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Property specifications 
•  1. Reachability properties, e.g. in PCTL 

−  F a or F≤t a  (reachability) 
−  a U b or  a U≤t b  (until - constrained reachability) 
−  G a  (invariance) (dual of reachability) 
−  probability computation: graph analysis + solution of linear 

equation system (or linear optimisation problem)  
 

•  2. Long-run properties, e.g. in LTL 
−  GF a (repeated reachability) 
−  FG a (persistence) 
−  probability computation: BSCCs + probabilistic reachability 

•  This lecture: more expressive class for type 1 
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Overview 

•  Nondeterministic finite automata (NFA) 

•  Regular expressions and regular languages 

•  Deterministic finite automata (DFA) 

•  Regular safety properties 

•  DFAs and DTMCs 



4 DP/Probabilistic Model Checking, Michaelmas 2011 

Some notation 
•  Let Σ be a finite alphabet 

•  A (finite or infinite) word w over Σ is  
−  a sequence of α1α2… where αi ∈ Σ for all i 

•  A prefix w’ of word w = α1α2… is 
−  a finite word β1 β2… βn with βi=αi for all 1≤i≤n 

•  Σ* denotes the set of finite words over Σ 

•  Σω denotes the set of infinite words over Σ 
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Finite automata 
•  A nondeterministic finite automaton (NFA) is… 

−  a tuple A = (Q, Σ, δ, Q0, F) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → 2Q is a transition function 
−  Q0 ⊆ Q is a set of initial states 
−  F ⊆ Q is a set of “accept” states 

 

q0 

α 

q1 q2 

β 

β 
β 

α 
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Language of an NFA 
•  Consider an NFA A = (Q, Σ, δ, Q0, F) 

•  A run of A on a finite word w=α1α2…αn is: 
−  a sequence of automata states q0q1…qn such that: 
−  q0 ∈ Q0  and  qi+1 ∈ δ(qi, αi+1) for all 0≤i<n 

•  An accepting run is a run with qn ∈ F 

•  Word w is accepted by A iff: 
−  there exists an accepting run of A on w 

•  The language of A, denoted L(A) is: 
−  the set of all words accepted by A 

•  Automata A and A’ are equivalent if L(A)=L(A’) 
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Example - NFA 
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Regular expressions 
•  Regular expressions E over a finite alphabet Σ 

−  are given by the following grammar: 
−  E ::= ∅ | ɛ | α | E + E | E.E | E* 
−  where α ∈ Σ 

•  Language L(E) ⊆ Σ* of a regular expression: 
−  L(∅) = ∅                                                      (empty language) 
−  L(ɛ) = { ɛ }                                                           (empty word) 
−  L(α) = { α }                                                                 (symbol) 
−  L(E1 + E2) = L(E1) ∪ L(E2)                                              (union) 
−  L(E1.E2) = { w1.w2 | w1∈L(E1) and w2∈L(E2) }      (concatenation) 
−  L(E*) = { wi | w∈L(E) and i∈ℕ }                       (finite repetition) 
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Regular languages 
•  A set of finite words L is a regular language… 

 
−  iff L = L(E) for some regular expression E 

 
−  iff L = L(A) for some finite automaton A 

q0 

α 

q1 q2 

β 

β 
β 

α (α+β)*β(α+β) 
 

(i.e. penultimate symbol is β) 
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Operations on NFA 
•  Can construct NFA from regular expression inductively 

−  includes addition (and then removal) of ɛ-transitions 

•  Can construct the intersection of two NFA 
−  build (synchronised) product automaton 
−  cross product of A1 ⊗ A2 accepts L(A1) ∩ L(A2)  

α 

ε 

ε ε 

ε ε ε 

ε 

ε 
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Deterministic finite automata 
•  A finite automaton is deterministic if: 

−  |Q0|=1 
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ 
−  i.e. one initial state and no nondeterministic successors 

•  A deterministic finite automaton (DFA) is total if: 
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ 
−  i.e. unique successor states 

•  A total DFA 
−  can always be constructed from a DFA 
−  has a unique run for any word w ∈ Σ* 
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Determinisation: NFA → DFA 
•  Determinisation of an NFA A = (Q, Σ, δ, Q0, F) 

