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Abstract

PRISM is a probabilistic model checker which allows the modelling and analysis of systems
that exhibit probabilistic behaviour. Such tools have been developed to allow the analysis of
specifications which require performance and reliability measures, as well as correctness.

The project described in this dissertation adds to the functionality of PRISM by providing
a simulator - a tool which calculates and reasons about execution paths through probabilistic
models. The first part of the project was to design and implement a simulator user interface,
allowing users to manually or automatically generate and visualise execution paths through
their models. This user interface has already been used extensively by members of the PRISM
development team to debug their PRISM models and to help other users with their problems.
Feedback from such users indicate that the PRISM simulator is very useful as a debugger of
PRISM models and specifications, but also as a means of understanding the behaviour of models
and even the behaviour of PRISM itself.

The second part of the project was to investigate and develop efficient algorithms which use
statistical sampling techniques to perform approximate model checking of temporal logic speci-
fications. The solution allows the user to specify the degree of approximation and the amount of
confidence to which they require their results. One of the key motivations for these techniques
is that they do not need to enumerate the entire state space, and thus can handle larger models.
The success of these techniques is demonstrated by their application to models that are much
larger than what PRISM can currently handle on a standard PC and by a comparison of their
results to what can be calculated by PRISM.

Keywords: Probabilistic model checking, Monte Carlo simulation, approximate probabilistic
model checking, formal verification, discrete event modelling.

iii



iv ABSTRACT



Acknowledgements

My deepest thanks go to Dr. David Parker, who not only gave up countless hours to the
supervision of this project, but also acted as a system tester, domain expert and source of
enthusiasm and support. I would also like to thank Prof. Marta Kwiatkowska for her guidance,
the many users of the system who provided invaluable feedback, Hazel, Graham, Mike and Vipul
for proof reading my dissertation and Helen for helping me with the biology case study. Last but
not least I would like to thank my friends and family for their patience and support throughout
this project and my years at university.

v



vi ACKNOWLEDGEMENTS



Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 The PRISM Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The PRISM Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Personal Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Layout of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Review of Related Work 7
2.1 PrismSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Prototype PRISM Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Approximate Probabilistic Model Checker . . . . . . . . . . . . . . . . . . . 8
2.4 Acceptance Sampling Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Background and Analysis 11
3.1 The Probabilistic Model Checker PRISM . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Probabilistic Models in PRISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 The PRISM Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Continuous-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Execution Path Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Path Generation in Discrete Event Systems . . . . . . . . . . . . . . . . . 15
3.3.2 DTMC Path Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 MDP Path Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 CTMC Path Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Property Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 State propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Property Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Path Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Steady-State Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.5 Rewards Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.6 Determining the Actual Value . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.7 Properties Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Approximate Probabilistic Model Checking . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Which Properties can/cannot be Simulated? . . . . . . . . . . . . . . . . 23
3.5.2 The Generic Approximation Algorithm . . . . . . . . . . . . . . . . . . . 25
3.5.3 Extensions to the Generic Approximation Algorithm . . . . . . . . . . . . 25

vii



viii CONTENTS

4 Requirements 29
4.1 Requirements Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Software Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Structural Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Engine Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Simulator User Interface Requirements . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Properties User Interface Integration Requirements . . . . . . . . . . . . . 36

5 Design and Implementation 39
5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Simulator Engine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Model Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Path Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Update Event Set Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Making Manual Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.5 Making Automatic Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.6 Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.7 Evaluation of State Label Formulae . . . . . . . . . . . . . . . . . . . . . 51
5.2.8 Evaluation of Path and Reward Formulae . . . . . . . . . . . . . . . . . . 51
5.2.9 Approximate Model Checking Algorithm . . . . . . . . . . . . . . . . . . 53

5.3 Simulator User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Current Execution Path Table . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 The Simulator Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Simulator User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.3 Properties Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.4 Implementation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Testing 57
6.1 Requirements Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Alpha Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Project Management 59
7.1 Work Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Appraisal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Evaluation 63
8.1 Simulator User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.1.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.1.4 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.1.5 Specification Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Approximate Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.1 Dice Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.2 Cell Cycle Control in Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . 69

9 Conclusions 73
9.1 Summary of Project Acheivements . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.1 The Simulator User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.1.2 Approximate Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.1.3 Integration with PRISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 Deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS ix

A Project Proposal 77
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.4 Work Breakdown and Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.5 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B UML Class Definitions 81

C Cell Cycle Case Study Model 83



x CONTENTS



Chapter 1

Introduction

Formal verification is a branch of computer science concerned with checking whether comput-
erised systems meet their specifications. One approach towards formal verification involves build-
ing a model to represent a system, and then performing a systematic analysis on that model to
check whether it meets its specification. This approach is known as model checking, and it is of
particular interest, because it can be automated.

Probabilistic model checking is aimed at analysing systems that exhibit probabilistic be-
haviour. It was derived from the need for a greater range of model and specification formalisms
to accurately represent real-life systems. Specifications can therefore express performance and
reliability measures, as well as correctness.

1.1 The PRISM Tool

PRISM [3] is a probabilistic model checker being developed at The University of Birmingham.
It allows the modelling and analysis of systems that exhibit probabilistic behaviour. The tool
itself accepts two files as input. The first is a model file; written in the PRISM language, this file
contains a description of the system to be analysed. The second is a specification file; written in
an appropriate temporal logic, it contains a list of properties to be checked against the system
described in the model file.

The tool itself [5] is encapsulated within a graphical user interface that allows users to develop
and build model files and also specify the property files to be checked. It also supports the idea
of experiments; this is where results are calculated for ranges of input parameters (e.g. time,
queue size) and plotted as a chart.

To illustrate the PRISM tool in action, Figure 1.1 shows an experiment on a model of a
biological system. In this case [7], the cell cycle of eukaryotes is modelled and the probability
of the amount of cyclin, an important protein in the cell cycle, existing in a particular state is
investigated over time1.

As well as biological modelling, PRISM has been successfully applied to a wide range of case
studies [3] including:

• The quality of service of multimedia and communications protocols such as Bluetooth
device discovery and IEEE 1394 FireWire Root Contention;

• The correctness and performance of probabilistic security protocols such as the Crowds
protocol;

• The reliability of NAND multiplexing.

1.2 The PRISM Simulator

This project adds to the functionality of PRISM by providing a simulator to allow further
analysis of probabilistic models. Simulation involves the generation of paths through a model.
These paths can either be generated manually or automatically.

1Cyclins have the ability to bind themselves to other proteins and the state of the resulting complex determines
the path of the cell cycle.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An experiment in the PRISM graphical user interface.

To illustrate this, Figure 1.2 shows a probabilistic automata of a fair dice, modelled using fair
coin flips. When the automata undergoes a transition into state 7, d is assigned a value from 1
to 6.

Some example paths through this model are given below:

0 → 2 → 5 d′=4−−−→ 7

0 → 2 → 6 → 2 → 5 d′=4−−−→ 7

0 → 2 → 6 → 2 → 6 → 2 → 5 d′=4−−−→ 7
...

0 → 2 → 6 → 2 → 6 → . . . → 2 → 5 d′=4−−−→ 7

A simulator provides the means of generating these sample paths by either:

• Allowing the user to pick updates to the current state. For example, in state 0, the user
should be able to select updates from the set {state′ = 1, state′ = 2};

• Automatically selecting updates to the current state. For example, in state 0, the simulator
should produce a uniform random sample from the probability distribution {0.5 : state′ = 1,
0.5 : state′ = 2} and apply the corresponding update.

The ability to produce sample paths enables the user to manually explore the state space of
their model. This has the following benefits:

• It provides a good sanity check for users as they develop and debug their models.
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Figure 1.2: A probabilistic automata of a coin-flipping model of a dice.

• Users may be able to spot errors and/or understand the behaviour of their model more
easily if it is displayed visually.

For each path, it is also possible to determine whether certain properties have been satisfied,
allowing the user to investigate temporal logic specifications. In the dice model example, it may
be desirable to determine the probability of throwing a 4 (i.e. when state = 7, d = 4). It is
easy for a simulator to determine whether a particular path satisfies this. All that is required is
the simple check: (state = 7) → (d = 4). However, determining the actual probability is not so
simple.

