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Overview 

•  Implementation of probabilistic model checking 
−  overview, key operations, symbolic vs. explicit 

•  Binary decision diagrams (BDDs) 
−  introduction, sets, transition relations, … 

•  Multi-terminal BDDs (MTBDDs) 
−  introduction, vectors, matrices, … 

•  Operations on/with BDDs and MTBDDs 
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Implementation overview 
•  Overview of the probabilistic model checking process 

−  two distinct phases: model construction, model checking 
−  three different models, several different logics,  

various different solution/analysis methods 
−  but… all these processes have much in common 
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Model checking 
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Underlying operations 
•  Key objects/operations for probabilistic model checking 

•  Graph-based algorithms 
−  underlying transition relation of DTMC/MDP/CTMC 
−  manipulation of transition relation and state sets 

•  Iterative numerical computation 
−  transition matrix of DTMC/MDP/CTMC, real-valued vectors 
−  manipulation of real-valued matrices and vectors 
−  in particular: matrix-vector multiplication 
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State-space explosion 
•  Models of real-life systems are typically huge 

−  familiar problem for verification/model checking techniques 

•  State-space explosion problem 
−  linear increase in size of system can result in an exponential 

increase in the size of the model 
−  e.g. n parallel components of size m, can give up to mn states 

•  Need efficient ways of storing models, sets of states, etc. 
−  and efficient ways of constructing, manipulating them 

•  Here, we will focus on symbolic approaches 
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Explicit vs. symbolic data structures 
•  Symbolic data structures 

−  usually based on binary decision diagrams (BDDs) or variants 
−  avoid explicit enumeration of data by exploiting regularity 
−  potentially very compact storage (but not always) 

•  Sets of states: 
−  explicit: bit vectors 
−  symbolic: BDDs 

•  Real-valued vectors: 
−  explicit: arrays of reals (in practice, doubles/floats) 
−  symbolic: multi-terminal BDDs (MTBDDs) 

•  Real-valued matrices: 
−  explicit: sparse matrices 
−  symbolic: MTBDDs 
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Representations of Boolean formulas 
•  Propositional formula:  f = (x1 ∨ x2) ∧ x3 
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Binary decision trees 
•  Graphical representation of Boolean functions 

−  f(x1,…,xn) : {0,1}n → {0,1} 
•  Binary tree with two types of nodes 
•  Non-terminal nodes 

−  labelled with a Boolean variable xi 

−  two children: 1 (“then”, solid line) and 0 (“else”, dotted line) 
•  Terminal nodes (or “leaf” nodes) 

−  labelled with 0 or 1 
•  To read the value of f(x1,…,xn) 

−  start at root (top) node 
−  take “then” edge if xi=1 
−  take “else” edge if xi=0 
−  result given by leaf node 
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Binary decision diagrams 
•  Binary decision diagrams (BDDs) [Bry86] 

−  based on binary decision trees, but reduced and ordered 
−  sometimes called reduced ordered BDDs (ROBDDs) 
−  actually directed acyclic graphs (DAGs), not trees 
−  compact, canonical representation for Boolean functions 

•  Variable ordering 
−  a BDD assumes a fixed total ordering 

over its set of Boolean variables 
−  e.g. x1<x2<x3 

−  along any path through the BDD,  
variables appear at most once each 
and always in the correct order 
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BDD reduction rule 1 
•  Rule 1: Merge identical terminal nodes 

•  Example: 

x2 

x1 

x3 

0 0 0 1 0 1 0 1

x3 x3 x3 

x2 x2 

x1 

x3 

0 1

x3 x3 x3 

x2 

0 0 0 



13 DP/Probabilistic Model Checking, Michaelmas 2011 

BDD reduction rule 2 
•  Rule 2: Merge isomorphic nodes, redirect incoming nodes 

•  Example: 
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BDD reduction rule 3 
•  Rule 3: Remove redundant nodes (with identical children) 

•  Example: 
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Canonicity 
•  BDDs are a canonical representation for Boolean functions 

−  two Boolean functions are equivalent if and only if the BDDs 
which represent them are isomorphic 

−  uniqueness relies on: reduced BDDs, fixed variable ordered 

•  Important implications for implementation efficiency 
−  can be tested in linear (or even constant) time 
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BDD variable ordering 
•  BDD size can be very sensitive to the variable ordering 

−  example: f = (x1∧y1) ∨ (x2∧y2) ∨ (x3∧y3) 
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BDDs to represent sets of states 
•  Consider a state space S and some subset S’ ⊆ S 

