
Lecture 16  
Automata-based properties

Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Property specifications
•  1. Reachability properties, e.g. in PCTL

−  F a or F≤t a (reachability)
−  a U b or a U≤t b (until - constrained reachability)
−  G a (invariance) (dual of reachability)
−  probability computation: graph analysis + solution of linear

equation system (or linear optimisation problem)  

•  2. Long-run properties, e.g. in LTL
−  GF a (repeated reachability)
−  FG a (persistence)
−  probability computation: BSCCs + probabilistic reachability

•  This lecture: more expressive class for type 1

3 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Nondeterministic finite automata (NFA)

•  Regular expressions and regular languages

•  Deterministic finite automata (DFA)

•  Regular safety properties

•  DFAs and DTMCs

4 DP/Probabilistic Model Checking, Michaelmas 2011

Some notation
•  Let Σ be a finite alphabet

•  A (finite or infinite) word w over Σ is
−  a sequence of α1α2… where αi ∈ Σ for all i

•  A prefix w’ of word w = α1α2… is
−  a finite word β1 β2… βn with βi=αi for all 1≤i≤n

•  Σ* denotes the set of finite words over Σ

•  Σω denotes the set of infinite words over Σ

5 DP/Probabilistic Model Checking, Michaelmas 2011

Finite automata
•  A nondeterministic finite automaton (NFA) is…

−  a tuple A = (Q, Σ, δ, Q0, F) where:

−  Q is a finite set of states
−  Σ is an alphabet
−  δ : Q × Σ → 2Q is a transition function
−  Q0 ⊆ Q is a set of initial states
−  F ⊆ Q is a set of “accept” states

q0

α

q1 q2

β

β
β

α

6 DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NFA
•  Consider an NFA A = (Q, Σ, δ, Q0, F)

•  A run of A on a finite word w=α1α2…αn is:
−  a sequence of automata states q0q1…qn such that:
−  q0 ∈ Q0 and qi+1 ∈ δ(qi, αi+1) for all 0≤i<n

•  An accepting run is a run with qn ∈ F

•  Word w is accepted by A iff:
−  there exists an accepting run of A on w

•  The language of A, denoted L(A) is:
−  the set of all words accepted by A

•  Automata A and A’ are equivalent if L(A)=L(A’)

7 DP/Probabilistic Model Checking, Michaelmas 2011

Example - NFA

q0

α

q1 q2

β

β
β

α

8 DP/Probabilistic Model Checking, Michaelmas 2011

Regular expressions
•  Regular expressions E over a finite alphabet Σ

−  are given by the following grammar:
−  E ::= ∅ | ɛ | α | E + E | E.E | E*
−  where α ∈ Σ

•  Language L(E) ⊆ Σ* of a regular expression:
−  L(∅) = ∅ (empty language)
−  L(ɛ) = { ɛ } (empty word)
−  L(α) = { α } (symbol)
−  L(E1 + E2) = L(E1) ∪ L(E2) (union)
−  L(E1.E2) = { w1.w2 | w1∈L(E1) and w2∈L(E2) } (concatenation)
−  L(E*) = { wi | w∈L(E) and i∈ℕ } (finite repetition)

9 DP/Probabilistic Model Checking, Michaelmas 2011

Regular languages
•  A set of finite words L is a regular language… 

−  iff L = L(E) for some regular expression E 

−  iff L = L(A) for some finite automaton A

q0

α

q1 q2

β

β
β

α (α+β)*β(α+β)

(i.e. penultimate symbol is β)

10 DP/Probabilistic Model Checking, Michaelmas 2011

Operations on NFA
•  Can construct NFA from regular expression inductively

−  includes addition (and then removal) of ɛ-transitions

•  Can construct the intersection of two NFA
−  build (synchronised) product automaton
−  cross product of A1 ⊗ A2 accepts L(A1) ∩ L(A2)

α

ε

ε ε

ε ε ε

ε

ε

11 DP/Probabilistic Model Checking, Michaelmas 2011

Deterministic finite automata
•  A finite automaton is deterministic if:

−  |Q0|=1
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ
−  i.e. one initial state and no nondeterministic successors

•  A deterministic finite automaton (DFA) is total if:
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ
−  i.e. unique successor states

•  A total DFA
−  can always be constructed from a DFA
−  has a unique run for any word w ∈ Σ*

