Lecture 16 Automata-based properties

Dr. Dave Parker

Department of Computer Science University of Oxford

Property specifications

- 1. Reachability properties, e.g. in PCTL
 - F a or $F^{\leq t}$ a (reachability)
 - a U b or a U^{$\leq t$} b (until constrained reachability)
 - G a (invariance) (dual of reachability)
 - probability computation: graph analysis + solution of linear equation system (or linear optimisation problem)
- 2. Long-run properties, e.g. in LTL
 - **GF** a (repeated reachability)
 - FG a (persistence)
 - probability computation: BSCCs + probabilistic reachability
- This lecture: more expressive class for type 1

Overview

- Nondeterministic finite automata (NFA)
- Regular expressions and regular languages
- Deterministic finite automata (DFA)
- Regular safety properties
- DFAs and DTMCs

Some notation

- Let $\boldsymbol{\Sigma}$ be a finite alphabet
- A (finite or infinite) word w over Σ is
 - a sequence of $\alpha_1\alpha_2...$ where $\alpha_i\in\Sigma$ for all i
- A prefix w' of word $w = \alpha_1 \alpha_2 \dots$ is
 - a finite word $\beta_1 \beta_2 \dots \beta_n$ with $\beta_i = \alpha_i$ for all $1 \le i \le n$
- Σ^* denotes the set of finite words over Σ
- Σ^ω denotes the set of infinite words over Σ

Finite automata

- A nondeterministic finite automaton (NFA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - **Q** is a finite set of states
 - $-\Sigma$ is an alphabet
 - $\pmb{\delta}: Q \times \Sigma \to 2^Q$ is a transition function
 - $\mathbf{Q}_0 \subseteq \mathbf{Q}$ is a set of initial states
 - $\mathbf{F} \subseteq \mathbf{Q}$ is a set of "accept" states

Language of an NFA

- Consider an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
- A run of A on a finite word $w = \alpha_1 \alpha_2 \dots \alpha_n$ is:
 - a sequence of automata states $q_0q_1...q_n$ such that:
 - $\ q_0 \in Q_0 \ \text{ and } \ q_{i+1} \in \delta(q_i, \, \alpha_{i+1}) \text{ for all } 0 {\leq} i {<} n$
- An accepting run is a run with $q_n \in F$
- Word w is accepted by A iff:
 - there exists an accepting run of A on w
- The language of A, denoted L(A) is:
 - the set of all words accepted by $\ensuremath{\mathsf{A}}$
- Automata A and A' are equivalent if L(A)=L(A')

Example – NFA

Regular expressions

- Regular expressions \boldsymbol{E} over a finite alphabet $\boldsymbol{\Sigma}$
 - are given by the following grammar:
 - $E ::= \varnothing \ \left| \begin{array}{c} \epsilon \end{array} \right| \alpha \ \left| \begin{array}{c} E + E \end{array} \right| \begin{array}{c} E.E \end{array} \right| E^*$
 - where $\alpha \in \Sigma$
- Language $L(E) \subseteq \Sigma^*$ of a regular expression:
 - $-L(\emptyset) = \emptyset$ (empty language)
 - $L(\varepsilon) = \{ \epsilon \}$ (empty word)
 - $-L(\alpha) = \{ \alpha \}$

$$- \mathsf{L}(\mathsf{E}_1 + \mathsf{E}_2) = \mathsf{L}(\mathsf{E}_1) \cup \mathsf{L}(\mathsf{E}_2)$$

- $L(\mathbf{E}_1.\mathbf{E}_2) = \{ w_1.w_2 \mid w_1 \in L(\mathbf{E}_1) \text{ and } w_2 \in L(\mathbf{E}_2) \}$ (concatenation)
- L(E^{*}) = { wⁱ | w∈L(E) and i∈ \mathbb{N} }

(finite repetition)

(symbol)

(union)

Regular languages

- A set of finite words L is a regular language...
 - iff L = L(E) for some regular expression E
 - iff L = L(A) for some finite automaton A