•  We can represent S’ by its characteristic function χS’ 
−  χS’ : S → {0,1}  where  χS’(s) = 1 if and only if s ∈ S’ 

•  Assume we have an encoding of S into n Boolean variables 
−  this is always possible for a finite set S 
−  e.g. enumerate the elements of S and use a binary encoding 
−  (note: there may be more efficient encodings though) 

•  So χS’ can be seen as a function χS’(x1,…xn) : {0,1}n → {0,1} 
−  which is simply a Boolean function 
−  which can therefore be represented as a BDD 
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BDD and sets of states - Example 
•  State space S:  {0, 1, 2, 3, 4, 5, 6, 7} 
•  Encoding of S:  {000, 001, 010, 011, 100, 101, 110, 111} 
•  Subset S’ ⊆ S:  {3, 5, 7} → {011, 101, 111} 

x1 x2 x3 fB 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

x2 

x1 

0 1

x3 

Truth table: BDD: 

B 
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BDDs and transition relations 
•  Transition relations can also be represented by their 

characteristic function, but over pairs of states 
−  relation: R ⊆ S × S 
−  characteristic function: χR : S × S → {0,1} 

•  For an encoding of state space S into n Boolean variables 
−  we have Boolean function fR(x1,…,xn,y1,…,yn) : {0,1}2n → {0,1} 
−  which can be represented by a BDD 

•  Row and column variables 
−  for efficiency reasons, we interleave the row variables x1,..,xn 

and column variables y1,…,yn 
−  i.e. we use function fR(x1,y1,…,xn,yn) : {0,1}2n → {0,1} 
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BDDs and transition relations 
•  Example: 

−  4 states: 0, 1, 2, 3 
−  Encoding: 0↦00, 1↦01, 2↦10, 3↦11 

y1 

x1 

1 0

x2 

y1 

x2 

y2 y2 

x2 

Transition x1 x2 y1 y2 x1y1x2y2 

(0,1) 0 0 0 1 0001 
(0,2) 0 0 1 0 0100 
(1,0) 0 1 0 0 0010 
(2,3) 1 0 1 1 1101 
(3,1) 1 1 0 1 1011 
(3,2) 1 1 1 0 1110 

0 1 

3 2 
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Multi-terminal binary decision diagrams 
•  Multi-terminal BDDs (MTBDDs), sometimes called ADDs 

−  extension of BDDs to represent real-valued functions 
−  like BDDs, an MTBDD M is associated with n Boolean variables 
−  MTBDD M represents a function fM(x1,…,xn) : {0,1}n → ℝ 

x1 x2 x3 fM 

0 0 0 0 
0 0 1 3 
0 1 0 9 
0 1 1 0 
1 0 0 4 
1 0 1 4 
1 1 0 9 
1 1 1 0 

x2 

x1 

3 9

x3 x3 

x2 

4

M 
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the zero terminal 

node and any 
incoming edges 

e.g. 
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MTBDDs to represent vectors 
•  In the same way that BDDs can represent sets of states… 

−  MTBDDs can represent real-valued vectors over states S 
−  e.g. a vector of probabilities Prob(s, ψ) for each state s ∈ S 
−  assume we have an encoding of S into n Boolean variables 
−  then vector v : S → ℝ is a function fv(x1,…,xn) : {0,1}n → ℝ 

x2 

x1 

3 9

x3 x3 

x2 

4

MTBDD v 
x1 x2 x3 i fv 

0 0 0 0 0 
0 0 1 1 3 
0 1 0 2 9 
0 1 1 3 0 
1 0 0 4 4 
1 0 1 5 4 
1 1 0 6 9 
1 1 1 7 0 

Vector v 

[0,3,9,0,4,4,9,0] 
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MTBDDs to represent matrices 
•  MTBDDs can be used to represent real-valued matrices 

indexed over a set of states S 
−  e.g. the transition probability/rate matrix of a DTMC/CTMC 

•  For an encoding of state space S into n Boolean variables 
−  a matrix M maps pairs of states to reals i.e. M : S × S→ℝ 
−  this becomes:  fM(x1,…,xn,y1,…,yn) : {0,1}2n → ℝ 

•  Row and column variables 
−  for efficiency reasons, we interleave the row variables x1,..,xn 

and column variables y1,…,yn 
−  i.e. we use function fM(x1,y1,…,xn,yn) : {0,1}2n → ℝ 
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Matrices and MTBDDs - Example 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 
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Matrices and MTBDDs - Recursion 
•  Descending one level in the MTBDD (i.e. setting xi=b) 

