Lecture 12 Markov Decision Processes

Dr. Dave Parker

Department of Computer Science University of Oxford

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- Paths, probabilities and adversaries
- End components

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - discrete state space, transitions are discrete time-steps
 - from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution

- DTMCs are fully probabilistic
 - well suited to modelling, for example, simple random algorithms or synchronous probabilistic systems where components move in lock-step

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Abstraction
 - e.g. partition DTMC into similar (but not identical) states

Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where R ⊆ S×S
 - choice is nondeterministic

- Discrete-time Markov chain
 - (S,s_0,P,L) where P: $S\times S\rightarrow [0,1]$
 - choice is probabilistic

How to combine?

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - Steps: S → 2^{Act×Dist(S)} is the transition probability function
 where Act is a set of actions and Dist(S) is the set of discrete
 probability distributions over the set S
 - L : S → 2^{AP} is a labelling with atomic propositions
- Notes:
 - Steps(s) is always non-empty,
 i.e. no deadlocks
 - the use of actions to label distributions is optional

Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action a)
 - in state s₁, nondeterministic choice between actions b and c
 - action b gives a probabilistic choice: self-loop or return to s₀
 - action c gives a 0.5/0.5 random choice between heads/tails

Simple MDP example 2

```
AP = {init,heads,tails}
               M = (S, s_{init}, Steps, L)
                                                           L(s_0) = \{init\},\
                                                           L(s_1) = \emptyset,
               S = \{s_0, s_1, s_2, s_3\}
                                                           L(s_2)=\{\text{heads}\},\
               s_{init} = s_0
                                                           L(s_3) = \{tails\}
Steps(s_0) = { (a, [s_1 \mapsto 1]) }
Steps(s_1) = { (b, [s_0 \mapsto 0.7, s_1 \mapsto 0.3]), (c, [s_2 \mapsto 0.5, s_3 \mapsto 0.5]) }
                                                                                               {heads}
Steps(s_2) = { (a, [s_2 \mapsto 1]) }
Steps(s_3) = { (a, [s_3 \mapsto 1]) }
                                                                                                   S<sub>2</sub>
                                               {init}
                                                                               S_1
                                                         S_0
                                                                                        0.5
                                                                                                           a
                                                               0.7
                                                                                                    S<sub>3</sub>
                                                                    0.3
                                                                                                 {tails}
```

The transition probability function

- It is often useful to think of the function Steps as a matrix
 - non-square matrix with |S| columns and $\Sigma_{s \in S} |Steps(s)|$ rows
- Example (for clarity, we omit actions from the matrix)

Steps(
$$s_0$$
) = { (a, $s_1 \mapsto 1$) }
Steps(s_1) = { (b, [$s_0 \mapsto 0.7, s_1 \mapsto 0.3$]), (c, [$s_2 \mapsto 0.5, s_3 \mapsto 0.5$]) }
Steps(s_2) = { (a, $s_2 \mapsto 1$) }
Steps(s_3) = { (a, $s_3 \mapsto 1$) }

Steps =
$$\begin{bmatrix} \frac{0}{0.7} & \frac{1}{0.3} & 0 & 0\\ \frac{0}{0.7} & 0.3 & 0 & 0\\ \frac{0}{0} & 0 & 0.5 & 0.5\\ \hline \frac{0}{0} & 0 & 1 & 0\\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

```
module M1

s: [0..2] init 0;

[] s=0 -> (s'=1);

[] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);

[] s=2 -> (s'=2);

endmodule
```


module M2 = M1 [s=t] endmodule

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i, \mu_i) \in \mathbf{Steps}(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \ge 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- Path(s) = set of all paths through MDP starting in state s
 - $Path_{fin}(s) = set of all finite paths from s$
- Paths resolve both nondeterministic and probabilistic choices
 - how to reason about probabilities?

Adversaries

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths
- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "policies" or "strategies"
- Formally:
 - an adversary σ of an MDP M is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1...s_n$ to an element $\sigma(\omega)$ of Steps(s_n)
 - i.e. resolves nondeterminism based on execution history
- Adv (or Adv_M) denotes the set of all adversaries

Adversaries – Examples

Consider the previous example MDP

- note that s_1 is the only state for which |Steps(s)| > 1
- i.e. s₁ is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions **b** and **c** in state s_1

Adversary σ₁

- picks action c the first time
- $\sigma_1(s_0s_1) = (c, \mu_c)$

Adversary σ₂

- picks action b the first time, then c
- $\sigma_2(s_0s_1)=(b,\mu_b), \ \sigma_2(s_0s_1s_1)=(c,\mu_c), \ \sigma_2(s_0s_1s_0s_1)=(c,\mu_c)$

