Lecture 19 Probabilistic symbolic model checking

Dr. Dave Parker

Department of Computer Science
University of Oxford

Overview

- Implementation of probabilistic model checking
- overview, key operations, symbolic vs. explicit
- Binary decision diagrams (BDDs)
- introduction, sets, transition relations, ...
- Multi-terminal BDDs (MTBDDs)
- introduction, vectors, matrices, ...
- Operations on/with BDDs and MTBDDs

Implementation overview

- Overview of the probabilistic model checking process
- two distinct phases: model construction, model checking
- three different models, several different logics, various different solution/analysis methods
- but... all these processes have much in common

Model construction

Model checking

Two distinct classes of techniques:

> graph-based algorithms
iterative numerical computation

Underlying operations

- Key objects/operations for probabilistic model checking
- Graph-based algorithms
- underlying transition relation of DTMC/MDP/CTMC
- manipulation of transition relation and state sets
- Iterative numerical computation
- transition matrix of DTMC/MDP/CTMC, real-valued vectors
- manipulation of real-valued matrices and vectors
- in particular: matrix-vector multiplication

State-space explosion

- Models of real-life systems are typically huge
- familiar problem for verification/model checking techniques
- State-space explosion problem
- linear increase in size of system can result in an exponential increase in the size of the model
- e.g. n parallel components of size m, can give up to m^{n} states
- Need efficient ways of storing models, sets of states, etc.
- and efficient ways of constructing, manipulating them
- Here, we will focus on symbolic approaches

Explicit vs. symbolic data structures

- Symbolic data structures
- usually based on binary decision diagrams (BDDs) or variants
- avoid explicit enumeration of data by exploiting regularity
- potentially very compact storage (but not always)
- Sets of states:
- explicit: bit vectors
- symbolic: BDDs
- Real-valued vectors:
- explicit: arrays of reals (in practice, doubles/floats)
- symbolic: multi-terminal BDDs (MTBDDs)
- Real-valued matrices:
- explicit: sparse matrices
- symbolic: MTBDDs

Representations of Boolean formulas

- Propositional formula: $f=\left(x_{1} \vee x_{2}\right) \wedge x_{3}$
Truth table

\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{f}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Binary decision trees

- Graphical representation of Boolean functions
$-f\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}$
- Binary tree with two types of nodes
- Non-terminal nodes
- labelled with a Boolean variable x_{i}
- two children: 1 ("then", solid line) and 0 ("else", dotted line)
- Terminal nodes (or "leaf" nodes)
- labelled with 0 or 1
- To read the value of $f\left(x_{1}, \ldots, x_{n}\right)$
- start at root (top) node
- take "then" edge if $x_{i}=1$
- take "else" edge if $x_{i}=0$

- result given by leaf node

Binary decision diagrams

- Binary decision diagrams (BDDs) [Bry86]
- based on binary decision trees, but reduced and ordered
- sometimes called reduced ordered BDDs (ROBDDs)
- actually directed acyclic graphs (DAGs), not trees
- compact, canonical representation for Boolean functions
- Variable ordering
- a BDD assumes a fixed total ordering over its set of Boolean variables
- e.g. $x_{1}<x_{2}<x_{3}$
- along any path through the BDD, variables appear at most once each and always in the correct order

BDD reduction rule 1

- Rule 1: Merge identical terminal nodes

- Example:

BDD reduction rule 2

- Rule 2: Merge isomorphic nodes, redirect incoming nodes

- Example:

BDD reduction rule 3

- Rule 3: Remove redundant nodes (with identical children)

- Example:

Canonicity

- BDDs are a canonical representation for Boolean functions
- two Boolean functions are equivalent if and only if the BDDs which represent them are isomorphic
- uniqueness relies on: reduced BDDs, fixed variable ordered

- Important implications for implementation efficiency
- can be tested in linear (or even constant) time

BDD variable ordering

- BDD size can be very sensitive to the variable ordering
- example: $f=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee\left(x_{3} \wedge y_{3}\right)$

DP/Probabilistic Model Checking, Michaelmas 2011

BDDs to represent sets of states

- Consider a state space S and some subset $S^{\prime} \subseteq S$
- We can represent S^{\prime} by its characteristic function $X_{S^{\prime}}$
$-X_{S^{\prime}}: S \rightarrow\{0,1\}$ where $X_{S^{\prime}}(s)=1$ if and only if $s \in S^{\prime}$
- Assume we have an encoding of S into n Boolean variables
- this is always possible for a finite set S
- e.g. enumerate the elements of S and use a binary encoding
- (note: there may be more efficient encodings though)
- So $X_{S^{\prime}}$ can be seen as a function $X_{S^{\prime}}\left(X_{1}, \ldots X_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}$
- which is simply a Boolean function
- which can therefore be represented as a BDD

