Probabilistic Model Checking Michaelmas Term 2011

Lecture 16
Automata-based properties

Dr. Dave Parker

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Property specifications

1. Reachability properties, e.g. in PCTL
— Faor F=ta (reachability)
—aUbor aU=tb (until - constrained reachability)
— G a (invariance) (dual of reachability)

— probability computation: graph analysis + solution of linear
equation system (or linear optimisation problem)

2. Long-run properties, e.g. in LTL
— GF a (repeated reachability)
— FG a (persistence)
— probability computation: BSCCs + probabilistic reachability

- This lecture: more expressive class for type 1

DP/Probabilistic Model Checking, Michaelmas 2011

Overview

- Nondeterministic finite automata (NFA)

- Regular expressions and regular languages

- Deterministic finite automata (DFA)

- Regular safety properties

- DFAs and DTMCs

DP/Probabilistic Model Checking, Michaelmas 2011

Some notation

Let > be a finite alphabet

- A (finite or infinite) word w over X is
— a sequence of ;&,... where «; € > for all i

- A prefix w of word w = x;x,... is
— a finite word B, B,... B, with B,=; for all 1<i<n

>* denotes the set of finite words over >

. >w denotes the set of infinite words over X

DP/Probabilistic Model Checking, Michaelmas 2011

Finite automata

- A nondeterministic finite automaton (NFA) is...
— atuple A =(Q, %, 3, Q, F) where:

— Q is a finite set of states

— 2 is an alphabet

— 0:Q X X — 2Qis a transition function

— Q, < Qs a set of initial states X

(S

(9,

_
B

— F< Qis a set of “accept” states

DP/Probabilistic Model Checking, Michaelmas 2011

Language of an NFA

- Consider an NFA A = (Q, 2, 5, Q,, F)

- A run of A on a finite word w=o, 0¢,...x,, is:

— a sequence of automata states q,q,...q, such that:
— dop € Qy and q;,; € d(q;, &) for all 0<i<n

- An accepting run is a run with q, € F

- Word w is accepted by A iff:
— there exists an accepting run of A onw

- The language of A, denoted L(A) is:
— the set of all words accepted by A

- Automata A and A’ are equivalent if L(A)=L(A")

DP/Probabilistic Model Checking, Michaelmas 2011

Example - NFA

DP/Probabilistic Model Checking, Michaelmas 2011

Regular expressions

- Regular expressions E over a finite alphabet X
— are given by the following grammar:

—E:=0|e|a|E+E|EE]|E*
— where x €

- Language L(E) < 2* of a regular expression:

- (V) = (empty language)
—L(e) ={¢e} (empty word)
— L) ={x} (symbol)
— L(E, + E,) = L(E,) U L(E,) (union)
— L(E,.E,) = {w,.w, | w,eL(E,) and w,€L(E,) } (concatenation)
— L(E*) = {w' | weL(E) and ieN } (finite repetition)

DP/Probabilistic Model Checking, Michaelmas 2011

Regular languages

- A set of finite words L is a regular language...

— iff L = L(E) for some regular expression E

— iff L = L(A) for some finite automaton A

(o+B)*B(x+P)

(i.e. penultimate symbol is B)

DP/Probabilistic Model Checking, Michaelmas 2011

Operations on NFA

Can construct NFA from regular expression inductively
— includes addition (and then removal) of e-transitions

4O

— ——

_~,<\ \\
O O’
< ’

-_——— T W e =

Can construct the intersection of two NFA
— build (synchronised) product automaton
— cross product of A; ® A, accepts L(A;) n L(A,)

DP/Probabilistic Model Checking, Michaelmas 2011 10

Deterministic finite automata

- A finite automaton is deterministic if:

— |Qo|:]

— 10(gq,)] <1 forallge Qand x € 2

— i.e. one initial state and no nondeterministic successors

- A deterministic finite automaton (DFA) is total if:
— 10(gq,)] =1 forallge Qand x € 2
— i.e. unique successor states

- A total DFA
— can always be constructed from a DFA
— has a unique run for any word w € >*

DP/Probabilistic Model Checking, Michaelmas 2011

11

Determinisation: NFA — DFA

- Determinisation of an NFA A = (Q, 2, 5, Q,, F)
— i.e. removal of choice in each automata state

- Equivalent DFA is Ay, = (29, 2, d4.t, Qo Fger) Where:

— 6det(Q’! o) = UqEQ' 6(CI, O()

- Fiee ={Q cQ|Q nF =}

- Note exponential blow-up in size...