 $(\alpha+\beta)^*\beta(\alpha+\beta)$

(i.e. penultimate symbol is β)

Operations on NFA

Can construct NFA from regular expression inductively

- includes addition (and then removal) of ϵ -transitions

- Can construct the intersection of two NFA
 - build (synchronised) product automaton
 - cross product of $A_1 \otimes A_2$ accepts $L(A_1) \cap L(A_2)$

Deterministic finite automata

- A finite automaton is deterministic if:
 - $|Q_0| = 1$
 - $\ |\delta(q,\,\alpha)| \le 1 \ \text{for all} \ q \in Q \ \text{and} \ \alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors
- A deterministic finite automaton (DFA) is total if:
 - $\ |\delta(q,\,\alpha)| = 1 \ \text{for all} \ q \in Q \ \text{and} \ \alpha \in \Sigma$
 - i.e. unique successor states
- A total DFA
 - can always be constructed from a DFA
 - has a unique run for any word $w\in \Sigma^*$

Determinisation: NFA \rightarrow DFA

- Determinisation of an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
 - i.e. removal of choice in each automata state
- Equivalent DFA is $A_{det} = (2^{Q}, \Sigma, \delta_{det}, q_0, F_{det})$ where:

$$- \ {\color{black} \delta_{det}}(Q', \ {\color{black} \alpha}) = \ {\color{black} \bigcup_{q \in Q'} \delta(q, {\color{black} \alpha})}$$

$$- \mathsf{F}_{\mathsf{det}} = \{ \mathsf{Q'} \subseteq \mathsf{Q} \mid \mathsf{Q'} \cap \mathsf{F} \neq \emptyset \}$$

Note exponential blow-up in size...

regexp:
$$(\alpha+\beta)^*\beta(\alpha+\beta)$$

Other properties of NFA/DFA

- NFA/DFA have the same expressive power
 - but NFA can be more efficient (up to exponentially smaller)
- NFA/DFA are closed under complementation
 - build total DFA, swap accept/non-accept states
- For any regular language L, there is a unique minimal DFA that accepts L (up to isomorphism)
 - efficient algorithm to minimise DFA into equivalent DFA
 - partition refinement algorithm (like for bisimulation)
- Language emptiness of an NFA reduces to reachability
 - L(A) $\neq \emptyset$ iff can reach a state in F from an initial state in Q₀

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
 - e.g. DTMC D = (S, s_{init}, P, Lab)
 - where labelling Lab uses atomic propositions from set AP
 - let $\omega \in Path(s)$ be some infinite path
- Temporal logic properties
 - for some temporal logic (path) formula ψ , does $\omega \models \psi$?
- Traces and languages
 - trace($\omega)\in (2^{\text{AP}})^\omega$ denotes the projection of state labels of ω
 - i.e. trace($s_0s_1s_2s_3...$) = Lab(s_0)Lab(s_1)Lab(s_2)Lab(s_3)...
 - for some language $L \subseteq (2^{AP})^{\omega}$, is trace(ω) $\in L$?

- Atomic propositions
 - AP = { fail, try }
 - $2^{AP} = \{ \emptyset, \{fail\}, \{try\}, \{fail, try\} \}$
- Paths and traces
 - $\text{ e.g. } \omega = s_0 s_1 s_1 s_2 s_0 s_1 s_2 s_0 s_1 s_3 s_3 s_3 \dots$
 - $trace(\omega) = \emptyset \{ try \} \{ try \} \{ fail \} \emptyset \{ try \} \{ fail \} \emptyset \{ try \} \emptyset \emptyset \emptyset \dots$

• Languages

- e.g. "no failures"
- $-L = \{ \alpha_1 \alpha_2 \dots \in (2^{AP})^{\omega} \mid \alpha_i \text{ is } \emptyset \text{ or } \{try\} \text{ for all } i \}$

Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language),
 w has a prefix w', all extensions of which, also violate P
- A regular safety property is
 - safety property for which the set of "bad prefixes" (finite violations) forms a regular language

• Formally...