BDD and sets of states - Example

- State space S : $\{0,1,2,3,4,5,6,7\}$
- Encoding of S: $\{000,001,010,011,100,101,110,111\}$
- Subset $S^{\prime} \subseteq S:\{3,5,7\} \rightarrow\{011,101,111\}$

Truth table:

x_{1}	x_{2}	x_{3}	f_{B}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

BDDs and transition relations

- Transition relations can also be represented by their characteristic function, but over pairs of states
- relation: $\mathrm{R} \subseteq \mathrm{S} \times \mathrm{S}$
- characteristic function: $X_{R}: S \times S \rightarrow\{0,1\}$
- For an encoding of state space S into n Boolean variables
- we have Boolean function $\mathrm{f}_{\mathrm{R}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right):\{0,1\}^{2 \mathrm{n}} \rightarrow\{0,1\}$
- which can be represented by a BDD
- Row and column variables
- for efficiency reasons, we interleave the row variables $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$ and column variables y_{1}, \ldots, y_{n}
- i.e. we use function $f_{R}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right):\{0,1\}^{2 n} \rightarrow\{0,1\}$

BDDs and transition relations

- Example:
- 4 states: $0,1,2,3$
- Encoding: $0 \mapsto 00,1 \mapsto 01,2 \mapsto 10,3 \mapsto 11$

Transition	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{y}_{1}	\mathbf{y}_{2}	$\mathrm{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2} \mathrm{y}_{2}$
$(0,1)$	0	0	0	1	0001
$(0,2)$	0	0	1	0	0100
$(1,0)$	0	1	0	0	0010
$(2,3)$	1	0	1	1	1101
$(3,1)$	1	1	0	1	1011
$(3,2)$	1	1	1	0	1110

Multi-terminal binary decision diagrams

- Multi-terminal BDDs (MTBDDs), sometimes called ADDs
- extension of BDDs to represent real-valued functions
- like BDDs, an MTBDD M is associated with n Boolean variables
- MTBDD M represents a function $f_{M}\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow \mathbb{R}$

MTBDDs to represent vectors

- In the same way that BDDs can represent sets of states...
- MTBDDs can represent real-valued vectors over states S
- e.g. a vector of probabilities $\operatorname{Prob}(s, \psi)$ for each state $s \in S$
- assume we have an encoding of S into n Boolean variables
- then vector $\underline{v}: S \rightarrow \mathbb{R}$ is a function $f_{v}\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow \mathbb{R}$

Vector \underline{v} [0,3,9,0,4,4,9,0]

\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{i}	\mathbf{f}_{v}
0	0	0	0	0
0	0	1	1	3
0	1	0	2	9
0	1	1	3	0
1	0	0	4	4
1	0	1	5	4
1	1	0	6	9
1	1	1	7	0

MTBDDs to represent matrices

- MTBDDs can be used to represent real-valued matrices indexed over a set of states S
- e.g. the transition probability/rate matrix of a DTMC/CTMC
- For an encoding of state space S into n Boolean variables
- a matrix \mathbf{M} maps pairs of states to reals i.e. $\mathbf{M}: S \times S \rightarrow \mathbb{R}$
- this becomes: $f_{M}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right):\{0,1\}^{2 n} \rightarrow \mathbb{R}$
- Row and column variables
- for efficiency reasons, we interleave the row variables $x_{1}, . ., x_{n}$ and column variables y_{1}, \ldots, y_{n}
- i.e. we use function $f_{M}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right):\{0,1\}^{2 n} \rightarrow \mathbb{R}$

Matrices and MTBDDs - Example

$$
\text { Matrix } M\left[\begin{array}{cccc}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

MTBDD M

Matrices and MTBDDs - Recursion

- Descending one level in the MTBDD (i.e. setting $x_{i}=b$)
- splits the matrix represented by the MTBDD in half
- row variables (x_{i}) give horizontal split
- column variables (y_{i}) give vertical split

Matrices and MTBDDs - Recursion

$$
\text { Matrix M }\left[\begin{array}{ll|ll}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
\hline 0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

Matrices and MTBDDs - Regularity

Entry in \mathbf{M}	x_{1}	x_{2}	y_{1}	y_{2}	$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{2} \mathrm{y}_{2}$	f_{M}
$(0,1)=8$	0	0	0	1	0001	8
$(1,0)=2$	0	1	0	0	0010	2
$(0,3)=5$	0	0	1	1	0101	5
$(1,3)=5$	0	1	1	1	0111	5
$(2,3)=5$	1	0	1	1	1101	5
$(3,2)=2$	1	1	1	0	1110	2