DP/Probabilistic Model Checking, Michaelmas 2011

12

NFA A

DP/Probabilistic Model Checking, Michaelmas 2011

regexp:

(o+B)*B(x+P)

13

NFA A

DP/Probabilistic Model Checking, Michaelmas 2011

regexp:

(o+B)*B(x+P)

14

Other properties of NFA/DFA

NFA/DFA have the same expressive power
— but NFA can be more efficient (up to exponentially smaller)

NFA/DFA are closed under complementation
— build total DFA, swap accept/non-accept states

For any regular language L, there is a unique minimal DFA
that accepts L (up to isomorphism)

— efficient algorithm to minimise DFA into equivalent DFA
— partition refinement algorithm (like for bisimulation)

Language emptiness of an NFA reduces to reachability
— L(A) # @ iff can reach a state in F from an initial state in Q,

DP/Probabilistic Model Checking, Michaelmas 2011 15

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/ ...

— e.g. DTMCD = (S, s;,it, P, Lab)

— where labelling Lab uses atomic propositions from set AP
— let w € Path(s) be some infinite path

- Temporal logic properties
— for some temporal logic (path) formula g, does w = P ?

- Traces and languages

— trace(w) € (2AP)» denotes the projection of state labels of w
— i.e. trace(syS;5,53...) = Lab(sy)Lab(s,)Lab(s,)Lab(s;)...

— for some language L < (2AP)w, is trace(w) € L ?

DP/Probabilistic Model Checking, Michaelmas 2011 16

Example

- Atomic propositions
— AP = { fail, try }
— 2AP = { @, {fail}, {try}, {fail,try} }

Paths and traces
— €.9. W = 535;51555051525051535353---
— trace(w) = & {try} {try} {fail} D {try} {fail} O {try} © @ O ...

Languages

— e.g. “no failures”
— L={ox,... €)% | o, is @ or {try} for all i }

DP/Probabilistic Model Checking, Michaelmas 2011

17

Regular safety properties

- A safety property P is a language over 2A? such that

— for any word w that violates P (i.e. is not in the language),
w has a prefix w’, all extensions of which, also violate P

- A regular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Formally...
— P c (2AP)w js a safety property if:
.V w e ((2AP)w\P) . T finite prefix w’ of w such that:
- Pn{w’e 2AP)w | w’is a prefix of w’ } = &
— Pis a reqgular safety property if:
AW e 2A) | Vw’ e (A)w . w.w’ & P}is regular

DP/Probabilistic Model Checking, Michaelmas 2011 18

Regular safety properties

- A safety property P is a language over 2A? such that

— for any word w that violates P (i.e. is not in the language),
w has a prefix w’, all extensions of which, also violate P

- A regular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Examples:
— “at least one traffic light is always on”
— “two traffic lights are never on simultaneously”
— “a red light is always preceded immediately by an amber light”

DP/Probabilistic Model Checking, Michaelmas 2011 19

Example

Regular safety property:
— “at most 2 failures occur”
— language over:
2AP = { &, {fail}, {try}, {fail,try}}

DP/Probabilistic Model Checking, Michaelmas 2011

20

Example

- Regular safety property:
— “at most 2 failures occur”
— language over:
2AP = { &, {fail}, {try}, {fail,try}}

- Bad prefixes (regexp):

(fall) fall (fall) fa|| (_‘fa”) fall , ..