The probability of a path through a probabilistic model is the product of the probabilities
associated with every transition along that path. Therefore, the probability of throwing a 4 is
the sum of the probabilities of all paths that end up in the state state = 7, d = 4.

However, as illustrated above, there are infinitely many paths to state 7 that assign d′ = 4,
making the probability:

P(throw 4) = lim
n→∞

n∑
k=0

0.5× (0.52k)× 0.5× 0.5

= 0.125 + 0.125× 0.52 + 0.125× 0.54 + . . .

= 0.16̇

PRISM solves this problem by reducing it to that of a linear equation system. While PRISM’s
implementation [8] is efficient and accurate, a consequence of building certain, more complex
models into memory is that build times and memory usage can be great. This sometimes makes
this type of numerical analysis impractical.

Another benefit of simulation is that it can be combined with statistical techniques [9], to be
used as an alternative to numerical analysis. With the dice model example, suppose N sample
paths are generated by the simulator and that M paths satisfy state = 7→d = 4. As N → ∞,
the probability of throwing a 4 is:

P(throw 4) =
M

N
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The key advantage of this technique is that it only requires a single state of the model at
a time, saving memory. Although this technique will yield less accurate results than numerical
analysis, by controlling N , it is possible to obtain results within predefined error bounds.

A further type of analysis that is possible in PRISM is that of determining whether a par-
ticular path has accumulated any reward or cost. For example, suppose a reward of 1.0 is
accumulated for each coin toss in the dice model example. PRISM is able to calculate measures
such as the expected reward to reach the terminating state (i.e. when s = 7).

A simulator can approach this problem in a similar way to calculating the probability of
reaching a certain state. With the dice model example, suppose N sample paths are generated
by the simulator and that each sample path Si, accumulates a reward RSi

whilst reaching the
terminating state, as N →∞, the expected reward will be:

R(terminate) =
∑N

k=0 RSk

N

1.3 Aims and Objectives

The aim of this project was to design and implement a simulator for PRISM. The following
objectives were outlined:

• Investigate, design and implement efficient data structures and algorithms for:

– The automatic and manual generation of paths through each type of PRISM model;

– The verification and analysis of properties over generated paths;

– The calculation of rewards associated with generated paths as well as specific states
of the model;

– The computation of probabilities or expected rewards of certain properties, based on
statistical sampling techniques.

• Design and implement an intuitive, but powerful graphical user interface for:

– The automatic and manual exploration of PRISM models;

– Allowing property verification using statistical sampling techniques, with the results
also being made available for use in the PRISM experiments user interface.

• Investigate the use of error bounds [6, 9] for use with the statistical sampling techniques
and implement if feasible.

1.4 Personal Motivations

I have been involved with the PRISM project since the summer of 2002; I helped to develop the
current graphical user interface, graphical extensions to the PRISM language and a prototype
simulator. I felt that undertaking this project would enable me to apply my acquired knowledge
of probabilistic model checking and of the PRISM tool to a challenging project. Given my recent
experiences with the model development process, one of my main motivations was that I would
be producing a tool that would be of real benefit to PRISM users. Also, a key motivation was
the opportunity to further develop the prototype simulator - a piece of work that required a
considerable amount of time, effort and research.

1.5 Layout of the dissertation

This dissertation is structured as follows. Chapter 2 reviews tools and research that are related
to simulation with PRISM, outlining where this project contributes to the area. Chapter 3 gives
all background material for this dissertation and an analysis of that material for the purposes
of eliciting requirements. These requirements are given as a specification in Chapter 4 before a
detailed account of the design and implementation of the PRISM simulator is given in Chapter
5. Several techniques were used to ensure that the tool was thoroughly tested at each stage of
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the software life-cycle - these are discussed in Chapter 6. The details of how the development
of the PRISM simulator was managed throughout the software life-cycle is given in Chapter 7.
Chapter 8 gives an evaluation of the various components of the PRISM simulator, before finally,
Chapter 9 gives a summary of the achievements and deficiencies of the project.
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Chapter 2

Review of Related Work

This chapter summarises previous work involving simulation and PRISM. Sections 2.1 and 2.2 in-
vestigate previous implementations and prototypes of simulators written specifically for PRISM.
Their main features are evaluated along with their strengths and weaknesses. Section 2.3 inves-
tigates a tool called the Approximate Probabilistic Model Checker (APMC). This tool provides
support for approximate verification of discrete-time Markov chains, one of the three types of
PRISM model. Finally, Section 2.4 investigates research performed on the approximate verifica-
tion of continuous-time Markov chains, another of the model types supported by PRISM.

2.1 PrismSim

PrismSim [4] was developed as a final year BSc project at the University of Birmingham. It
provides support for manual and automatic exploration of discrete-time Markov chains and
Markov decision processes within a graphical user interface. Developed in Java, it uses PRISM’s
underlying data structures of model files to:

• Display simulation execution paths;

• Allow users to select from a set of updates to the current state;

• Allow users to request that an update be made automatically.

PrismSim can be used to generate a set of sample paths of a fixed length. These paths are
sent to a set of files for analysis via a regular expression checking engine. This engine provides
facilities to model check a subset of a temporal logic known as probabilistic computation tree
logic (PCTL) and to perform an analysis of the coverage of the state space.

The main disadvantage of PrismSim is its approach to model checking. The regular expression
checking technique proved slow and inefficient[4]. The reason for this was that path generation
was separated from path analysis. Therefore, if only a small proportion of a sample path is
required to perform the analysis (for example, if the property being checked has already been
satisfied, or if the path has entered a loop), a lot of computation time is wasted. Also, PrismSim
was only applied to a small number of case studies and doesn’t provide evidence that it scales
up to larger examples.

Furthermore, this tool does not provide support for continuous-time Markov chains, the third
type of model supported by PRISM, and is currently out of date with regards to current PRISM
releases.

2.2 Prototype PRISM Simulator

In order to design a suitable user interface for the PRISM simulator, a prototype was developed
and integrated into the existing graphical user interface. The PRISM simulator prototype had
the following objectives:

• Provide a simple, but powerful user interface design for manual and automatic generation
of sample paths that is integrated into the existing PRISM graphical user interface;

7
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Figure 2.1: An experiment in the PRISM graphical user interface.

• Provide a program level interface to allow developers to provide simulator implementations
using the user interface design.

In order to test the success of the program level interface, a DTMC simulator was developed.
This provided support for automatic path generation. However, it did not provide support for
important language features such as synchronisation and rewards and didn’t allow manual path
generation. The prototype simulator also provided the means to perform approximate model
checking via a simple sampling technique. The results of the approximate probabilities could be
viewed as a bar chart if appropriate. A screenshot of the prototype PRISM simulator is shown
in Figure 2.1.

Despite the fact that the prototype PRISM simulator did not provide full support for the
PRISM language and that it did not allow path generation with CTMC or MDP models, it did
allow some of the key user requirements to be elicited and a number of user interface issues to
be resolved. The sampling technique proved successful, but it could not be tested against more
realistic models because of the lack of support for important language features.

2.3 The Approximate Probabilistic Model Checker

The Approximate Probabilistic Model Checker (APMC) [1] is a tool being developed at LRI,
University Paris XI. APMC implements a randomised sampling algorithm known as the Generic
Approximation Algorithm (GAA) that “allows the efficient approximation of the satisfaction
probability of monotone properties on probabilistic systems” [6]. An interesting feature of this
algorithm is that the number of samples can be precalculated according to the required level of
approximation and confidence.

The techniques used by APMC have recently been incorporated into PRISM. In particular:



2.4. ACCEPTANCE SAMPLING RESEARCH 9

• Discrete-time Markov chain models specified in the PRISM language can be converted into
APMC data structures;

• Approximation verification of PCTL formulae can be performed within the PRISM graph-
ical user interface1.

2.4 Acceptance Sampling Research

Younes and Simmons [10] performed research into probabilistic verification of discrete event
systems using a technique known as acceptance sampling. In order to perform a comparison
of this technique with the numerical technique provided by PRISM, an implementation was
provided that worked continuous-time Markov chain PRISM models.

