\rightarrow 2^{\text {Act } \times \text { Dist(S) }}$ is the transition probability function where Act is a set of actions and $\operatorname{Dist}(\mathrm{S})$ is the set of discrete probability distributions over the set S
$-\mathrm{L}: \mathrm{S} \rightarrow 2^{\text {AP }}$ is a labelling with atomic propositions
- Notes:
- Steps(s) is always non-empty, i.e. no deadlocks
- the use of actions to label distributions is optional

Simple MDP example

- Modification of the simple DTMC communication protocol
- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
- from state s_{0}, move directly to s_{1} (action a)
- in state s_{1}, nondeterministic choice between actions b and c
- action b gives a probabilistic choice: self-loop or return to s_{0}
- action c gives a $0.5 / 0.5$ random choice between heads/tails

Simple MDP example 2

$$
\begin{array}{ll}
M=\left(S, s_{\text {init }}, \text { Steps }, L\right) & A P=\{\text { init, heads, tails }\} \\
S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\} & L\left(s_{0}\right)=\{\text { init }\} \\
S & L\left(s_{2}\right)=\{\text { heads }\} \\
s_{\text {init }}=s_{0} & L\left(s_{3}\right)=\{\text { tails }\}
\end{array}
$$

Steps $\left(s_{0}\right)=\left\{\left(a,\left[s_{1} \mapsto 1\right]\right)\right\}$
Steps $\left(s_{1}\right)=\left\{\left(b,\left[s_{0} \mapsto 0.7, s_{1} \mapsto 0.3\right]\right),\left(c,\left[s_{2} \mapsto 0.5, s_{3} \mapsto 0.5\right]\right)\right\}$
Steps $\left(s_{2}\right)=\left\{\left(\mathrm{a},\left[\mathrm{s}_{2} \mapsto 1\right]\right)\right\}$
Steps $\left(\mathrm{s}_{3}\right)=\left\{\left(\mathrm{a},\left[\mathrm{s}_{3} \mapsto 1\right]\right)\right\}$

DP/Probabilistic Model Checking, Michaelmas 2011

The transition probability function

- It is often useful to think of the function Steps as a matrix - non-square matrix with $|\mathrm{S}|$ columns and $\Sigma_{\mathrm{s} \in \mathrm{S}} \mid$ Steps(s)| rows
- Example (for clarity, we omit actions from the matrix)

$$
\begin{aligned}
& \text { Steps }\left(\mathrm{s}_{0}\right)=\left\{\left(\mathrm{a}, \mathrm{~s}_{1} \mapsto 1\right)\right\} \\
& \text { Steps }\left(\mathrm{s}_{1}\right)=\left\{\left(\mathrm{b},\left[\mathrm{~s}_{0} \mapsto 0.7, \mathrm{~s}_{1} \mapsto 0.3\right]\right),\left(\mathrm{c},\left[\mathrm{~s}_{2} \mapsto 0.5, \mathrm{~s}_{3} \mapsto 0.5\right]\right)\right\} \\
& \text { Steps } \left.\mathrm{s}_{2}\right)=\left\{\left(\mathrm{a}, \mathrm{~s}_{2} \mapsto 1\right)\right\} \\
& \text { Steps }\left(\mathrm{s}_{3}\right)=\left\{\left(\mathrm{a}, \mathrm{~s}_{3} \mapsto 1\right)\right\}
\end{aligned}
$$

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

```
module M1
    s : [0..2] init 0;
    [] s=0 -> (s'=1);
    [] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);
    [] s=2 -> (s'=2);
endmodule
```


module M2 $=$ M1 [$s=t$] endmodule

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

DP/Probabilistic Model Checking, Michaelmas 2011

Paths and probabilities

- A (finite or infinite) path through an MDP
- is a sequence of states and action/distribution pairs
- e.g. $s_{0}\left(a_{0}, \mu_{0}\right) s_{1}\left(a_{1}, \mu_{1}\right) s_{2} \ldots$
- such that $\left(\mathrm{a}_{\mathrm{i}}, \mu_{\mathrm{i}}\right) \in \operatorname{Steps}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mu_{i}\left(\mathrm{~s}_{\mathrm{i}+1}\right)>0$ for all $i \geq 0$
- represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- Path $(\mathrm{s})=$ set of all paths through MDP starting in state s
$-\operatorname{Path}_{\text {fin }}(s)=$ set of all finite paths from s
- Paths resolve both nondeterministic and probabilistic choices
- how to reason about probabilities?

