
Dr. Dave Parker

Department of Computer Science
University of Oxford

Probabilistic Model Checking Michaelmas Term 2011

2 DP/Probabilistic Model Checking, Michaelmas 2011

Overview

•  Implementation of probabilistic model checking
−  overview, key operations, symbolic vs. explicit

•  Binary decision diagrams (BDDs)
−  introduction, sets, transition relations, …

•  Multi-terminal BDDs (MTBDDs)
−  introduction, vectors, matrices, …

•  Operations on/with BDDs and MTBDDs

3 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation overview
•  Overview of the probabilistic model checking process

−  two distinct phases: model construction, model checking
−  three different models, several different logics,  

various different solution/analysis methods
−  but… all these processes have much in common

Model
construction

High-level
model

Model

Result Model
checking

Property
PRISM

language
description

PCTL or CSL
formula

DTMC, MDP
or CTMC

4 DP/Probabilistic Model Checking, Michaelmas 2011

Model construction

PRISM
language

description graph-based
algorithm

Translation
from

high-level
language

Reachability:
building set
of reachable

states

Model construction

Model High-level
model

matrix
manipulation

DTMC, MDP
or CTMC

5 DP/Probabilistic Model Checking, Michaelmas 2011

Model checking

Precomputation
algorithms

Bottom strongly
connected
component

computation

Model checking
Solution of linear
equation systems

(iterative methods)

Solution of linear
optimisation problems

(iterative methods)

Uniformisation-based
iterative methods

Basic set
operations

Model
Result

Property

DTMC, MDP
or CTMC

PCTL or CSL
formula

Two distinct classes of techniques:
graph-based algorithms

iterative numerical computation

6 DP/Probabilistic Model Checking, Michaelmas 2011

Underlying operations
•  Key objects/operations for probabilistic model checking

•  Graph-based algorithms
−  underlying transition relation of DTMC/MDP/CTMC
−  manipulation of transition relation and state sets

•  Iterative numerical computation
−  transition matrix of DTMC/MDP/CTMC, real-valued vectors
−  manipulation of real-valued matrices and vectors
−  in particular: matrix-vector multiplication

7 DP/Probabilistic Model Checking, Michaelmas 2011

State-space explosion
•  Models of real-life systems are typically huge

−  familiar problem for verification/model checking techniques

•  State-space explosion problem
−  linear increase in size of system can result in an exponential

increase in the size of the model
−  e.g. n parallel components of size m, can give up to mn states

•  Need efficient ways of storing models, sets of states, etc.
−  and efficient ways of constructing, manipulating them

•  Here, we will focus on symbolic approaches

8 DP/Probabilistic Model Checking, Michaelmas 2011

Explicit vs. symbolic data structures
•  Symbolic data structures

−  usually based on binary decision diagrams (BDDs) or variants
−  avoid explicit enumeration of data by exploiting regularity
−  potentially very compact storage (but not always)

•  Sets of states:
−  explicit: bit vectors
−  symbolic: BDDs

•  Real-valued vectors:
−  explicit: arrays of reals (in practice, doubles/floats)
−  symbolic: multi-terminal BDDs (MTBDDs)

•  Real-valued matrices:
−  explicit: sparse matrices
−  symbolic: MTBDDs

9 DP/Probabilistic Model Checking, Michaelmas 2011

Representations of Boolean formulas
•  Propositional formula: f = (x1 ∨ x2) ∧ x3

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Binary decision tree Truth table

Binary decision diagram

10 DP/Probabilistic Model Checking, Michaelmas 2011

Binary decision trees
•  Graphical representation of Boolean functions

−  f(x1,…,xn) : {0,1}n → {0,1}
•  Binary tree with two types of nodes
•  Non-terminal nodes

−  labelled with a Boolean variable xi

−  two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
•  Terminal nodes (or “leaf” nodes)

−  labelled with 0 or 1
•  To read the value of f(x1,…,xn)

−  start at root (top) node
−  take “then” edge if xi=1
−  take “else” edge if xi=0
−  result given by leaf node