−  i.e. removal of choice in each automata state 

•  Equivalent DFA is Adet = (2Q, Σ, δdet, q0, Fdet) where: 

−  δdet(Q’, α) = 

−  Fdet = { Q’ ⊆ Q | Q’ ∩ F ≠ ∅ } 

•  Note exponential blow-up in size… 

 'Qq
)α,q(δ

∈
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Example 

q0 

α 

q1 q2 

β 

β 
β 

α NFA A 
regexp:  

 
(α+β)*β(α+β) 
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Example 

q0 

α 

q1 q2 

β 

β 
β 

α 

{q0} 

α 

{q0,q1} 
β 

β α 

{q0,q2} {q0,q1,q2} 

β 

α 
β 

α 

DFA Adet 

NFA A 
regexp:  

 
(α+β)*β(α+β) 
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Other properties of NFA/DFA 
•  NFA/DFA have the same expressive power 

−  but NFA can be more efficient (up to exponentially smaller) 

•  NFA/DFA are closed under complementation 
−  build total DFA, swap accept/non-accept states 

•  For any regular language L, there is a unique minimal DFA 
that accepts L (up to isomorphism) 
−  efficient algorithm to minimise DFA into equivalent DFA 
−  partition refinement algorithm (like for bisimulation) 

•  Language emptiness of an NFA reduces to reachability 
−  L(A) ≠ ∅ iff can reach a state in F from an initial state in Q0 
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Languages as properties 
•  Consider a model, i.e. an LTS/DTMC/MDP/… 

−  e.g. DTMC D = (S, sinit, P, Lab) 
−  where labelling Lab uses atomic propositions from set AP 
−  let ω ∈ Path(s) be some infinite path 

•  Temporal logic properties 
−  for some temporal logic (path) formula ψ, does ω ⊨ ψ ? 

•  Traces and languages 
−  trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω 
−  i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)… 
−  for some language L ⊆ (2AP)ω, is trace(ω) ∈ L ? 
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Example 

•  Atomic propositions 
−  AP = { fail, try } 
−  2AP = { ∅, {fail}, {try}, {fail,try} } 

•  Paths and traces 
−  e.g. ω = s0s1s1s2s0s1s2s0s1s3s3s3… 
−  trace(ω) = ∅ {try} {try} {fail} ∅ {try} {fail} ∅ {try} ∅ ∅ ∅ … 

•  Languages 
−  e.g. “no failures” 
−  L = { α1α2… ∈ (2AP)ω | αi is ∅ or {try} for all i } 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 
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Regular safety properties 
•  A safety property P is a language over 2AP such that 

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P 

•  A regular safety property is 
−  safety property for which the set of “bad prefixes” (finite 

violations) forms a regular language 

•  Formally… 
−  P ⊆ (2AP)ω is a safety property if: 

•  ∀ w ∈ ((2AP)ω\P) . ∃ finite prefix w’ of w such that: 
•  P ∩ { w’’∈ (2AP)ω | w’ is a prefix of w’’ } = ∅ 

−  P is a regular safety property if: 
•  { w’ ∈ (2AP)* | ∀ w’’ ∈ (2AP)ω . w’.w’’ ∉ P } is regular 
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Regular safety properties 
•  A safety property P is a language over 2AP such that 

−  for any word w that violates P (i.e. is not in the language),  
w has a prefix w’, all extensions of which, also violate P 

•  A regular safety property is 
−  safety property for which the set of “bad prefixes” (finite 

violations) forms a regular language 

•  Examples: 
−  “at least one traffic light is always on” 
−  “two traffic lights are never on simultaneously” 
−  “a red light is always preceded immediately by an amber light” 

 



20 DP/Probabilistic Model Checking, Michaelmas 2011 

Example 
•  Regular safety property: 

−  “at most 2 failures occur” 
−  language over: 
    2AP = { ∅, {fail}, {try}, {fail,try} } s1 s0 

s2 

s3 

0.01 
0.98 

0.01 
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1 

{fail} 

{try} 
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Example 
•  Regular safety property: 

−  “at most 2 failures occur” 
−  language over: 
    2AP = { ∅, {fail}, {try}, {fail,try} } 