A combined approach [9] was also implemented that allowed the acceptance sampling tech-
nique to be used alongside PRISM’s model checking engines. This approach allowed nested
formulae in a temporal logic known as continuous stochastic logic (CSL) to be checked. How-
ever, one disadvantage is that the benefits of not having to build the entire state space into
memory are lost.

Despite the success of this research, it was never fully integrated into the PRISM tool and
user interface.

2.5 Summary

This chapter has outlined simulation work and research related to PRISM. The following obser-
vations should be noted:

• None of the work provides a user interface that allows exploration of the state space of all
three types of PRISM model;

• None of the work provides full support for all of PRISM’s language features such as syn-
chronisation and rewards;

• The work concerning the approximate verification of CTMCs is not integrated into the
PRISM tool or user interface;

• The work concerning the approximate verification of DTMCs does not work with rewards
based properties;

• None of the work is fully integrated with the latest graphical user interface, introduced in
PRISM 2.0.

These points serve the purpose of highlighting the need for this project, as well as providing
some of its most fundamental requirements. Therefore, it was the aim of this project to see that
each of these points were addressed.

1The integration of APMC into the PRISM user interface was performed in parallel with this project. This
allowed a common user interface to be provided for both.
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Chapter 3

Background and Analysis

This chapter introduces all of the research and analysis that was performed in order to approach
the problem of developing a simulator for PRISM. As well as summarising the background of the
project domain, this chapter presents the necessary analysis of this material for application to
the project. Much of the background material was gathered during the requirements elicitation
process.

In Section 3.1, the probabilistic model checker PRISM is introduced in terms of the tool
itself, and the different types of model it can analyse. Simulation involves the generation of
paths through system models, and so Section 3.3 outlines how this can be done for each type
of PRISM model. Section 3.4 describes how temporal logic specifications can be expressed in
PRISM and how they should be verified over PRISM models. Finally, Section 3.5 outlines how
a simulator can be used to perform approximate verification of these specifications.

3.1 The Probabilistic Model Checker PRISM

PRISM [3] is a probabilistic model checker, which allows the modelling and analysis of systems
that exhibit probabilistic behaviour. The tool itself accepts two files as input. The first is a
model file; written in the PRISM language, this file contains a description of the system to be
analysed. The second is a specification file; written in an appropriate temporal logic, it contains
a list of properties to be checked against the system described in the model file.

Systems can be modelled in PRISM as either:

• Discrete-time Markov chains (DTMCs);

• Markov decision processes (MDPs);

• Continuous-time Markov chains (CTMCs).

Properties can be specified using the following temporal logics:

• Probabilistic computation tree logic (PCTL) for DTMCs and MDPs;

• Continuous stochastic logic (CSL) for CTMCs.

PRISM builds a representation of the model into memory and performs numerical analysis to
verify properties against it. This analysis is done by PRISM’s various model checking engines.
The output of the system is a set of results which state either:

• whether a property has been satisfied1 -or-

• the probability of that property being satisfied.

This is summarised in Figure 3.1.

1PRISM in fact returns whether the property is satisfied in all reachable states

11
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Figure 3.1: The structure of PRISM[3].

3.2 Probabilistic Models in PRISM

The three types of PRISM model can easily consist of several million states. It is not desirable to
specify each of these states independently and so PRISM provides a high level system description
language to specify these models more succinctly. Much of the PRISM language, including its
syntax, is common to each type of PRISM model. Therefore, this section begins by describing
the common attributes of the language before specific details for each type of PRISM model are
given.

3.2.1 The PRISM Language

The PRISM language is a ‘simple, module based description language’ [2] which is used to
create system descriptions for input into the PRISM tool. A system description is defined as
‘the parallel composition of several interacting modules’[8] which can be expressed as a tuple
(M,G,R) where:

• M is a set of N modules, where each module m ∈ M can be thought of as a process that
runs concurrently with other modules in the model. Each module contains a non-empty
set, Vm of integer or Boolean variables;

• G is a set of global integer or Boolean variables;

• R is known as the rewards construct.

The current configuration of Vm is known as m’s local state and the state of all variable sets,
including the global variable set, G ∪ Vm1 ∪ Vmi

∪ · · · ∪ VmN
, is known as the global state or

current state. The set, S, of all reachable global states is known as the state space of the model.
It should also be noted that each module and variable is given a unique2 name.

To describe transitions of the global state of the model, the PRISM language allows each
module to contain a set, Commm of commands. Each command, c ∈ Commm for a particular
predicate on the global state (known as the guard, Guardc), describes how the local state and
global variable set can be updated.

For a particular global transition, one or more modules can be scheduled to make a transition.
When a module makes a transition independently, this is known as an asynchronous transition
whereas if two or more modules make their transitions at the same time, this is known as
a synchronous transition. Synchronous transitions can be specified by labelling two or more
commands, from different modules, with an action label a ∈ Act where Act is the set of all
actions used in the model. Commands that are not labelled with action labels are specified as
being independent. Intuitively,

2to all other module names, local variables, global variables, constants and action labels in the system descrip-
tion
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The set of all actions used by a module mi, is denoted Ai. In each global state of the
composed model, either one of the n modules makes an independent transition or, for
some a ∈ Act, the set of modules {mi | a ∈ Ai} all make a synchronous, a-labelled
transition.[8]

The rewards construct, R, describes how rewards should be accumulated for particular states
of the model, and for particular transitions between states. It can be defined as a tuple (SR, T R)
where:

• SR is a set of state reward items. Each state reward item, ρ ∈ SR, is associated with a
predicate, Guardρ, and an expression, Valueρ, which evaluates to a real number. When
the model is in a global state that satisfies the predicate Guardρ, Valueρ is evaluated and
accumulated as the reward value for that state.

• T R is a set of transition reward items. Each transition reward item, τ ∈ T R, is associated
with a predicate Guardτ , an expression, Valueτ , which evaluates to a real number and
can be associated with an action label, aτ ∈ Act. Transition reward items accumulate
rewards when a global transition is taken, and the predicate, Guardτ evaluates to true.
If the transition is asynchronous, the reward item must have no action label in order to
accumulate the reward. If the transition is synchronous, aτ must be equal to the transition’s
action label ac in order to accumulate the reward. The value of the reward will be the result
of the evaluation of Valueτ .

Commands are interpreted differently for each type of PRISM model. The following three
sections consider each model type in turn, describing how commands can be used to describe
transitions between global states.

3.2.2 Discrete-Time Markov Chains

Discrete-time Markov chains (DTMCs) describe models that only consider the probabilities of
transitions between global states. Figure 3.2 shows a simple DTMC. Each circle represents a
different global state, with each line representing a transition between those states. Furthermore,
each transition has an associated probability where the sum of the probabilities of the outgoing
transitions from each state must be equal to 1.

An example command is shown on line 9. In general, each command, c, describes the tran-
sitions that can occur when the model is in a global state that evaluates the predicate Guardc

to true. In the example, the command describes the transition that should occur in all cases
when variable s has the value of 1. After the → is a probability distribution of variable up-
dates, Updatesc. Each update, u ∈ Updatesc is separated by a ‘+’ symbol and has the following
structure:

• An expression, Pu, that evaluates to the probability of that update, followed by a ‘:’
symbol;

• A non-empty set of assignments, Assignc, to variables separated by ‘&’ symbols. Each
assignment as ∈ Assignc, specifies a primed variable and an expression describing the
updated value of that variable.

For a DTMC, (ignoring synchronisation) only one command’s guard is allowed to evaluate to
true per module for each global state. This does not mean that a command cannot cover more
than one global state. This is illustrated in the command on line 10 of Figure 3.2 where the
command covers all global states where (s=2) or (s=3). If a state in S exists that is not covered
by a guard of any command, it has no outgoing transitions and therefore is known as a deadlock
state.

If there are N modules present in the model, and number of action labels present in the
model is M it is possible that 1 6 m 6 N + M command’s guards will evaluate to true for a
particular global state. In this case, the probability of each update is normalised by dividing it
by m.
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1.
2. dtmc //model type
3.
4. module figure3 2
5.
6. s : [0..3] init 0; //local state
7.
8. [] (s = 0) → 1 : (s ′ = 1);
9. [] (s = 1) → 0.5 : (s ′ = 0) + 0.3 : (s ′ = 2) + 0.2 : (s ′ = 3);

10. [] (s = 2) | (s = 3) → (s ′ = s);
11.
12. endmodule
13.