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2

11 DP/Probabilistic Model Checking, Michaelmas 2011

Binary decision diagrams
•  Binary decision diagrams (BDDs) [Bry86]

−  based on binary decision trees, but reduced and ordered
−  sometimes called reduced ordered BDDs (ROBDDs)
−  actually directed acyclic graphs (DAGs), not trees
−  compact, canonical representation for Boolean functions

•  Variable ordering
−  a BDD assumes a fixed total ordering 

over its set of Boolean variables
−  e.g. x1<x2<x3

−  along any path through the BDD,  
variables appear at most once each 
and always in the correct order

x2

x1

0 1

x3

12 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 1
•  Rule 1: Merge identical terminal nodes

•  Example:

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3 x3 x3

x2

0 0 0

13 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 2
•  Rule 2: Merge isomorphic nodes, redirect incoming nodes

•  Example:

x2

x1

x3

0 1

x3 x3 x3

x2 x2

x1

x3

0 1

x3

x2

xj

xi xi

xj xj

xi xi

xj xj

xi

xj

14 DP/Probabilistic Model Checking, Michaelmas 2011

BDD reduction rule 3
•  Rule 3: Remove redundant nodes (with identical children)

•  Example:

x2

x1

x3

0 1

x3

x2 x2

x1

0 1

x3

xi

xj xj

15 DP/Probabilistic Model Checking, Michaelmas 2011

Canonicity
•  BDDs are a canonical representation for Boolean functions

−  two Boolean functions are equivalent if and only if the BDDs
which represent them are isomorphic

−  uniqueness relies on: reduced BDDs, fixed variable ordered

•  Important implications for implementation efficiency
−  can be tested in linear (or even constant) time

x2

x1

x3

0 0 0 1 0 1 0 1

x3 x3 x3

x2 x2

x1

0 1

x3

16 DP/Probabilistic Model Checking, Michaelmas 2011

BDD variable ordering
•  BDD size can be very sensitive to the variable ordering

−  example: f = (x1∧y1) ∨ (x2∧y2) ∨ (x3∧y3)

x2

x1

x3

10

x3 x3 x3

x2

y1 y1 y1 y1

y2 y2

y3

x1

y1

x2

y2

x3

y3

0 1

x1<y1<x2<y2< x3<y3 x1<x2<x3<y1< y2<y3

2n+2 nodes 2n+1 nodes

17 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs to represent sets of states
•  Consider a state space S and some subset S’ ⊆ S

•  We can represent S’ by its characteristic function χS’
−  χS’ : S → {0,1} where χS’(s) = 1 if and only if s ∈ S’

•  Assume we have an encoding of S into n Boolean variables
−  this is always possible for a finite set S
−  e.g. enumerate the elements of S and use a binary encoding
−  (note: there may be more efficient encodings though)

•  So χS’ can be seen as a function χS’(x1,…xn) : {0,1}n → {0,1}
−  which is simply a Boolean function
−  which can therefore be represented as a BDD

18 DP/Probabilistic Model Checking, Michaelmas 2011

BDD and sets of states - Example
•  State space S: {0, 1, 2, 3, 4, 5, 6, 7}
•  Encoding of S: {000, 001, 010, 011, 100, 101, 110, 111}
•  Subset S’ ⊆ S: {3, 5, 7} → {011, 101, 111}

x1 x2 x3 fB

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x1

0 1

x3

Truth table: BDD:

B

19 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs and transition relations
•  Transition relations can also be represented by their

characteristic function, but over pairs of states
−  relation: R ⊆ S × S
−  characteristic function: χR : S × S → {0,1}

•  For an encoding of state space S into n Boolean variables
−  we have Boolean function fR(x1,…,xn,y1,…,yn) : {0,1}2n → {0,1}
−  which can be represented by a BDD

•  Row and column variables
−  for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn
−  i.e. we use function fR(x1,y1,…,xn,yn) : {0,1}2n → {0,1}

20 DP/Probabilistic Model Checking, Michaelmas 2011

BDDs and transition relations
•  Example:

−  4 states: 0, 1, 2, 3
−  Encoding: 0↦00, 1↦01, 2↦10, 3↦11

y1

x1

1 0

x2

y1

x2

y2 y2

x2

Transition x1 x2 y1 y2 x1y1x2y2

(0,1) 0 0 0 1 0001
(0,2) 0 0 1 0 0100
(1,0) 0 1 0 0 0010
(2,3) 1 0 1 1 1101
(3,1) 1 1 0 1 1011
(3,2) 1 1 1 0 1110

0 1

3 2

21 DP/Probabilistic Model Checking, Michaelmas 2011

Multi-terminal binary decision diagrams
•  Multi-terminal BDDs (MTBDDs), sometimes called ADDs

−  extension of BDDs to represent real-valued functions
−  like BDDs, an MTBDD M is associated with n Boolean variables
−  MTBDD M represents a function fM(x1,…,xn) : {0,1}n → ℝ

x1 x2 x3 fM

0 0 0 0
0 0 1 3
0 1 0 9
0 1 1 0
1 0 0 4
1 0 1 4
1 1 0 9
1 1 1 0

x2

x1

3 9

x3 x3

x2

4

M
For clarity, we omit
the zero terminal

node and any
incoming edges

e.g.

22 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDDs to represent vectors
•  In the same way that BDDs can represent sets of states…

−  MTBDDs can represent real-valued vectors over states S
−  e.g. a vector of probabilities Prob(s, ψ) for each state s ∈ S
−  assume we have an encoding of S into n Boolean variables
−  then vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ

x2

x1

3 9

x3 x3

x2

4

MTBDD v
x1 x2 x3 i fv

0 0 0 0 0
0 0 1 1 3
0 1 0 2 9
0 1 1 3 0
1 0 0 4 4
1 0 1 5 4
1 1 0 6 9
1 1 1 7 0

Vector v

[0,3,9,0,4,4,9,0]

23 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDDs to represent matrices
•  MTBDDs can be used to represent real-valued matrices

indexed over a set of states S
−  e.g. the transition probability/rate matrix of a DTMC/CTMC

•  For an encoding of state space S into n Boolean variables
−  a matrix M maps pairs of states to reals i.e. M : S × S→ℝ
−  this becomes: fM(x1,…,xn,y1,…,yn) : {0,1}2n → ℝ

•  Row and column variables
−  for efficiency reasons, we interleave the row variables x1,..,xn

and column variables y1,…,yn
−  i.e. we use function fM(x1,y1,…,xn,yn) : {0,1}2n → ℝ

24 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Example

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

25 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Recursion
•  Descending one level in the MTBDD (i.e. setting xi=b)

−  splits the matrix represented by the MTBDD in half
−  row variables (xi) give horizontal split
−  column variables (yi) give vertical split

M|x=0,y=0 M|x=0,y=1

M|x=1,y=0 M|x=1,y=1

M|x=0

M|x=1

M

26 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Recursion

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

27 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Repeated  
submatrices

Shared  
MTBDD node

28 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Regularity

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Identical
adjacent 

submatrices

MTBDD node  
removed

29 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Sparseness

Entry in M x1 x2 y1 y2 x1y1x2y2 fM

(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
(0,3) = 5 0 0 1 1 0101 5
(1,3) = 5 0 1 1 1 0111 5
(2,3) = 5 1 0 1 1 1101 5
(3,2) = 2 1 1 1 0 1110 2

Matrix M MTBDD M

y1

x1

8 2

x2

y1

5

x2

y2 y2 y2

Blocks of
zeros

Edge goes 
straight to
zero node

30 DP/Probabilistic Model Checking, Michaelmas 2011

Matrices and MTBDDs - Compactness
•  Some simple matrices have extremely compact

representations as MTBDDs
−  e.g. the identify matrix or a constant matrix

8

x1

y1

x2

y1

y2

x3

y2

y3 y3

1

31 DP/Probabilistic Model Checking, Michaelmas 2011

Manipulating BDDs
•  Need efficient ways to manipulate Boolean functions

−  while they are represented as BDDs
−  i.e. algorithms which are applied directly to the BDDs