Adversaries

- To consider the probability of some behaviour of the MDP
- first need to resolve the nondeterministic choices
- ...which results in a DTMC
- ...for which we can define a probability measure over paths
- An adversary resolves nondeterministic choice in an MDP
- also known as "schedulers", "policies" or "strategies"
- Formally:
- an adversary σ of an MDP M is a function mapping every finite path $\omega=s_{0}\left(a_{0}, \mu_{0}\right) s_{1} \ldots s_{n}$ to an element $\sigma(\omega)$ of Steps $\left(s_{n}\right)$
- i.e. resolves nondeterminism based on execution history
- Adv (or $\mathrm{Adv}_{\mathrm{M}}$) denotes the set of all adversaries

Adversaries - Examples

- Consider the previous example MDP
- note that s_{1} is the only state for which \mid Steps(s) $\mid>1$
- i.e. s_{1} is the only state for which an adversary makes a choice
- let μ_{b} and μ_{c} denote the probability distributions associated with actions b and c in state s_{1}
- Adversary σ_{1}
- picks action c the first time
$-\sigma_{1}\left(s_{0} s_{1}\right)=\left(c, \mu_{c}\right)$
- Adversary σ_{2}

- picks action b the first time, then c
$-\sigma_{2}\left(s_{0} s_{1}\right)=\left(b, \mu_{b}\right), \sigma_{2}\left(s_{0} s_{1} s_{1}\right)=\left(c, \mu_{c}\right)$, $\sigma_{2}\left(s_{0} s_{1} s_{0} s_{1}\right)=\left(c, \mu_{c}\right)$
(Note: actions/distributions omitted from paths for clarity)

Adversaries and paths

- $\operatorname{Path}^{\sigma}(\mathrm{s}) \subseteq \operatorname{Path}(\mathrm{s})$
- (infinite) paths from s where nondeterminism resolved by σ
- i.e. paths $s_{0}\left(a_{0}, \mu_{0}\right) s_{1}\left(a_{1}, \mu_{1}\right) s_{2} \ldots$
- for which $\left.\sigma\left(s_{0}\left(a_{0}, \mu_{0}\right) s_{1} \ldots s_{n}\right)\right)=\left(a_{n}, \mu_{n}\right)$
- Adversary σ_{1}
- (picks action c the first time)
$-\operatorname{Path}^{\sigma}\left(\mathrm{s}_{0}\right)=\left\{\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2}{ }^{\omega}, \mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{3}{ }^{\omega}\right\}$

- Adversary σ_{2}
- (picks action b the first time, then c)
$-\operatorname{Path}^{\sigma_{2}}\left(\mathrm{~s}_{0}\right)=\left\{\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2}{ }^{\omega}, \mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{3}{ }^{\omega}, \mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{1} \mathrm{~s}_{2}{ }^{\omega}, \mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{1} \mathrm{~s}_{3}{ }^{\omega}\right\}$

Induced DTMCs

- Adversary σ for MDP induces an infinite-state DTMC D^{σ}
- $\mathrm{D}^{\sigma}=\left(\right.$ Path $\left.^{\sigma}{ }_{\text {fin }}(\mathrm{s}), \mathrm{s}, \mathrm{P}_{\mathrm{s}}\right)$ where:
- states of the DTMC are the finite paths of σ starting in state s
- initial state is s (the path starting in s of length 0)
- $P^{\sigma}{ }_{s}\left(\omega, \omega^{\prime}\right)=\mu\left(s^{\prime}\right)$ if $\omega^{\prime}=\omega(a, \mu) s^{\prime}$ and $\sigma(\omega)=(a, \mu)$
$-\mathbf{P}_{s}^{\sigma}\left(\omega, \omega^{\prime}\right)=0$ otherwise
- 1-to-1 correspondence between $\operatorname{Path}^{\sigma}(\mathrm{s})$ and paths of D^{σ}
- This gives us a probability measure $\operatorname{Pr}^{\sigma}{ }_{\mathrm{s}}$ over $\operatorname{Path}^{\sigma}(\mathrm{s})$
- from probability measure over paths of D^{σ}

Adversaries - Examples

- Fragment of induced DTMC for adversary σ_{1}
- σ_{1} picks action c the first time

Adversaries - Examples

- Fragment of induced DTMC for adversary σ_{2}
\{heads\}
- σ_{2} picks action b, then c