Figure 3.2: An example Discrete-Time Markov Chain and the corresponding PRISM model.

3.2.3 Markov Decision Processes

The second type of PRISM model is the Markov Decision Process (MDP). MDPs describe sys-
tems that include non-determinism as well as probabilities when considering transitions between
states of the system. MDPs are similar to DTMCs, except the sum of the probabilities of the
outgoing transitions from each state need not be equal to 1. Rather than there being one prob-
ability distribution of outgoing transitions for each state, an MDP allows a set of probability
distributions. Before a transition to another state can be made, one probability distribution
must be selected non-deterministically before an update is selected probabilistically from that
distribution.

In terms of the PRISM language, probability distributions can be specified as commands.
The constraint that each probability distribution must have updates whose probabilities add up
to 1 is still imposed. However, unlike DTMCs, more than one command is allowed to evaluate
to true for each configuration of variables.

Figure 3.3 shows the PRISM code for a simple MDP. Lines 9 and 10 specify that in states
that satisfy the guard (s=1), a non-deterministic choice should be made between two probability
distributions.

3.2.4 Continuous-Time Markov Chains

The final type of PRISM model is the continuous-time Markov chain (CTMC). Like MDPs,
CTMCs are a generalisation of DTMCs: they consider the time delay incurred before a transition
occurs, allowing real-time considerations to be taken into account. Rather than associating a
probability with each transition, a rate is associated instead. This rate describes how fast this
transition should occur, the average time being: 1/rate.

For a particular state, there will be n transitions that could be made; each transition will
have a rate, Ri. The transition selected is the one that is enabled first. This is known as a race
condition and it can be shown that the probability, Pk of selecting the kth transition is:

Pk =
Rk∑n
i=1 Ri

(3.1)

Once the transition has been selected, it is possible to determine the time delay, t, by taking
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1.
2. mdp //model type
3.
4. module figure3 3
5.
6. s : [0..3] init 0; //local state
7.
8. [] (s = 0) → 1 : (s ′ = 1);
9. [] (s = 1) → 0.5 : (s ′ = 0) + 0.3 : (s ′ = 2) + 0.2 : (s ′ = 3);

10. [] (s = 1) → 1 : (s ′ = 1);
11. [] (s = 2) | (s = 3) → (s ′ = s);
12.
13. endmodule
14.

Figure 3.3: An example Markov Decision Process in the PRISM language.

a sample from a negative exponential distribution, using the transition’s rate as a parameter [8]:

t =
− log x∑n

i=1 Ri
where x is a uniform random sample from the set [0, 1] (3.2)

In terms of the PRISM language, transition rates can be specified in the same way that
probabilities are specified in DTMCs and MDPs. Also, with CTMCs, transitions from the same
state need not be specified in the same command. For example, the command:

[] (s = 1) → 10.0 : (s ′ = 0) + 20.0 : (s ′ = 2) + 1000.0 : (s ′ = 3);

is equivalent to:

[] (s = 1) → 10.0 : (s ′ = 0);
[] (s = 1) → 20.0 : (s ′ = 2);
[] (s = 1) → 1000.0 : (s ′ = 3);

Here, the numbers 10.0, 20.0 and 1000.0 are the rates of each update.

3.3 Execution Path Generation

Each of the three types of PRISM model can be described as discrete event systems. Younes
and Simmons [10] give a generic framework for reasoning about execution paths through such
systems. This framework is given in 3.3.1. The analysis performed to apply this framework to
the three types of PRISM model is given in Sections 3.3.2 (DTMCs), 3.3.3 (MDPs) and 3.3.4
(CTMCs).

3.3.1 Path Generation in Discrete Event Systems

A discrete event system, such as a DTMC, MDP or CTMC, can be in one state s ∈ S at any
particular time, where S is the set of all states. The system remains in state s until an event
occurs, where it moves into another state s′ ∈ S. This transition of state is instantaneous (i.e.
it takes 0.0 time for real-time models). Younes and Simmons define:

“An execution path σ of a discrete event system, as a sequence:

σ = s0
t0−→ s1

t1−→ s2
t2−→ . . .

with si ∈ S and ti > 0 being the time spent in state si before an event triggered a
transition to state si+1.” [10]
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For the purposes of the PRISM simulator, it is necessary to extend this definition to incor-
porate the idea of rewards. Therefore, an execution path σ of a discrete event system is defined
as a sequence:

σ = (s0, sr0)
(t0,tr0)−−−−−→ (s1, sr1)

(t1,tr1)−−−−−→, (s2, sr2)
t2,tr2−−−→ . . .

with sri being the reward accumulated in si ∈ S and tri being the reward accumulated in the
transition away from state si ∈ S.

The set of all paths starting in state s̄ ∈ S is denoted as Path(s̄). In order to generate
elements of Path(s̄), each model must define, for each state, s, how to get to other states in S.
This is done by generating a set of possible events, Es. The nature of these events and their
generation will differ according to the type of model, but each event, e ∈ E will be a tuple that
defines the transition state s′.

Events can either be selected manually or sampled automatically. For manual selection, it is
the responsibility of the user to choose an event e from Es. Automatic sampling of e from Es is
different for each type of model. The transition state s′ associated with e is then added to the
current path as si+1, and for real-time models, the time spent in s is added as ti.

Rewards are accumulated only when events occur. For example, it is only when the transition
away from state si occurs that sri and tri are calculated. This is because, for real-time models,
the amount of reward accumulated in a particular state, si is dependent upon the amount of
time spent in that ti. Assuming that for non-real-time models, ti = 1, the total reward along a
path Rσ, is calculated as:

Rσ =
n−1∑
i=0

(sriti + tri)

3.3.2 DTMC Path Generation

For discrete-time Markov chains in PRISM, an event can be considered as a tuple: (P,M,A, s′)
where:

• P is the probability of the event;

• M is the module that the event belongs to;

• A ∈ Act is the action label that is associated with the event;

• s′ is the new state.

For any current state, s, the procedure for generating the event set, Es is as follows:

1. For each module, mi ∈ M, define a set, asynchmi
, of all commands, where c is an indepen-

dent transition and whose guards evaluate to true on s, i.e.

asynchmi
= {c ∈ Commmi

∣∣ c is independent,Guardc
evaluates−−−−−−→ true}

For each command, c ∈ asynchmi
and for each update, u ∈ Updatesc, add an event, e, to

Es where:

• Pe = result of evaluating Pu on s;
• Me = mi;
• Ae = no action;
• s′e is the state after applying all assignments in Assignu to s.

2. For each action label, a ∈ Act , define a set, syncha, of all commands that can be synchro-
nised over a and whose guards evaluate to true on s, i.e.

syncha =
N⋃

i=1

{c ∈ Commmi

∣∣ a = action label of c,Guardc
evaluates−−−−−−→ true}

For each module, mi ∈ M, if ∃c ∈ Commmi
where the action label of c = a, the statement:

“∃c ∈ syncha where the c ∈ Commmi
” must be true, or else the action, a is said to be

blocked in s. If a is not blocked, define a command, csyncha
that is the product of all

commands in syncha. The product, cx × cy, of two commands, cx and cy, is formed thus:
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• The action label of cx × cy is the same as the action labels of either cx or cy, since
both should be the same.

• Guardcx×cy
is never used and so is ignored.

• Updatescx×cy
is formed as the product of Updatescx

and Updatescy
. The product,

ux × uy, of two updates, ux and uy, is formed thus:

– The probability, Pux×uy
, will be equal to the multiplication of the probabilities

of the two updates:
Pux×uy

= Pux
·Puy

– The assignment set, Assignux×uy
, will be equal to the union of Assignux

and
Assignuy

:
Assignux×uy

= Assignuy
∪Assignux

For each update, u ∈ Updatescsyncha
, add an event, e, to Es where:

• Pe = result of evaluating Pu on s;

• Me = no module;

• Ae = a;

• s′e is the state after applying all assignments in Assignu to s.