•  Bad prefixes (regexp): 
(¬fail)*.fail.(¬fail)*.fail.(¬fail)*.fail 

•  Bad prefixes (DFA): 

q0 q1 q3 
fail 

¬fail 

q2 
fail 

¬fail 

fail 

¬fail 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 

fail denotes: 
{fail}, {fail,try} 
¬fail denotes: 

∅, {try} 

fail denotes: 
({fail} + {fail,try}) 
¬fail denotes: 

(∅ + {try}) 
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Regular safety properties + DTMCs 
•  Consider a DTMC D (with atomic propositions from AP)  

and a regular safety property P ⊆ (2AP)ω  

•  Let ProbD(s, P) denote the probability of P being satisfied 
−  i.e. ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P } 
−  where PrD

s is the probability measure over Path(s) for D 
−  this set is always measurable (see later) 

•  Example (safety) specifications 
−  “the probability that at most 2 failures occur is ≥0.999” 
−  “what is the probability that at most 2 failures occur?” 

•  How to compute ProbD(s, P) ? 
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Product DTMC 
•  We construct the product of 

−  a DTMC D = (S, sinit, P, L) 
−  and a (total) DFA A = (Q, Σ, δ, q0, F) 
−  intuitively: records state of A for path fragments of D 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 

−  qinit = δ(q0,L(sinit)) 

−    
 
−  L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise 

    

€ 

P'((s1,q1),(s2,q2)) =
P(s1,s2) if q2 = δ(q1,L(s2))

0 otherwise

# 
$ 
% 

& % 
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Example 

q0 q1 q3 
fail 

¬fail 

q2 
fail 

¬fail 

fail 

¬fail 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{try} 

DTMC D DFA A 

fail denotes: 
{fail}, {fail,try} 
¬fail denotes: 

∅, {try} 
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Example 

s0q0 

0.01 

0.98 

0.01 

1 

1 
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s1q0 

s2q1 

s3q0 

s0q1 
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s2q2 

s3q1 

s0q2 

0.01 

0.98 
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1 

1 

s1q2 

s2q3 

s3q2 

1 

Product DTMC D ⊗ A 
states beyond “accept” 

state unimportant 

s0,δ(q0,L(s0))     
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Product DTMC 
•  One interpretation of D ⊗ A: 

−  unfolding of D where q for each state (s,q) records state of 
automata A for path fragment so far 

•  In fact, since A is deterministic… 
−  for any ω ∈ Path(s) of the DTMC D: 

•  there is a unique run in A for trace(ω) 
•  and a corresponding (unique) path through D ⊗ A 

−  for any path ω’ ∈ PathD⊗A(s,qinit) where qinit = δ(q0,L(s)) 
•  there is a corresponding path in D and a run in A 

•  DFA has no effect on probabilities 
−  i.e. probabilities preserved in product DTMC 
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Regular safety properties + DTMCs 
•  Regular safety property P ⊆ (2AP)ω 

−  “bad prefixes” (finite violations) represented by DFA A 

•  Probability of P being satisfied in state s of D 
−  ProbD(s, P) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ P } 
                    = 1 - PrD

s{ ω ∈ Path(s) | trace(ω) ∉ P } 
                    = 1 - PrD

s{ ω ∈ Path(s) | pref(trace(ω)) ∩ L(A) ≠ ∅ } 
−  where pref(w) = set of all finite prefixes of infinite word w 

−  where qs = δ(q0,L(s)) 

 

ProbD(s, P) = 1 - ProbD⊗A((s,qs), F accept) 
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Example 
•  ProbD(s0, “at most 2 failures occur”) 
      = 1 - ProbD⊗A((s0,q0), F accept) 
      = 1 - (1/99)3 
      ≈ 0.9999989694 
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Summing up… 
•  Nondeterministic finite automata (NFA) 

−  can represent any regular language, regular expression 
−  closed under complementation, intersection, … 
−  (non-)emptiness reduces to reachability 

•  Deterministic finite automata (DFA) 
−  can be constructed from NFA through determinisation 
−  equally expressive as NFA, but may be larger 

•  Regular safety properties 
−  language representing set of possible traces 
−  bad (violating) prefixes form a regular language 

•  Probability of a regular safety property on a DTMC 
−  construct product DTMC 
−  reduces to probabilistic reachability 

 