MDPs and probabilities

- $\operatorname{Prob}^{\sigma}(\mathrm{s}, \Psi)=\operatorname{Pr}_{\mathrm{s}}\left\{\omega \in \operatorname{Path}^{\sigma}(\mathrm{s}) \mid \omega \vDash \Psi\right\}$
- for some path formula Ψ
- e.g. $\operatorname{Prob}^{\sigma}(\mathrm{s}, \mathrm{F}$ tails)
- MDP provides best-/worst-case analysis
- based on lower/upper bounds on probabilities
- over all possible adversaries

$$
\begin{gathered}
\mathrm{p}_{\min }(\mathrm{s}, \psi)=\inf _{\sigma \in \operatorname{Adv}} \operatorname{Prob}^{\sigma}(\mathrm{s}, \psi) \\
\mathrm{p}_{\max }(\mathrm{s}, \psi)=\sup _{\sigma \in \operatorname{Adv}} \operatorname{Prob}^{\sigma}(\mathrm{s}, \psi)
\end{gathered}
$$

Examples

- $\operatorname{Prob}^{\sigma 1}\left(s_{0}, F\right.$ tails $)=0.5$
- $\operatorname{Prob}^{\sigma 2}\left(s_{0}, F\right.$ tails $)=0.5$
- (where σ_{i} picks b i-1 times then c)
- $\mathrm{p}_{\text {max }}\left(\mathrm{s}_{0}, \mathrm{~F}\right.$ tails $)=0.5$
- $\mathrm{p}_{\text {min }}\left(\mathrm{s}_{0}, \mathrm{~F}\right.$ tails $)=0$

- $\operatorname{Prob}^{\sigma 1}\left(s_{0}, F\right.$ tails $)=0.5$
- $\operatorname{Prob}^{\sigma 2}\left(\mathrm{~s}_{0}, \mathrm{~F}\right.$ tails $)$

$$
=0.3+0.7 \cdot 0.5=0.65
$$

- $\operatorname{Prob}^{\sigma 3}\left(\mathrm{~s}_{0}, \mathrm{~F}\right.$ tails $)$

$$
=0.3+0.7 \cdot 0.3+0.7 \cdot 0.7 \cdot 0.5=0.755
$$

- $\mathrm{p}_{\max }\left(\mathrm{s}_{0}, \mathrm{~F}\right.$ tails $)=1$

- $\mathrm{p}_{\text {min }}\left(\mathrm{s}_{0}, \mathrm{~F}\right.$ tails $)=0.5$

Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
- also known as: positional, Markov, simple
- formally, $\sigma\left(s_{0}\left(a_{0}, \mu_{0}\right) s_{1} \ldots s_{n}\right)$ depends only on s_{n}
- can write as a mapping from states, i.e. $\sigma(\mathrm{s})$ for each $s \in S$
- induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
- adversary σ_{1} (picks cin s_{1}) is memoryless; σ_{2} is not

Other classes of adversary

- Finite-memory adversary
- finite number of modes, which can govern choices made
- formally defined by a deterministic finite automaton
- induced DTMC (for finite MDP) again mapped to finite DTMC
- Randomised adversary
- maps finite paths $s_{0}\left(a_{1}, \mu_{1}\right) s_{1} \ldots s_{n}$ in MDP to a probability distribution over element of Steps(s_{n})
- generalises deterministic schedulers
- still induces a (possibly infinite state) DTMC
- Fair adversary
- fairness assumptions on resolution of nondeterminism

End components

- Consider an MDP M $=\left(\mathrm{S}, \mathrm{s}_{\text {init }}\right.$, Steps, L$)$
- A sub-MDP of M is a pair (S^{\prime}, Steps') where:
- S' \subseteq S is a (non-empty) subset of M's states
- Steps'(s) \subseteq Steps(s) for each $s \in$ S' $^{\prime}$
- is closed under probabilistic branching, i.e.:
$-\left\{s^{\prime} \mid \mu\left(s^{\prime}\right)>0\right.$ for some $\left.(a, \mu) \in S t e p s s^{\prime}(s)\right\} \subseteq S^{\prime}$
- An end component of M is a strongly connected sub-MDP

End components

- For finite MDPs...
- For every end component, there is an adversary which, with probability 1 , forces the MDP to remain in the end component and visit all its states infinitely often
- Under every adversary σ, with probability 1 an end component will be reached and all of its states visited infinitely often

- (analogue of fundamental property of finite DTMCs)

Summing up...

- Nondeterminism
- concurrency, unknown environments/parameters, abstraction
- Markov decision processes (MDPs)
- discrete-time + probability and nondeterminism
- nondeterministic choice between multiple distributions
- Adversaries
- resolution of nondeterminism only
- induced set of paths and (infinite state DTMC)
- induces DTMC yields probability measure for adversary
- best-/worst-case analysis: minimum/maximum probabilities
- memoryless adversaries
- End components
- long-run behaviour: analogue of BSCCs for DTMCs