3. If N is defined as the number of modules in M that have at least one command whose
guard evaluates to true on s, i.e.:

N = |{m ∈ M|
(
∃c ∈ Commm

∣∣ Guardc
evaluates−−−−−−→ true

)
}|

and M is defined as the number of action labels in Act that are not blocked in s, for each
event, ei ∈ Es, normalise the probability:

P′e =
Pe

N +M

Automatic sampling from Es is straightforward once it has been generated. Because for
DTMCs, the sum of all probabilities for each event, ei in Es should be equal to 1 , i.e.∑

e∈Es

Pei
= 1

the probability of selecting, ei from Es is simply Pei
.

Once an event, e, has been sampled, it is simple to calculate the state reward, sri for state si in
σ. sri is equal to sum of the evaluation of all Valueρ on s for all ρ ∈ SR where Guardρ

evaluates−−−−−−→
true on s, i.e.

sri =
∑

ρ∈SRtrue

Valueρ where SRtrue = {ρ ∈ SR
∣∣ Guardρ

evaluates−−−−−−→ true}

The calculation of the transition reward, tri, is done by obtaining the sum of the evaluation
of all Valueτ on s for all τ ∈ T R where Guardρ

evaluates−−−−−−→ true on s and aτ = ae, i.e.

tri =
∑

τ∈T Rtrue

Valueτ where T Rtrue = {τ ∈ T R
∣∣ Guardτ

evaluates−−−−−−→ true, aτ = ae}

3.3.3 MDP Path Generation

For Markov decision processes in PRISM, an event can be considered as a tuple: (D,P,M,A, s′)
where the definitions of P, M , A and s′ are the same as for DTMCs and D is the index of the
probability distribution. D is required, because for a transition from any state, s ∈ S, in an
MDP, a non-deterministic choice has to be made from a set of probability distributions and D
is used to index the probability distribution that each event belongs to.

For any current state, s, the procedure for generating the event set, Es is as follows:
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1. This step is equivalent to Step 1 for DTMCs, except a unique index, indexc, is also associ-
ated with each command in each asynchmi

set. For each command, c ∈ asynchmi
and for

each update, u ∈ Updatesc, add an event, e to Es where:

• De = indexc

• Pe, Me, Ae and s′e are the same as for DTMCs.

2. This step is equivalent to Step 2 for DTMCs, except a unique index (also unique to indexes
assigned in Step 1) is associated with each synchronised command, csyncha

for each action
a ∈ Act that has not been blocked.

3. Unlike DTMCs, there is no need to normalise the probabilities of the events in Es.

Automatic sampling from Es is not so straightforward as in the DTMC case. The problem
lies with the selection of probability distribution, which is a nondeterministic choice. According
to [8], these nondeterministic choices ‘are made by an adversary (also known as a ‘scheduler’
or ‘policy’), which selects a choice based on the history of choices made so far.’ Under any
adversary, the behaviour of a MDP is probabilistic.

However, analysis of MDPs using a single adversary is of limited use [8]. In fact, PRISM’s nu-
merical engines investigate ‘the maximum or minimum probability that some specified behaviour
is observed over all possible adversaries’. Unfortunately, deriving adversaries that calculate the
maximum and minimum probabilities for particular behaviour would involve an enumeration of
the entire state space of the model and this is something that simulation techniques aim to avoid.

One possible approach is to consider each nondeterministic choice as purely probabilistic. In
this case, if the number of distinct probability distributions, N , in Es, i.e.

N = |{De

∣∣ e ∈ Es}|

Then, an index should be sampled from a uniform probability distribution where, 0 6 indexsample <
N . indexsample can now be used to select the probability distribution. Create a set E′s where
only events exist that have D = indexsample , i.e.

E′s = {e ∈ Es

∣∣ De = indexsample}

The sum of all probabilities for each event, ei in E′s should now be equal to 1 , i.e.∑
e∈E′

s

Pe = 1

the probability of selecting, ei from E′s is simply Pei
.

This approach will not give accurate results when analysing property specifications over
MDPs. However, this approach does provide a way to automatically generate sensible paths
through MDPs, giving users a way to quickly explore the state space.

The calculation of state and transition rewards for MDPs is the same as for DTMCs.

3.3.4 CTMC Path Generation

For continuous-time Markov chains in PRISM, an event can be considered as a tuple: (R,M,A, s′)
where the definitions of M , A and s′ are the same as for DTMCs and R is defined as the rate of
the event.

For any current state, s, the procedure for generating the event set, Es is as follows:

1. This step is equivalent to Step 1 for DTMCs. However, because each CTMC update, u, is
associated with a rate, Ru rather than a probability, the procedure should use:

• Ru instead of Pu when referring to commands;

• Re instead of Pe when referring to events.

2. This step is equivalent to Step 2 for DTMCs (with the modifications explained in Step 1).
It should be noted that the calculations used to calculate synchronised event probabilities
can be used in the same way to calculate synchronised event rates.
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3. Like MDPs, there is no need to normalise the rates of events in Es.

Automatic sampling from Es involves calculating a probability, Pe, of each event according
to its rate, Re and the rates of all other events in Es. Equation 3.1 describes how to calculate
this because each event realises a transition of the CTMC.

For CTMCs, every time an event occurs, i.e. when the model makes a transition from s to
s′, the time spent in s is required. Equation 3.2 can be used to calculate this time.

As stated previously in Section 3.3.1, for real-time models such as CTMCs, the reward accu-
mulated in a state, si, depends upon the time, ti, spent in that state. Therefore, for CTMCs,
there is a differentiation made between:

• State reward of si - This is the same as sri calculated for DTMCs and MDPs.

• Reward accumulated in si - This is calculated as sri · ti.

The reward accumulated in si is usually only used to calculate the total path reward as defined
in Section 3.3.1.

Transition rewards are calculated in the same way as for DTMCs.

3.4 Property Specification

Property specifications are used in PRISM to analyse probabilistic models. Examples of property
specifications are: “The probability that the algorithm will terminate is equal to 1”, “What is the
probability that the amount of sodium molecules will be less than 10 at the time of 1 millisecond”
or “On average, the cost to run the machine for 1 year will not exceed 100,000”. Such properties
can be specified in an appropriate temporal logic.

PRISM uses two different temporal logics to reason about it’s three types of probabilistic
model. Probabilistic computational tree logic (PCTL) is used to specify properties of discrete-
time Markov chains and Markov decision processes, and Continuous stochastic logic (CSL) is
used to specify properties of continuous-time Markov chains.

In PRISM however, PCTL and CSL look very similar, the main difference being that PCTL
reasons about discrete time steps and CSL reasons about real time intervals. Because of this
similarity, a description of PRISM’s property language is given where PCTL and CSL are dis-
cussed together. Extensions to PCTL and CSL such as rewards based properties and the direct
querying of path properties are also considered. It should be noted that the outline given below
is based on Section 4 of the PRISM manual [2].

3.4.1 State propositions

When reasoning about the behaviour of PRISM models, it is important to be able to ‘identify
particular sets or classes of states of the model’ [2]. For example, consider the property: “What
is the probability that the amount of sodium molecules will be less than 10 at the time of 1
millisecond”. In order to verify this formula, there needs to be a way to specify the proposition:
‘the amount of sodium molecules is less than 10’.

PRISM provides a way of specifying these propositions as Boolean expressions. In the previ-
ous example, if the PRISM model in question contains a variable, num sodium, the corresponding
expression would be:

num sodium < 10

PRISM expressions are discussed in detail in Section 3.11 of the PRISM manual [2]. In future,
<expr> will be used to describe Boolean PRISM expressions.

3.4.2 Property Syntax

Properties in PRISM can be much more expressive than simple state propositions. Properties
are ‘evaluated with respect to a single state of the model’. For a state s ∈ S, a property will
evaluate to either true (satisfied in s) or false (not satisfied in s).

The syntax of PRISM state properties can be defined recursively. For the base case, a PRISM
property, <prop>, can be:
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• true, which is satisfied in all states;

• false, which is not satisfied in any state;

• <expr>, which is any Boolean PRISM expression;

Furthermore, <prop>, can be one of the following temporal operators:

• P<op><p> [ <pathprop> ], which is a path formula. Path formulae will be discussed
shortly.