(Note: actions/distributions omitted from paths for clarity)

Adversaries and paths

- Path $\sigma(s) \subseteq Path(s)$
 - (infinite) paths from s where nondeterminism resolved by σ
 - i.e. paths $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$
 - for which $\sigma(s_0(a_0,\mu_0)s_1...s_n)) = (a_n,\mu_n)$
- Adversary σ₁
 - (picks action c the first time)
 - Path $\sigma_1(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$

- Adversary σ₂
 - (picks action b the first time, then c)
 - Path $\sigma_2(s_0) = \{ s_0 s_1 s_0 s_1 s_2^{\omega}, s_0 s_1 s_0 s_1 s_3^{\omega}, s_0 s_1 s_1 s_2^{\omega}, s_0 s_1 s_1 s_3^{\omega} \}$

Induced DTMCs

- Adversary of for MDP induces an infinite-state DTMC Do
- $D^{\sigma} = (Path_{fin}^{\sigma}(s), s, P_{s}^{\sigma})$ where:
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $-\mathbf{P}_{s}(\omega,\omega')=\mu(s')$ if $\omega'=\omega(a,\mu)s'$ and $\sigma(\omega)=(a,\mu)$
 - $-\mathbf{P}^{\sigma}_{s}(\omega,\omega')=0$ otherwise
- 1-to-1 correspondence between Path $^{\sigma}$ (s) and paths of D $^{\sigma}$
- This gives us a probability measure Pr_{ς}^{σ} over Path $^{\sigma}$ (s)
 - from probability measure over paths of D^{σ}

Adversaries – Examples

- Fragment of induced DTMC for adversary σ_1
 - $-\sigma_1$ picks action c the first time

Adversaries – Examples

MDPs and probabilities

- Prob $\sigma(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \models \psi \}$
 - for some path formula Ψ
 - e.g. Prob $^{\sigma}$ (s, F tails)
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

$$p_{min}(s, \psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

$$p_{max}(s, \psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

Examples

- Prob σ^1 (s₀, F tails) = 0.5
- Prob $^{\sigma 2}$ (s₀, F tails) = 0.5
 - (where σ_i picks b i-1 times then c)
- •
- $p_{max}(s_0, F \text{ tails}) = 0.5$
- $p_{min}(s_0, F \text{ tails}) = 0$

- Prob $^{\sigma_1}$ (s₀, F tails) = 0.5
- Prob $^{\sigma 2}$ (s₀, F tails) = 0.3+0.7·0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7·0.3+0.7·0.5 = 0.755
- ...
- $p_{max}(s_0, F \text{ tails}) = 1$
- $p_{min}(s_0, F \text{ tails}) = 0.5$

Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: positional, Markov, simple
 - formally, $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s \in S$
 - induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not

Other classes of adversary

Finite-memory adversary

- finite number of modes, which can govern choices made
- formally defined by a deterministic finite automaton
- induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised adversary

- maps finite paths $s_0(a_1,\mu_1)s_1...s_n$ in MDP to a probability distribution over element of **Steps**(s_n)
- generalises deterministic schedulers
- still induces a (possibly infinite state) DTMC

Fair adversary

fairness assumptions on resolution of nondeterminism

End components

• Consider an MDP $M = (S, s_{init}, Steps, L)$

A sub-MDP of M is a pair (S',Steps') where:

- S' ⊆ S is a (non-empty) subset of M's states

- Steps'(s) ⊆ Steps(s) for each s ∈ S'

— is closed under probabilistic branching, i.e.:

− { s' | μ (s')>0 for some (a, μ)∈Steps'(s) } ⊆ S'

 An end component of M is a strongly connected sub-MDP

End components

- For finite MDPs...
- For every end component, there
 is an adversary which,
 with probability 1, forces the MDP
 to remain in the end component
 and visit all its states infinitely often
- Under every adversary σ, with probability 1 an end component will be reached and all of its states visited infinitely often

(analogue of fundamental property of finite DTMCs)

Summing up...

Nondeterminism

- concurrency, unknown environments/parameters, abstraction
- Markov decision processes (MDPs)
 - discrete-time + probability and nondeterminism
 - nondeterministic choice between multiple distributions

Adversaries

- resolution of nondeterminism only
- induced set of paths and (infinite state DTMC)
- induces DTMC yields probability measure for adversary
- best-/worst-case analysis: minimum/maximum probabilities
- memoryless adversaries

End components

long-run behaviour: analogue of BSCCs for DTMCs