. fail denotes:

T dfail} + {fail tryp |

- Bad prefixes (DFA): . —fail denotes:
s (D + {try}) .

Cfail ofall il e

. . . \ fa||denotes
@ - {fail}, {fail,try}
fa|I fa|I fail —fail denotes:

..

DP/Probabilistic Model Checking, Michaelmas 2011 21

Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP)
and a reqgular safety property P < (2AP)w

- Let ProbP(s, P) denote the probability of P being satisfied
— i.e. ProbP(s, P) = Pr°{ w € Path(s) | trace(w) € P}

— where PrP, is the probability measure over Path(s) for D

— this set is always measurable (see later)

- Example (safety) specifications
— “the probability that at most 2 failures occur is >0.999”
— “what is the probability that at most 2 failures occur?”

- How to compute ProbP(s, P) ?

DP/Probabilistic Model Checking, Michaelmas 2011 22

Product DTMC

- We construct the product of

—aDTMCD = (S, s, P, L)

— and a (total) DFA A = (Q, %, 9, q,, F)

— intuitively: records state of A for path fragments of D

- The product DTMC D ® A is:
— the DTMC (SxQ, (Sii,Qini)s P’ L) where:

— Qipit = 6(C|0,|—(5init))

P(s,,s,) if g, =d(q,,L(s,))
0 otherwise

— P'((S1’q1);(52’q2)) = %

— L’(s,q) = { accept }if g € F and L’(s,q) = & otherwise

DP/Probabilistic Model Checking, Michaelmas 2011

23

Example

DFA A

—fail —fail —fail

fail denotes:
{fail}, {fail,try}
—fail denotes:

..

DP/Probabilistic Model Checking, Michaelmas 2011

24

statesbeyondaccept /\
Product DTMC D ® A '

state unimportant {accept}

DP/Probabilistic Model Checking, Michaelmas 2011 25

Product DTMC

One interpretation of D ® A:

— unfolding of D where q for each state (s,q) records state of
automata A for path fragment so far

In fact, since A is deterministic...

— for any w € Path(s) of the DTMC D:

. there is a unique run in A for trace(w)
. and a corresponding (unique) path through D ® A

— for any path w’ € PathP®A(s,q,,,,) where q;,; = 8(q,,L(s))
. there is a corresponding path in D and a runin A

DFA has no effect on probabilities
— i.e. probabilities preserved in product DTMC

DP/Probabilistic Model Checking, Michaelmas 2011

26

Regular safety properties + DTMCs

Regular safety property P < (2AF)w
— “bad prefixes” (finite violations) represented by DFA A

Probability of P being satisfied in state s of D
— ProbP(s, P) = PrP{ w € Path(s) | trace(w) € P}

=1 - Pr°{ w € Path(s) | trace(w) ¢ P}

=1 - PrP{ w € Path(s) | pref(trace(w)) N L(A) = @ }
— where pref(w) = set of all finite prefixes of infinite word w

ProbP(s, P) = 1 - ProbP®A((s,q.), F accept)

— where g, = 8(q,,L(s))

DP/Probabilistic Model Checking, Michaelmas 2011 27

Example

ProbP(s,, “at most 2 failures occur™)
= 1 - ProbP®A((s,,q,), F accept) {accept}
=1-(/99)°
~ 0.9999989694

DP/Probabilistic Model Checking, Michaelmas 2011 28

Summing up...

Nondeterministic finite automata (NFA)

— can represent any regular language, regular expression

— closed under complementation, intersection, ...

— (non-)emptiness reduces to reachability
Deterministic finite automata (DFA)

— can be constructed from NFA through determinisation

— equally expressive as NFA, but may be larger
Regular safety properties

— language representing set of possible traces

— bad (violating) prefixes form a regular language
Probability of a reqgular safety property on a DTMC

— construct product DTMC

— reduces to probabilistic reachability

DP/Probabilistic Model Checking, Michaelmas 2011 29