• S<op><p> [ <prop> ], which is a steady-state formula. Steady-state formulae will be
discussed shortly.

and the following rewards operator:

• R<op><p> [ <rewardprop> ], which is a reward formula. Reward formulae will be dis-
cussed shortly.

In order to specify more complex sets of states, PRISM allows several logical connectives:

• !<prop>, which is satisfied if the <prop> is not satisfied;

• <prop> & <prop>, which is satisfied if both <prop> properties are satisfied;

• <prop> | <prop>, which is satisfied if either of the <prop> properties are satisfied;

• <prop> => <prop>, which is satisfied if the first <prop> implies the second <prop>.

3.4.3 Path Formulae

Path formulae are used to reason about the probabilities of paths through PRISM models and
are specified using the operator: P<op><p> [ <pathprop> ]. Intuitively, the meaning of this
operator is that it:

“is true in a state s of a DTMC, MDP or CTMC if the probability that path property
<pathprop> is satisfied by the paths from state s meets the bound <op><p>.” [2]

where <op> can be either <, >, <= or >= and p is used to refer to the value of the probability
bound, and therefore must be a real number in the range [0, 1].

There are three different types of path property, i.e. pathprop can be:

• A “Next” property: X <prop>;

• An “Until” property: <prop> U <prop>;

• A “Bounded Until” property: <prop> U<time> <prop>.

For any execution path, σ from a state s ∈ S, a path property will either evaluate to true
or false. The following three sections discuss the details of this evaluation for each type of path
property.

The “Next” Operator

For an execution path, σ, starting in state s0, the path property X <prop> is true if <prop> is
satisfied in the next state, s1.

The “Until” Operator

For an execution path, σ, starting in state s0, the path property <prop1> U <prop2> is true if
<prop1> is satisfied for all states in σ before <prop2> eventually is satisfied. i.e. there exists an
integer, i, such that <prop1> is satisfied for all states sj where j < i and <prop2> is satisfied in
state si.
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The “Bounded Until” Operator

For an execution path, σ, starting in state s0, the path property <prop1> U<time> <prop2> is
true if <prop1> is satisfied for all states in σ before <prop2> is satisfied in the bound specified
by <time>.

The <time> is interpreted differently for different types of PRISM model. For DTMCs and
MDPs, <time> must be of the form: <= <t> where <t> is an expression that evaluates to a
non-negative integer. The bound is interpreted as that <prop2> must be satisfied in <t> discrete
steps.

For CTMCs, <time> can be of the forms:

• <= <t>;

• >= <t>;

• [<t1>, <t2>],

where <t>, <t1> and <t2> are non-negative real numbers and <t1>6<t2>. Therefore, there must
exist an integer, i, such that <prop1> is satisfied for all states sj where j < i and <prop2> is
satisfied in state si and

∑i−1
k=0 tk must be within the bound specified in <time>.

3.4.4 Steady-State Formulae

Steady-state formulae are used to reason about the long-run behaviour of CTMC models:

“Informally the property: s<op><r> [ <prop> ] is true in a state s of a CTMC
if starting from s, the steady-state (long-run) probability of being in a state which
satisfies <prop>, meets the bound <op><p>.” [2]

3.4.5 Rewards Formulae

Rewards formulae are used to reason about the expected reward of paths through PRISM models
and the expected reward at particular instants in time and are specified using the following
operator: R<op><p> [ <rewardprop> ]. The meaning of this operator is that it:

“is true in a state s of a DTMC, MDP or CTMC if the expected reward associated
with rewardprop of the model when starting from the state s meets the bound
<op><r>.” [2]

where <op> can be either <, >, <= or >= and r is used to refer to the value of the bound, and
therefore must be a non-negative real number.

There are three different types of reward property, i.e. rewardprop can be:

• A “Reachability” reward: F <prop>;

• A “Cumulative” reward: C <t>;

• An “Instantaneous” reward: I <t>;

• A “Steady-state” reward: S

The following four sections discuss the details of the evaluation of each type of reward prop-
erty.

The “Reachability” operator

Reachability rewards of the form F <prop> allow properties that determine the expected reward
to reach a particular state or set of states. The reward along a path is different for each type of
PRISM model.

For DTMCs and MDPs, the reward along a path, σ, that first satisfies the state formula
<prop> in state si is:
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i−1∑
j=0

srj + trj

For CTMCs, the reward accumulated in each state is multiplied by the time spent in that
state, therefore the reward along a path, σ, that first satisfies the state formula <prop> in state
si is:

i−1∑
j=0

srj · tj + trj

For all PRISM models, if <prop> is never reached, the reward is infinite.

The “Cumulative” operator

Cumulative rewards of the form C<= <t> allow properties that determine the expected reward to
reach a given time bound. The reward along a path is different for each type of PRISM model.

For DTMCs and MDPs, <t> is an expression that evaluates to a non-negative integer, i. The
reward along a path σ is:

i−1∑
j=0

srj + trj

For CTMCs, <t> is an expression that evaluates to a non-negative real number, t. To calculate
the reward along a path, σ, there needs for be a state si where

∑i−1
k=0 tk > t. The reward is

therefore:

i−1∑
j=0

srj · tj + trj

The “Instantaneous” operator

Instantaneous rewards of the form I=<t> allow properties that determine the expected state
reward at the given time instant. The reward along a path is different for each type of PRISM
model.

For DTMCs and MDPs, <t> is an expression that evaluates to a non-negative integer, i. The
reward is simply the state reward in state si which is sri.

For CTMCs, <t> is an expression that evaluates to a non-negative real number, t. To calculate
the reward along a path, σ, there needs to be an integer, i where

∑i
k=0 tk > t. The reward is

simply the state reward is state si which is sri.
It should be noted that there is no need to multiply sri with the time spent in the state, as

was the case for the previous rewards operators.

The “Steady-State” operator

The steady-state operator determines the expected reward in the long-run.

3.4.6 Determining the Actual Value

If the outer operator of a PRISM property is a path, steady state or rewards formula, it is possible
to query the actual probability/reward of the property, rather than comparing it to some bound:

• P=? [ <pathprop> ], which returns the probability of the path formula <pathprop>
starting in the default initial state of the model 3.

• S=? [ <prop> ], which returns the steady-state probability of being in a state which
satisfies <prop>, starting in the default initial state of the model.

3It should be noted that PRISM allows properties to be verified considering any arbitrary initial state, or set
of initial states.
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• R=? [ <rewardprop> ], which returns the actual reward of reward property <rewardprop>.

This style of property is important, because it is the only style that can be handled by the
PRISM simulator.

3.4.7 Properties Files

Properties files are used by the PRISM tool to store lists of properties and various other infor-
mation:

• Constants - These can be of type int, double or bool and can be used as part of expressions
in properties. Constants can be left undefined so that they can be assigned a specific value
or range of values for model checking.

• Labels provide a mechanism for defining and reusing propositions. For example, if many
properties refer to a terminating state, a label can be used to describe this:

label "terminating" = state=0 & s>10

meaning that the property, “the algorithm eventually terminates with probability 1” can
be expressed as:

P>=1 [ true U "terminating" ]

3.5 Approximate Probabilistic Model Checking

This section describes techniques based on Monte Carlo simulation and statistical sampling that
can be used to perform approximate model checking of PRISM models. The material presented
is an adaptation for PRISM of the work presented in [6], in particular the generic approximation
algorithm, GAA. Furthermore, this algorithm is extended to take into account the existence of
loops in paths.

Section 3.5.1 describes the subset of PRISM properties that can be analysed by simulation
techniques. Section 3.5.2 continues by outlining the generic approximation algorithm and Section
3.5.3 describes how this algorithm can be extended the deal with PRISM models.

3.5.1 Which Properties can/cannot be Simulated?

Simulation involves the generation of paths through models. Therefore, it is possible to say, for
a particular path whether a path formula such as, [ true U<=k d=0 ] is true. All that the
simulator would need to do is generate a path of length k by:

• Setting s0 to some initial state s̄;

• While i < k, repeat the following (as described in section 3.3):

– Generate the set Esi
;

– Automatically sample an event e from Esi
,

– Set si+1 to be s′e and calculate the state and transitions rewards, sri and tri.