12 DP/Probabilistic Model Checking, Michaelmas 2011

Determinisation: NFA → DFA
•  Determinisation of an NFA A = (Q, Σ, δ, Q0, F)

−  i.e. removal of choice in each automata state

•  Equivalent DFA is Adet = (2Q, Σ, δdet, q0, Fdet) where:

−  δdet(Q’, α) =

−  Fdet = { Q’ ⊆ Q | Q’ ∩ F ≠ ∅ }

•  Note exponential blow-up in size…

 'Qq
)α,q(δ

∈

13 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0

α

q1 q2

β

β
β

α NFA A
regexp:  

(α+β)*β(α+β)

14 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0

α

q1 q2

β

β
β

α

{q0}

α

{q0,q1}
β

β α

{q0,q2} {q0,q1,q2}

β

α
β

α

DFA Adet

NFA A
regexp:  

(α+β)*β(α+β)

15 DP/Probabilistic Model Checking, Michaelmas 2011

Other properties of NFA/DFA
•  NFA/DFA have the same expressive power

−  but NFA can be more efficient (up to exponentially smaller)

•  NFA/DFA are closed under complementation
−  build total DFA, swap accept/non-accept states

•  For any regular language L, there is a unique minimal DFA
that accepts L (up to isomorphism)
−  efficient algorithm to minimise DFA into equivalent DFA
−  partition refinement algorithm (like for bisimulation)

•  Language emptiness of an NFA reduces to reachability
−  L(A) ≠ ∅ iff can reach a state in F from an initial state in Q0

16 DP/Probabilistic Model Checking, Michaelmas 2011

Languages as properties
•  Consider a model, i.e. an LTS/DTMC/MDP/…

−  e.g. DTMC D = (S, sinit, P, Lab)
−  where labelling Lab uses atomic propositions from set AP
−  let ω ∈ Path(s) be some infinite path

•  Temporal logic properties
−  for some temporal logic (path) formula ψ, does ω ⊨ ψ ?

•  Traces and languages
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)…
−  for some language L ⊆ (2AP)ω, is trace(ω) ∈ L ?

17 DP/Probabilistic Model Checking, Michaelmas 2011

Example

•  Atomic propositions
−  AP = { fail, try }
−  2AP = { ∅, {fail}, {try}, {fail,try} }

•  Paths and traces
−  e.g. ω = s0s1s1s2s0s1s2s0s1s3s3s3…
−  trace(ω) = ∅ {try} {try} {fail} ∅ {try} {fail} ∅ {try} ∅ ∅ ∅ …

•  Languages
−  e.g. “no failures”
−  L = { α1α2… ∈ (2AP)ω | αi is ∅ or {try} for all i }

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

18 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties
•  A safety property P is a language over 2AP such that

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P

•  A regular safety property is
−  safety property for which the set of “bad prefixes” (finite

violations) forms a regular language

•  Formally…
−  P ⊆ (2AP)ω is a safety property if:

•  ∀ w ∈ ((2AP)ω\P) . ∃ finite prefix w’ of w such that:
•  P ∩ { w’’∈ (2AP)ω | w’ is a prefix of w’’ } = ∅

−  P is a regular safety property if:
•  { w’ ∈ (2AP)* | ∀ w’’ ∈ (2AP)ω . w’.w’’ ∉ P } is regular

19 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties
•  A safety property P is a language over 2AP such that

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P

•  A regular safety property is
−  safety property for which the set of “bad prefixes” (finite

violations) forms a regular language

•  Examples:
−  “at least one traffic light is always on”
−  “two traffic lights are never on simultaneously”
−  “a red light is always preceded immediately by an amber light”

20 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Regular safety property:

−  “at most 2 failures occur”
−  language over:
 2AP = { ∅, {fail}, {try}, {fail,try} } s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

21 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  Regular safety property:

−  “at most 2 failures occur”
−  language over:
 2AP = { ∅, {fail}, {try}, {fail,try} }

•  Bad prefixes (regexp):
(¬fail)*.fail.(¬fail)*.fail.(¬fail)*.fail

•  Bad prefixes (DFA):

q0 q1 q3
fail

¬fail

q2
fail

¬fail

fail

¬fail

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

fail denotes:
{fail}, {fail,try}
¬fail denotes:

∅, {try}

fail denotes:
({fail} + {fail,try})
¬fail denotes:

(∅ + {try})

22 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties + DTMCs
•  Consider a DTMC D (with atomic propositions from AP)  

and a regular safety property P ⊆ (2AP)ω

•  Let ProbD(s, P) denote the probability of P being satisfied
−  i.e. ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P }
−  where PrD

s is the probability measure over Path(s) for D
−  this set is always measurable (see later)

•  Example (safety) specifications
−  “the probability that at most 2 failures occur is ≥0.999”
−  “what is the probability that at most 2 failures occur?”