- $P \subseteq (2^{AP})^{\omega}$ is a safety property if:
 - · ∀ w ∈ ((2^{AP}) $^{\omega}$ \P) . ∃ finite prefix w' of w such that:
 - $P \cap \{ w'' \in (2^{AP})^{\omega} \mid w' \text{ is a prefix of } w'' \} = \emptyset$
- P is a regular safety property if:
 - . { w' $\in (2^{AP})^* | \forall w'' \in (2^{AP})^{\omega}$. w'.w'' $\notin P$ } is regular

Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language),
 w has a prefix w', all extensions of which, also violate P
- A regular safety property is
 - safety property for which the set of "bad prefixes" (finite violations) forms a regular language

• Examples:

- "at least one traffic light is always on"
- "two traffic lights are never on simultaneously"
- "a red light is always preceded immediately by an amber light"

- Regular safety property:
 - "at most 2 failures occur"
 - language over:

 $2^{AP} = \{ \emptyset, \{fail\}, \{try\}, \{fail,try\} \}$

Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP) and a regular safety property $P \subseteq (2^{AP})^{\omega}$
- Let Prob^D(s, P) denote the probability of P being satisfied
 - i.e. $Prob^{D}(s, P) = Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \in P \}$
 - where Pr_{s}^{D} is the probability measure over Path(s) for D
 - this set is always measurable (see later)
- Example (safety) specifications
 - "the probability that at most 2 failures occur is ≥ 0.999 "
 - "what is the probability that at most 2 failures occur?"
- How to compute Prob^D(s, P)?

Product DTMC

- We construct the product of
 - $a DTMC D = (S, s_{init}, P, L)$
 - and a (total) DFA $A = (Q, \Sigma, \delta, q_0, F)$
 - intuitively: records state of A for path fragments of D
- The product DTMC $D \otimes A$ is:

- the DTMC (S×Q, (s_{init},q_{init}), P', L') where:

$$- q_{init} = \delta(q_0, L(s_{init}))$$

- P'((s_1, q_1), (s_2, q_2)) =
$$\begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$$

- L'(s,q) = { accept } if q \in F and L'(s,q) = \emptyset otherwise

Product DTMC

- One interpretation of $D \otimes A$:
 - unfolding of D where q for each state (s,q) records state of automata A for path fragment so far
- In fact, since A is deterministic...
 - for any $\omega \in Path(s)$ of the DTMC D:
 - $\cdot\,$ there is a unique run in A for trace(w)
 - $\cdot\,$ and a corresponding (unique) path through D \otimes A
 - for any path $\omega' \in Path^{D\otimes A}(s,q_{init})$ where $q_{init} = \delta(q_0,L(s))$ \cdot there is a corresponding path in D and a run in A
- DFA has no effect on probabilities
 - i.e. probabilities preserved in product DTMC

Regular safety properties + DTMCs

- Regular safety property $P \subseteq (2^{AP})^{\omega}$
 - "bad prefixes" (finite violations) represented by DFA A
- Probability of P being satisfied in state s of D
 - $Prob^{D}(s, P) = Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \in P \}$

 $= 1 - Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \notin P \}$

 $= 1 - Pr^{D}_{s} \{ \omega \in Path(s) \mid pref(trace(\omega)) \cap L(A) \neq \emptyset \}$

where pref(w) = set of all finite prefixes of infinite word w

 $Prob^{D}(s, P) = 1 - Prob^{D \otimes A}((s,q_s), F \text{ accept})$

- where
$$q_s = \delta(q_0, L(s))$$

Summing up...

- Nondeterministic finite automata (NFA)
 - can represent any regular language, regular expression
 - closed under complementation, intersection, ...
 - (non-)emptiness reduces to reachability
- Deterministic finite automata (DFA)
 - can be constructed from NFA through determinisation
 - equally expressive as NFA, but may be larger
- Regular safety properties
 - language representing set of possible traces
 - bad (violating) prefixes form a regular language
- Probability of a regular safety property on a DTMC
 - construct product DTMC
 - reduces to probabilistic reachability