– For CTMCs, also calculate the time spent in si and set as ti.

This path satisfies [ true U<=k d=0 ] if there exists a state where the expression d=0 eval-
uates to true. Moving on from this, it is also possible to determine an approximation of the
probability of this path formula, i.e. P=?[ true U<=k d=0 ]. If N paths are generated in the
way described above, and M paths satisfy [ true U<=k d=0 ], as N → ∞, the probability
will be M/N .

As well as “bounded until” formula, this approach is applicable to “next” formula and also
to “cumulative” and “instantaneous” rewards formula. There is a slight difference for CTMCs
where instead of generating paths of fixed length, paths are generated until the total path time,
i.e.

∑i−1
k=0 tk, exceeds the bound described in the formula.
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Unbounded Formulae

The first problem arises with unbounded formulae such as “until” path properties and “reach-
ability” reward properties. Suppose there is a model where the property: P=?[ true U d=0 ]
evaluates to the probability 0.5. This means that if N infinitely long sample paths are generated,
0.5N of these will contain a state sj that satisfies the proposition, d = 0. For paths that do
satisfy this proposition in state sj , it is only necessary for a simulator to generate that path for
j steps. However, a simulator cannot generate infinite paths and so the issue arises as to where
to stop looking for the satisfaction of d = 0.

Suppose paths are generated until either the d = 0 is satisfied, or until the path reaches a
predefined length, k where it is said that the formula is not satisfied. If for a particular state,
sj , d = 0 is satisfied, but j > k, the resulting probability will be incorrect.

Therefore, unbounded formulae can only be verified by a simulator if they are monotone.
Monotone formulae are those which have the property where the ‘truth of the formula at length
k implies truth in the entire model’ [6]. It is the responsibility of the user to ensure that k is
large enough to ensure that their formula is monotone.

Steady-State Formulae

The second problem arises with steady state formulae such as S=?[ d=0 ] or R=?[ S ]. This
is because their evaluation would require a state-based analysis, and the strength of simulation
techniques are their ability to do path-based analyses. For this reason, steady-state formulae are
not considered by the PRISM simulator.

Nested-Path Formulae

Consider properties that have a nested path formula such as:

• P>=1[ true U P<0.5[ d=0 U<=5 g=10 ] ], which means, “the probability is 1 that the
system will eventually be in a state where from that state the probability is less than 0.5
that a path will exist where d is equal to 0 until within 5 time units g is equal to 10”;

• R=?[ F P>=1[ true U d=0 ] ], which means, “what is the expected reward to reach a
state where from that state all paths will eventually reach a state where d is equal to 0”.

In order to verify such formulae over a particular path, σ, of length k, it would be necessary
to verify the inner formula for each state in σ, s0 . . . sk. This would mean generating another
N sample paths for each state in order to determine the truth of the probability bound. This
increases the complexity of the algorithm from O(N ·k) to ON2 ·k2, which, considering values of
N are typically of the order 105 and values of k are typically of the order 1×103, is a significant,
and can be considered an intractable, increase. Furthermore, the complexity increases by powers
of N and k for each level of nesting.

One possible approach to this problem is to let the PRISM numerical engines calculate the
set of states that satisfy the nested formulae. Then, for each state in σ, one would only have to
check whether each state, si is in that set. This is the approach used in [9]. It is particularly
advantageous if PRISM finds it computationally inexpensive to verify the inner formula, but
requires very large amounts of time or memory to verify both inner and outer formulae together.

The disadvantage of this approach is that the model has to be built into memory, and so the
advantages of simulation techniques, such as only requiring one state of the model at a time, are
lost.

Initial State Considerations

When PRISM evaluates a property (excluding P=?, S=? and R=?), it returns true only if that
property is satisfied in all states. Also, it is possible specify whether the property should only
be satisfied in a subset of states. For example, PRISM includes a default label, "init", which
represents the set of initial states specified in the model, so it is possible to say:

"init" => P<=0.5 [ true U s=0 ]
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which means “If in an initial state, the probability is less than or equal to 0.5 that eventually
the system will be in the state s=0”.

Simulation techniques can only generate results for paths from one initial state at a time.
Therefore, verifying state based properties of this type with a simulator would be of little use.

However, properties that are specified as P=? and R=?, i.e. those with the path operator as
the root node, return the probability of the path formula for the initial state of the model (or,
if there is a set of initial states, returns the first one in a lexicographically ordered set of initial
states). Therefore, only properties of this form should be considered for approximate model
checking.

3.5.2 The Generic Approximation Algorithm

The generic approximation algorithm (GAA) [6] is a simple mechanism that allows monotone
properties to be model checked to a particular approximation degree and to a particular level of
confidence. The algorithm accepts the parameters:

• M - The PRISM model;

• φ - The monotone property to be checked against M;

• k - The maximum path length;

• ε - The approximation parameter;

• δ - The confidence parameter.

and produces a result such that (derived from and proven in [6]):

Prob [|GAA(M, φ, k, ε, δ)− µ(M, φ)| 6 ε] > 1− δ

where µ(M, φ) is the actual solution over all paths (i.e. the answer using PRISM’s numerical
engines). The generic approximation algorithm is given in Figure 3.4:

GAA(M, φ, k, ε, δ)
1. N := 4 log(2

δ )/ε2

2. A := 0
3. for i = 1 to N do
4. Generate a random path σ of length k with the model M
5. if ( φ is true on σ ) then A := A + 1
6. return A/N

Figure 3.4: The generic approximation algorithm [6]

The number of iterations required by this algorithm is O( 1
ε2 · log 1

δ ) meaning that the com-
plexity is logarithmic in 1/δ, but more crucially quadratic in 1/ε. This means that it is possible
to choose very small δ values, but if ε 6 10−2, N becomes unreasonably large for realistically
sized models.

3.5.3 Extensions to the Generic Approximation Algorithm

A number of extensions are possible to improve the efficiency of the generic approximation
algorithm and also to make it applicable to rewards based formulae.

Stopping at Satisfaction, Dissatisfaction and Time Bounds

The generic approximation algorithm can be optimised by only generating paths for as long as
they need to be. For example, if a path, σ, satisfies a particular path formula, φ, in less than k
steps, there is no need to continue the generation of σ until it reaches length k. Also, if a path,
σ, can never satisfy a particular path formula, i.e. if the first operator of an “until” formula
evaluates to false before the second is satisfied, there is also no need to continue the generation
of σ.
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Furthermore, if the upper time bound of a bounded path formula is met in less than k steps,
i.e. for DTMCs and MDPs, this is simply when the path length is greater than the time bound
and for CTMCs this is where the sum of the times spent in each state along the path,

∑i−1
k=0 tk,

is greater than the time bound, there is also no need to continue the generation of σ.

Stopping at the Detection of a Loop

If a path, σ is looping deterministically between two states sq and sr and the path formula φ has
not been satisfied by state sr, then φ will never be satisfied over σ. Therefore, there is no need
to continue the generation of σ until it reaches length k. A loop is detected when:

• The update event sets for the last l states in σ only have one distinct destination state, i.e.

∀sn−j ∈ σ
∣∣ j = (0..l),

(
|{s′ei

|ei ∈ Esn−j}| = 1
)

• The update set for the last state in σ, Esn
has one distinct destination state, s′ that has

appeared at least once in the last l steps.

Modification for Rewards Properties

The generic approximation algorithm was not designed for use with rewards based formulae and
so slight modifications are required for each type.

For a“cumulative” formula, ρ, the modification is shown in Figure 3.5.

GAAcumulative(M, ρ, k, ε, δ)
1. N := 4 log(2

δ )/ε2

2. A := 0.0
3. for i = 1 to N do
4. Generate a random path σ with the model M, until
5. the time bound in ρ is met
6. A := A + reward accumulated forρ over σ
7. return A/N

Figure 3.5: The generic approximation algorithm for cumulative reward based properties

It should be noted that loop detection should not be used for “cumulative” reward formulae.
This is because rewards can be accumulated for several loop cycles before the time bound is met.

For an “instantaneous” formulae, ρ, the modification is shown in Figure 3.6.