•  How to compute ProbD(s, P) ?

23 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC
•  We construct the product of

−  a DTMC D = (S, sinit, P, L)
−  and a (total) DFA A = (Q, Σ, δ, q0, F)
−  intuitively: records state of A for path fragments of D

•  The product DTMC D ⊗ A is:
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where:

−  qinit = δ(q0,L(sinit))

− 

−  L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise

€

P'((s1,q1),(s2,q2)) =
P(s1,s2) if q2 = δ(q1,L(s2))

0 otherwise

$
%

& %

24 DP/Probabilistic Model Checking, Michaelmas 2011

Example

q0 q1 q3
fail

¬fail

q2
fail

¬fail

fail

¬fail

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}

DTMC D DFA A

fail denotes:
{fail}, {fail,try}
¬fail denotes:

∅, {try}

25 DP/Probabilistic Model Checking, Michaelmas 2011

Example

s0q0

0.01

0.98

0.01

1

1

{accept}

s1q0

s2q1

s3q0

s0q1

0.01

0.98

0.01

1

1

s1q1

s2q2

s3q1

s0q2

0.01

0.98

0.01

1

1

s1q2

s2q3

s3q2

1

Product DTMC D ⊗ A
states beyond “accept”

state unimportant

s0,δ(q0,L(s0))

26 DP/Probabilistic Model Checking, Michaelmas 2011

Product DTMC
•  One interpretation of D ⊗ A:

−  unfolding of D where q for each state (s,q) records state of
automata A for path fragment so far

•  In fact, since A is deterministic…
−  for any ω ∈ Path(s) of the DTMC D:

•  there is a unique run in A for trace(ω)
•  and a corresponding (unique) path through D ⊗ A

−  for any path ω’ ∈ PathD⊗A(s,qinit) where qinit = δ(q0,L(s))
•  there is a corresponding path in D and a run in A

•  DFA has no effect on probabilities
−  i.e. probabilities preserved in product DTMC

27 DP/Probabilistic Model Checking, Michaelmas 2011

Regular safety properties + DTMCs
•  Regular safety property P ⊆ (2AP)ω

−  “bad prefixes” (finite violations) represented by DFA A

•  Probability of P being satisfied in state s of D
−  ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P }
 = 1 - PrD

s{ ω ∈ Path(s) | trace(ω) ∉ P }
 = 1 - PrD

s{ ω ∈ Path(s) | pref(trace(ω)) ∩ L(A) ≠ ∅ }
−  where pref(w) = set of all finite prefixes of infinite word w

−  where qs = δ(q0,L(s))

ProbD(s, P) = 1 - ProbD⊗A((s,qs), F accept)

28 DP/Probabilistic Model Checking, Michaelmas 2011

Example
•  ProbD(s0, “at most 2 failures occur”)
 = 1 - ProbD⊗A((s0,q0), F accept)
 = 1 - (1/99)3
 ≈ 0.9999989694

s0q0

0.01

0.98

0.01

1

1

{accept}

s1q0

s2q1

s3q0

s0q1

0.01

0.98

0.01

1

1

s1q1

s2q2

s3q1

s0q2

0.01

0.98

0.01

1

1

s1q2

s2q3

s3q2

1

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{try}
D

D⊗A

29 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Nondeterministic finite automata (NFA)

−  can represent any regular language, regular expression
−  closed under complementation, intersection, …
−  (non-)emptiness reduces to reachability

•  Deterministic finite automata (DFA)
−  can be constructed from NFA through determinisation
−  equally expressive as NFA, but may be larger

•  Regular safety properties
−  language representing set of possible traces
−  bad (violating) prefixes form a regular language

•  Probability of a regular safety property on a DTMC
−  construct product DTMC
−  reduces to probabilistic reachability