Matrices and MTBDDs - Regularity

Matrices and MTBDDs - Sparseness

Entry in M	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{y}_{1}	\mathbf{y}_{2}	$\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2} \mathbf{y}_{2}$	$\mathrm{f}_{\mathbf{M}}$
$(0,1)=8$	0	0	0	1	0001	8
$(1,0)=2$	0	1	0	0	0010	2
$(0,3)=5$	0	0	1	1	0101	5
$(1,3)=5$	0	1	1	1	0111	5
$(2,3)=5$	1	0	1	1	1101	5
$(3,2)=2$	1	1	1	0	1110	2

Edge goes straight to zero node

Matrices and MTBDDs - Compactness

- Some simple matrices have extremely compact representations as MTBDDs
- e.g. the identify matrix or a constant matrix
$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{ccccc}
8 & 8 & 8 & 8 & \cdots \\
8 & 8 & 8 & 8 & \ldots \\
8 & 8 & 8 & 8 & \cdots \\
8 & 8 & 8 & 8 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
& & & & \\
& & & & \\
& & & &
\end{array}\right.
$$

Manipulating BDDs

- Need efficient ways to manipulate Boolean functions
- while they are represented as BDDs
- i.e. algorithms which are applied directly to the BDDs
- Basic operations on Boolean functions:
- negation (\neg), conjunction (\wedge), disjunction (\vee), etc.
- can all be applied directly to BDDs
- Key operation on BDDs: Apply(op, A, B)
- where A and B are BDDs and op is a binary operator over Boolean values, e.g. \wedge, \vee, etc.
- Apply(op, A, B) returns the BDD representing function f_{A} op f_{B}
- often just use infix notation, e.g. Apply($\wedge, A, B)=A \wedge B$
- efficient algorithm: recursive depth-first traversal of A and B
- complexity (and size of result) is $\mathrm{O}(|\mathrm{A}| \cdot|\mathrm{B}|)$
- where $|\mathrm{C}|$ denotes size of BDD C

Apply - Example

- Example: $\operatorname{Apply}(\vee, \mathrm{A}, \mathrm{B})$

Argument BDDs, with node labels:
Recursive calls to Apply:

Apply - Example

- Example: $\operatorname{Apply}(\vee, \mathrm{A}, \mathrm{B})$
- recursive call structure implicitly defines resulting BDD

Apply - Example

- Example: $\operatorname{Apply}(\vee, \mathrm{A}, \mathrm{B})$
- but the resulting BDD needs to be reduced
- in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up

Implementation of BDDs

- Store all BDDs currently in use as one multi-rooted BDD
- no duplicate BDD subtrees, even across multiple BDDs
- every time a new node is created, check for existence first
- sometimes called the "unique table"
- implemented as set of hash tables, one per Boolean variable
- need: node referencing/dereferencing, garbage collection
- Efficiency implications
- very significant memory savings
- trivial checking of BDD equality (pointer comparison)
- Caching of BDD operation results for reuse
- store result of every BDD operation (memory dependent)
- applied at every step of recursive BDD operations
- relies on fast check for BDD equality

Operations with BDDs

- Operations on sets of states easy with BDDs
- set union: $A \cup B$, in BDDs: $A \vee B$
- set intersection: $A \cap B$, in BDDs: $A \wedge B$
- set complement: $S \backslash A$, in BDDs: $\neg A$
- Graph-based algorithms (e.g. reachability)
- need forwards or backwards image operator
- i.e. computation of all successors/predecessors of a state
- again, easy with BDD operations (conjunction, quantification)
- other ingredients
- set operations (see above)
- equality of state sets (fixpoint termination) - equality of BDDs

Operations on MTBDDs

- The BDD operation Apply extends easily to MTBDDs
- For MTBDDs A, B and binary operation op over the reals:
- Apply(op, A, B) returns the MTBDD representing f_{A} op f_{B}
- examples for op: $+,-, \times, \min , \max , \ldots$
- often just use infix notation, e.g. Apply(+, A, B) $=A+B$
- BDDs are just an instance of MTBDDs
- in this case, can use Boolean ops too, e.g. Apply(\vee, A, B)
- The recursive algorithm for implementing Apply on BDDs
- can be reused for Apply on MTBDDs