−  splits the matrix represented by the MTBDD in half 
−  row variables (xi) give horizontal split 
−  column variables (yi) give vertical split 

M|x=0,y=0 M|x=0,y=1 

M|x=1,y=0 M|x=1,y=1 

M|x=0 

M|x=1 

M 
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Matrices and MTBDDs - Recursion 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 
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Matrices and MTBDDs - Regularity 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 
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x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Repeated  
submatrices 

Shared  
MTBDD node 
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Matrices and MTBDDs - Regularity 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 

y1 

x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Identical 
adjacent 

submatrices 

MTBDD node  
removed 
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Matrices and MTBDDs - Sparseness 

Entry in M  x1 x2 y1 y2 x1y1x2y2 fM 

(0,1) = 8 0 0 0 1 0001 8 
(1,0) = 2 0 1 0 0 0010 2 
(0,3) = 5 0 0 1 1 0101 5 
(1,3) = 5 0 1 1 1 0111 5 
(2,3) = 5 1 0 1 1 1101 5 
(3,2) = 2 1 1 1 0 1110 2 

Matrix M MTBDD M 
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x1 

8 2

x2 

y1 

5

x2 

y2 y2 y2 

Blocks of 
zeros 

Edge goes 
straight to 
zero node 
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Matrices and MTBDDs - Compactness 
•  Some simple matrices have extremely compact 

representations as MTBDDs 
−  e.g. the identify matrix or a constant matrix 
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x3 
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Manipulating BDDs 
•  Need efficient ways to manipulate Boolean functions 

−  while they are represented as BDDs 
−  i.e. algorithms which are applied directly to the BDDs 

•  Basic operations on Boolean functions: 
−  negation (¬), conjunction (∧), disjunction (∨), etc. 
−  can all be applied directly to BDDs 

•  Key operation on BDDs: Apply(op, A, B) 
−  where A and B are BDDs and op is a binary operator over 

Boolean values, e.g. ∧, ∨, etc. 
−  Apply(op, A, B) returns the BDD representing function fA op fB 
−  often just use infix notation, e.g. Apply(∧, A, B) = A ∧ B 

−  efficient algorithm: recursive depth-first traversal of A and B 
−  complexity (and size of result) is O( |A|·|B| ) 

•  where |C| denotes size of BDD C  
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Apply - Example 
•  Example: Apply(∨, A, B) 

∨ 

x2 

x1 

0 1

x3 

x4 

A 

A1 

A2 

A3 

A4 A5 

A6 
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Argument BDDs, with node labels: Recursive calls to Apply: 
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Apply - Example 
•  Example: Apply(∨, A, B) 

−  recursive call structure implicitly defines resulting BDD 
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0 1
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1 1
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Apply - Example 
•  Example: Apply(∨, A, B) 

−  but the resulting BDD needs to be reduced 
−  in fact, we can do this as part of the recursive Apply operation, 

implementing reduction rules bottom-up 
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Implementation of BDDs 
•  Store all BDDs currently in use as one multi-rooted BDD 

−  no duplicate BDD subtrees, even across multiple BDDs 
−  every time a new node is created, check for existence first 
−  sometimes called the “unique table” 
−  implemented as set of hash tables, one per Boolean variable 
−  need: node referencing/dereferencing, garbage collection 

•  Efficiency implications 
−  very significant memory savings  
−  trivial checking of BDD equality (pointer comparison) 

•  Caching of BDD operation results for reuse 
−  store result of every BDD operation (memory dependent) 
−  applied at every step of recursive BDD operations 
−  relies on fast check for BDD equality 
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Operations with BDDs 
•  Operations on sets of states easy with BDDs 

−  set union: A ∪ B,  in BDDs: A ∨ B 
−  set intersection: A ∩ B,  in BDDs: A ∧ B 
−  set complement: S ∖ A,  in BDDs: ¬A 

•  Graph-based algorithms (e.g. reachability) 
−  need forwards or backwards image operator 

•  i.e. computation of all successors/predecessors of a state 
•  again, easy with BDD operations (conjunction, quantification) 

−  other ingredients 
•  set operations (see above) 
•  equality of state sets (fixpoint termination) - equality of BDDs 
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Operations on MTBDDs 
•  The BDD operation Apply extends easily to MTBDDs 

•  For MTBDDs A, B and binary operation op over the reals: 
−  Apply(op, A, B) returns the MTBDD representing fA op fB 
−  examples for op: +, -, ×, min, max, … 
−  often just use infix notation, e.g. Apply(+, A, B) = A + B 

•  BDDs are just an instance of MTBDDs 
−  in this case, can use Boolean ops too, e.g. Apply(∨, A, B) 