•  Basic operations on Boolean functions:
−  negation (¬), conjunction (∧), disjunction (∨), etc.
−  can all be applied directly to BDDs

•  Key operation on BDDs: Apply(op, A, B)
−  where A and B are BDDs and op is a binary operator over

Boolean values, e.g. ∧, ∨, etc.
−  Apply(op, A, B) returns the BDD representing function fA op fB
−  often just use infix notation, e.g. Apply(∧, A, B) = A ∧ B

−  efficient algorithm: recursive depth-first traversal of A and B
−  complexity (and size of result) is O(|A|·|B|)

•  where |C| denotes size of BDD C

32 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

∨

x2

x1

0 1

x3

x4

A

A1

A2

A3

A4 A5

A6

x1

0 1

x3

x4

B

B1

B2

B3 B4

B5

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

Argument BDDs, with node labels: Recursive calls to Apply:

33 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

−  recursive call structure implicitly defines resulting BDD

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

34 DP/Probabilistic Model Checking, Michaelmas 2011

Apply - Example
•  Example: Apply(∨, A, B)

−  but the resulting BDD needs to be reduced
−  in fact, we can do this as part of the recursive Apply operation,

implementing reduction rules bottom-up

x2

x1

0 1

x3

x4

x3

1 1

A1,B1

A2,B2

A6,B2 A6,B5

A3,B4 A5,B2 A3,B2

A5,B4 A4,B3

x2

x1

0 1

x3

x4

35 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation of BDDs
•  Store all BDDs currently in use as one multi-rooted BDD

−  no duplicate BDD subtrees, even across multiple BDDs
−  every time a new node is created, check for existence first
−  sometimes called the “unique table”
−  implemented as set of hash tables, one per Boolean variable
−  need: node referencing/dereferencing, garbage collection

•  Efficiency implications
−  very significant memory savings
−  trivial checking of BDD equality (pointer comparison)

•  Caching of BDD operation results for reuse
−  store result of every BDD operation (memory dependent)
−  applied at every step of recursive BDD operations
−  relies on fast check for BDD equality

36 DP/Probabilistic Model Checking, Michaelmas 2011

Operations with BDDs
•  Operations on sets of states easy with BDDs

−  set union: A ∪ B, in BDDs: A ∨ B
−  set intersection: A ∩ B, in BDDs: A ∧ B
−  set complement: S ∖ A, in BDDs: ¬A

•  Graph-based algorithms (e.g. reachability)
−  need forwards or backwards image operator

•  i.e. computation of all successors/predecessors of a state
•  again, easy with BDD operations (conjunction, quantification)

−  other ingredients
•  set operations (see above)
•  equality of state sets (fixpoint termination) - equality of BDDs

37 DP/Probabilistic Model Checking, Michaelmas 2011

Operations on MTBDDs
•  The BDD operation Apply extends easily to MTBDDs

•  For MTBDDs A, B and binary operation op over the reals:
−  Apply(op, A, B) returns the MTBDD representing fA op fB
−  examples for op: +, -, ×, min, max, …
−  often just use infix notation, e.g. Apply(+, A, B) = A + B

•  BDDs are just an instance of MTBDDs
−  in this case, can use Boolean ops too, e.g. Apply(∨, A, B)

•  The recursive algorithm for implementing Apply on BDDs
−  can be reused for Apply on MTBDDs

38 DP/Probabilistic Model Checking, Michaelmas 2011

Some other MTBDD operations
•  Threshold(A, ~, c)

−  for MTBDD A, relational operator op and bound c ∈ ℝ
−  converts MTBDD to BDD based on threshold ~c
−  i.e. builds BDD representing function fA ~ c
−  e.g. computing the underlying transition relation from the

probability matrix of a DTMC: R = Threshold(P, >, 0)