Some other MTBDD operations

- Threshold(A, ~, c)
- for MTBDD A, relational operator op and bound $c \in \mathbb{R}$
- converts MTBDD to BDD based on threshold $\sim c$
- i.e. builds BDD representing function $f_{A} \sim c$
- e.g. computing the underlying transition relation from the probability matrix of a DTMC: $R=\operatorname{Threshold}(P,>, 0)$
- Abstract(op, $\left.\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}, \mathrm{A}\right)$
- for MTBDD A, variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and commutative/associative binary operator over reals op
- analogue of existential/universal quantification for BDDs
- e.g. Abstract(+, \{x\}, A) constructs the MTBDD representing the function $f_{A \mid x=0}+f_{A \mid x=1}$
- e.g. for BDD A: $\exists\left(x_{1}, . ., x_{n}\right) \cdot A \equiv \operatorname{Abstract}\left(\vee,\left\{x_{1}, \ldots, x_{n}\right\}, A\right)$

MTBDD matrix/vector operations

- Pointwise addition/multiplication and scalar multiplication
- can be implemented with the Apply operator
- Matrices: A + B, MTBDDs: Apply(+, A, B)
- Matrix-matrix multiplication $\mathbf{A} \cdot \mathbf{B}$
- can be expressed recursively based on 4-way matrix splits

$$
\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right] \quad A_{1}=B_{1} \cdot C_{1}+B_{2} \cdot C_{3} \text {, etc. }
$$

- which forms the basis of an MTBDD implementation
- various optimisations are possible
- Matrix-matrix multiplication $A \cdot \underline{v}$ is done in similar fashion

Sparse matrices

- Explicit data structure for matrices with many zero entries
- assume a matrix P of size $\mathrm{n} \times \mathrm{n}$ with nnz non-zero elements
- store three arrays: val and col (of size nnz) and row (of size n)
- for each matrix entry $(r, c)=v, c$ and v are stored in col/val
- entries are grouped by row, with pointers stored in row
- also possible to group by column

$$
P=\left[\begin{array}{cccc}
\cdot & 0.5 & \cdot & 0.5 \\
\cdot & \cdot & 1 & \cdot \\
0.3 & \cdot & \cdot & 0.7 \\
1 & \cdot & \cdot & \cdot
\end{array}\right]
$$

Sparse matrices

- Advantages
- compact storage (proportional to number of non-zero entries)
- fast access to matrix entries
- especially if usually need an entire row at once
- (which is the case for e.g. matrix-vector multiplication)
- Disadvantage
- less efficient to manipulate (i.e. add/delete matrix entries)
- Storage requirements
- for a matrix of size $\mathrm{n} \times \mathrm{n}$ with nnz non-zero elements
- assume reals are 8 byte doubles, indices are 4 byte integers
- we need $8 \cdot n n z+4 \cdot n n z+4 \cdot n=12 \cdot n n z+4 \cdot n$ bytes

Sparse matrices vs. MTBDDs

- Storage requirements
- MTBDDs: each node is 20 bytes
- sparse matrices: $12 \cdot n n z+4 \cdot n$ bytes (n states, nnz transitions)
- Case study: Kanban manufacturing system, N jobs
- store transition rate matrix R of the corresponding CTMCs

\mathbf{N}	States (\mathbf{n})	Transitions (nnz)	MTBDD (KB)	Sparse matrix (KB)
3	58,400	446,400	48	5,459
4	454,475	$3,979,850$	96	48,414
5	$2,546,432$	$24,460,016$	123	296,588
6	$11,261,376$	$115,708,992$	154	$1,399,955$
7	$41,644,800$	$450,455,040$	186	$5,441,445$
8	$133,865,325$	$1,507,898,700$	287	$13,193,599$

Implementation in PRISM

- PRISM is a symbolic probabilistic model checker
- the key underlying data structures are MTBDDs (and BDDs)
- In fact, has multiple numerical computation engines
- MTBDDs: storage/analysis of very large models (given structure/regularity), numerical computation can blow up
- Sparse matrices: fastest solution for smaller models (<106 states), prohibitive memory consumption for larger models
- Hybrid: combine MTBDD storage with explicit storage, ten-fold increase in analysable model size ($\sim 10^{7}$ states)

Summing up...

- Implementation of probabilistic model checking
- graph-based algorithms, e.g. reachability, precomputation
- manipulation of sets of states, transition relations
- iterative numerical computation
- key operation: matrix-vector multiplication
- Binary decision diagrams (BDDs)
- representation for Boolean functions
- efficient storage/manipulation of sets, transition relations
- Multi-terminal BDDs (MTBDDs)
- extension of BDDs to real-valued functions
- efficient storage/manipulation of real-valued vectors, matrices (assuming structure and regularity)
- can be much more compact than (explicit) sparse matrices