•  The recursive algorithm for implementing Apply on BDDs 
−  can be reused for Apply on MTBDDs 
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Some other MTBDD operations 
•  Threshold(A, ~, c) 

−  for MTBDD A, relational operator op and bound c ∈ ℝ 
−  converts MTBDD to BDD based on threshold ~c 
−  i.e. builds BDD representing function fA ~ c 
−  e.g. computing the underlying transition relation from the 

probability matrix of a DTMC:  R = Threshold(P, >, 0) 

•  Abstract(op, {x1,…,xn}, A) 
−  for MTBDD A, variables {x1,…,xn} and commutative/associative 

binary operator over reals op 
−  analogue of existential/universal quantification for BDDs 
−  e.g. Abstract(+, {x}, A) constructs the MTBDD representing the 

function fA|x=0 + fA|x=1 
−  e.g. for BDD A:  ∃(x1,..,xn).A  ≡  Abstract(∨, {x1,…,xn}, A) 
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MTBDD matrix/vector operations 
•  Pointwise addition/multiplication and scalar multiplication 

−  can be implemented with the Apply operator 
−  Matrices:  A + B,   MTBDDs:  Apply(+, A, B) 

•  Matrix-matrix multiplication A·B 
−  can be expressed recursively based on 4-way matrix splits 

−  which forms the basis of an MTBDD implementation 
−  various optimisations are possible 

•  Matrix-matrix multiplication A·v is done in similar fashion 

A1 = B1·C1 + B2 · C3,  etc. 
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Sparse matrices 
•  Explicit data structure for matrices with many zero entries 

−  assume a matrix P of size n × n with nnz non-zero elements 
−  store three arrays: val and col (of size nnz) and row (of size n) 
−  for each matrix entry (r,c)=v, c and v are stored in col/val 
−  entries are grouped by row, with pointers stored in row 
−  also possible to group by column 

0.5 1 0.3 1 0.7 0.5 val 

1 2 0 0 3 3 col 

0 3 5 6 2 row 
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Sparse matrices 
•  Advantages 

−  compact storage (proportional to number of non-zero entries) 
−  fast access to matrix entries 
−  especially if usually need an entire row at once 
−  (which is the case for e.g. matrix-vector multiplication) 

•  Disadvantage 
−  less efficient to manipulate (i.e. add/delete matrix entries) 

•  Storage requirements 
−  for a matrix of size n × n with nnz non-zero elements 
−  assume reals are 8 byte doubles, indices are 4 byte integers 
−  we need  8·nnz+4·nnz+4·n  = 12·nnz+4·n bytes 
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Sparse matrices vs. MTBDDs 
•  Storage requirements 

−  MTBDDs: each node is 20 bytes 
−  sparse matrices: 12·nnz+4·n bytes (n states, nnz transitions) 

•  Case study: Kanban manufacturing system, N jobs 
−  store transition rate matrix R of the corresponding CTMCs 

N States 
(n) 

Transitions 
(nnz) 

MTBDD 
(KB) 

Sparse matrix 
(KB) 

3 58,400 446,400 48 5,459 
4 454,475 3,979,850 96 48,414 
5 2,546,432 24,460,016 123 296,588 
6 11,261,376 115,708,992 154 1,399,955 
7 41,644,800 450,455,040 186 5,441,445 
8 133,865,325 1,507,898,700 287 13,193,599 
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Implementation in PRISM 
•  PRISM is a symbolic probabilistic model checker 

−  the key underlying data structures are MTBDDs (and BDDs) 

•  In fact, has multiple numerical computation engines 

−  MTBDDs: storage/analysis of very large models (given 
structure/regularity), numerical computation can blow up 

−  Sparse matrices: fastest solution for smaller models (<106 
states), prohibitive memory consumption for larger models 

−  Hybrid: combine MTBDD storage with explicit storage,  
ten-fold increase in analysable model size (~107 states) 
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Summing up… 
•  Implementation of probabilistic model checking 

−  graph-based algorithms, e.g. reachability, precomputation 
−  manipulation of sets of states, transition relations 
−  iterative numerical computation 
−  key operation: matrix-vector multiplication 

•  Binary decision diagrams (BDDs) 
−  representation for Boolean functions 
−  efficient storage/manipulation of sets, transition relations 

•  Multi-terminal BDDs (MTBDDs) 
−  extension of BDDs to real-valued functions 
−  efficient storage/manipulation of real-valued vectors, matrices 

(assuming structure and regularity) 
−  can be much more compact than (explicit) sparse matrices 