•  Abstract(op, {x1,…,xn}, A)
−  for MTBDD A, variables {x1,…,xn} and commutative/associative

binary operator over reals op
−  analogue of existential/universal quantification for BDDs
−  e.g. Abstract(+, {x}, A) constructs the MTBDD representing the

function fA|x=0 + fA|x=1
−  e.g. for BDD A: ∃(x1,..,xn).A ≡ Abstract(∨, {x1,…,xn}, A)

39 DP/Probabilistic Model Checking, Michaelmas 2011

MTBDD matrix/vector operations
•  Pointwise addition/multiplication and scalar multiplication

−  can be implemented with the Apply operator
−  Matrices: A + B, MTBDDs: Apply(+, A, B)

•  Matrix-matrix multiplication A·B
−  can be expressed recursively based on 4-way matrix splits

−  which forms the basis of an MTBDD implementation
−  various optimisations are possible

•  Matrix-matrix multiplication A·v is done in similar fashion

A1 = B1·C1 + B2 · C3, etc.

40 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices
•  Explicit data structure for matrices with many zero entries

−  assume a matrix P of size n × n with nnz non-zero elements
−  store three arrays: val and col (of size nnz) and row (of size n)
−  for each matrix entry (r,c)=v, c and v are stored in col/val
−  entries are grouped by row, with pointers stored in row
−  also possible to group by column

0.5 1 0.3 1 0.7 0.5 val

1 2 0 0 3 3 col

0 3 5 6 2 row

41 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices
•  Advantages

−  compact storage (proportional to number of non-zero entries)
−  fast access to matrix entries
−  especially if usually need an entire row at once
−  (which is the case for e.g. matrix-vector multiplication)

•  Disadvantage
−  less efficient to manipulate (i.e. add/delete matrix entries)

•  Storage requirements
−  for a matrix of size n × n with nnz non-zero elements
−  assume reals are 8 byte doubles, indices are 4 byte integers
−  we need 8·nnz+4·nnz+4·n = 12·nnz+4·n bytes

42 DP/Probabilistic Model Checking, Michaelmas 2011

Sparse matrices vs. MTBDDs
•  Storage requirements

−  MTBDDs: each node is 20 bytes
−  sparse matrices: 12·nnz+4·n bytes (n states, nnz transitions)

•  Case study: Kanban manufacturing system, N jobs
−  store transition rate matrix R of the corresponding CTMCs

N States
(n)

Transitions
(nnz)

MTBDD
(KB)

Sparse matrix
(KB)

3 58,400 446,400 48 5,459
4 454,475 3,979,850 96 48,414
5 2,546,432 24,460,016 123 296,588
6 11,261,376 115,708,992 154 1,399,955
7 41,644,800 450,455,040 186 5,441,445
8 133,865,325 1,507,898,700 287 13,193,599

43 DP/Probabilistic Model Checking, Michaelmas 2011

Implementation in PRISM
•  PRISM is a symbolic probabilistic model checker

−  the key underlying data structures are MTBDDs (and BDDs)

•  In fact, has multiple numerical computation engines

−  MTBDDs: storage/analysis of very large models (given
structure/regularity), numerical computation can blow up

−  Sparse matrices: fastest solution for smaller models (<106
states), prohibitive memory consumption for larger models

−  Hybrid: combine MTBDD storage with explicit storage,  
ten-fold increase in analysable model size (~107 states)

44 DP/Probabilistic Model Checking, Michaelmas 2011

Summing up…
•  Implementation of probabilistic model checking

−  graph-based algorithms, e.g. reachability, precomputation
−  manipulation of sets of states, transition relations
−  iterative numerical computation
−  key operation: matrix-vector multiplication

•  Binary decision diagrams (BDDs)
−  representation for Boolean functions
−  efficient storage/manipulation of sets, transition relations

•  Multi-terminal BDDs (MTBDDs)
−  extension of BDDs to real-valued functions
−  efficient storage/manipulation of real-valued vectors, matrices

(assuming structure and regularity)
−  can be much more compact than (explicit) sparse matrices