GAAinstantaneous(M, ρ, k, ε, δ)
1. N := 4 log(2

δ )/ε2

2. A := 0.0
3. for i = 1 to N do
4. Generate a random path σ with the model M, until:
5. the time bound in ρ is met in state si

6. A := A + state reward sri

7. return A/N

Figure 3.6: The generic approximation algorithm for instantaneous reward based properties

Like “cumulative” reward formulae, for “instantaneous” reward formulae, loop detection
should not be used. This is because several loop cycles may be required to meet the time
bound and thus calculate the reward at that instant.

For “reachability” reward formulae, ρ of the form R=? [ F <prop> ], if the set of states
specified by <prop> are unreachable for any path, then the average reward will be infinite.
Therefore, if a loop is detected or the maximum path length, k, is reached before <prop> is
reached, the algorithm can terminate and return ∞. The modifications are shown in Figure 3.7.
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GAAreachability(M, ρ, k, ε, δ)
1. N := 4 log(2

δ )/ε2

2. A := 0.0
3. for i = 1 to N do
4. Generate a random path σ with the model M, until either:
5. <prop> is satisfied is some state,
6. a loop is detected, in which case, return ∞,
7. the path length, k, is met, in which case, return ∞.
8. A := A + reward accumulated forρ over σ
9. return A/N

Figure 3.7: The generic approximation algorithm for reachability reward based properties

Verification of Multiple Properties

With a few modifications to GAA, it is possible to verify multiple probability and reward based
properties simultaneously. If a function, known(φ or ρ, σ, i, k), is defined to says whether the
result of a particular property, φ or ρ, is known over a particular path, σ, of length i where
i <= k:

• For a “bounded until” formula, φ, of the form, [ <prop1> U<time> <prop2> ], the func-
tion known(φ, σ, i, k) returns true if:

– i = k and <prop2> has not been satisfied;

– <prop1> is not satisfied in a state and <prop2> is not satisfied within the time bound
<time>;

– i < k, and <prop2> has been satisfied;

– σ is looping and <prop2> has not yet been satisfied.

• For an “until” formula, φ, of the form, [ <prop1> U <prop2> ], the function known(φ, σ, i, k)
returns true if:

– i = k and <prop2> has not been satisfied;

– <prop1> is not satisfied in a state and <prop2> is satisfied;

– i < k, and <prop2> has been satisfied;

– σ is looping and <prop2> has not yet been satisfied.

• For a “next” formula, φ, of the form, [ X <prop> ], the function known(φ, σ, i, k) returns
true if:

– i = 1.

• For “cumulative” and “instantaneous” reward formulae, ρ, with the time bound <t>, the
function known(ρ, σ, i, k) returns true if:

– i = k and the time bound, <t> has not been met in σ;

– i < k and the time bound, <t> has been met in σ.

• For a “Reachability” reward formulae, ρ, of the form [ R <prop> ], the function known(ρ, σ, i, k)
returns true if:

– i = k and <prop> has not been satisfied;

– i < k, and <prop> has been satisfied;

– σ is looping and <prop> has not yet been satisfied.
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GAAmultiple(M, φ[], ρ[], k, ε, δ)
1. N := 4 log(2

δ )/ε2

2. for each φ ∈ φ[]
3. define Aφ := 0
4. for each ρ ∈ ρ[]
5. define Aρ := 0.0
6. for i = 1 to N do
7. Start a path, σ in the initial state.
8. j := 0
7. while (∃φ ∈ φ[]|known(φ, σ, j, k) = false) or (∃ρ ∈ ρ[]|known(ρ, σ, j, k) = false)
8. For the current state, sj automatically sample sj+1 with M and add it to σ
9. j := j + 1
10. for each φ ∈ φ[]
11. if φ is satisfied over σ, Aφ := Aφ + 1
12. for each ρ ∈ ρ[]
13. Aρ := reward accumulated for ρ over σ
14. return (P,R) where:
15. P := {Aφ/N |φ ∈ φ[]}
16. R := {Aρ/N |ρ ∈ ρ[]}

Figure 3.8: The Generic approximation algorithm for multiple properties

it is possible to modify GAA as shown in Figure 3.8 to deal with a set, φ[] of probability based
properties and a set, ρ[] of reward based properties.

This algorithm returns a tuple (P,R) where P is the set of answers for each property in
φ[] and R is the set of answers for each property in ρ[].

Simulataneous approximate verification provides a significant improvement in efficiency be-
cause the most expensive part of the algorithm is the generation of σ. This now only has to be
done N times, rather than N multiplied by the number of properties, as is the case if they are
evaluated separately.



Chapter 4

Requirements

This chapter gives an account of the approach towards gathering the requirements for the PRISM
simulator. The requirements elicitation process is described first in Section 4.1, before the de-
tailed system requirements for the project are given in Section 4.2.

4.1 Requirements Elicitation

In order to determine the best requirements elicitation strategy, the following factors were taken
into account:

• The user who was available for requirements gathering is an expert in the field of proba-
bilistic model checking. He researched, designed and implemented the PRISM tool.

• Other users would become available towards the end of the development cycle because a
they were required to use PRISM for a university coursework project.

• There was already a developed PRISM simulator prototype. This was developed to inves-
tigate which features would be useful for the user interface as well as how those features
should be laid out.

• There was a substantial amount of domain knowledge that needed to be researched before
the requirements could be gathered.

It was therefore decided that the first stage of the requirements elicitation process would be
to obtain the domain knowledge required to approach this project. This research was performed
as a series of meetings with the expert user who also recommended a number of academic texts
and books. The result of this research and its analysis was presented in Chapter 3.

With this knowledge, a series of preliminary interviews with the expert user were performed
in order to develop the ideas taken from the prototype simulator. From this, most of the require-
ments for the simulator user interface were developed and drafted as the original requirements
document. This document was approved by the expert user and so from this document, the
system was designed and developed until it was ready to be given to users for feedback. This
feedback allowed a number of usability issues to be resolved.

4.2 Software Specification

This section gives the specification of the PRISM simulator. Because the tool had to be integrated
into an existing tool, the first section describes how this integration should be structured. The
following sections describe the requirements for the various sub-systems of the tool.

4.2.1 Structural Requirements

R1 The simulator will be structured into three main components: The simulator engine, the
simulator user interface and the properties user interface. Figure 4.1 highlights the de-
pendencies of each component. The requirements for each component are described in

29
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requirements R4-R7 (engine), R8-R13 (simulator user interface) and R14-R17 (properties
user interface).

R2 The simulator will be integrated into the existing PRISM graphical user interface. In
particular, the simulator and property user interface components will be built upon the
framework provided by the existing user interface packages and the engine component will
be built upon data structures provided by the existing PRISM language parsing package.
This is summarised in Figure 4.1.

Engine

Simulator User
Interface

Properties User
Interface

PRISM

userinterface 

Figure 4.1: PRISM Simulator Package Dependencies.

R3 The PRISM version number that the simulator will be built upon is: PRISM 2.1.
Note: It may also be necessary to upgrade to later versions of PRISM as they are developed.
Therefore, the simulator should be written in such a way to make this process as easy as
possible.

4.2.2 Engine Requirements

R4 The simulator engine will be able to load one PRISM model at a time. When no PRISM
model is loaded, the only function that will be allowed is that of loading a model into the
simulator (See R4.3).

R4.1 A loaded PRISM model, will store the following data:

R4.1.1 The model type: type ∈ {notloaded, dtmc,mdp, ctmc}.
Rationale: The model type must be stored as some simulator functionality will
differ according to its value.

R4.1.2 A set of global variables, G. A variable will be defined as a named integer or
Boolean value. Each integer variable will have a fixed minimum, maximum and
initial value. Each variable will have a value known as its current state.

R4.1.3 A set, M of modules. Each module, mi ∈ M will be as described in background
Section 3.2.

R4.2 Initially, no model will be loaded into the engine. Therefore, type 7→ notloaded,
G 7→ ∅, U 7→ ∅ and M 7→ ∅.
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R4.3 The engine will provide a function that loads a PRISM model. The input to this
function will be a ModulesFile object, which is provided by PRISM’s parser package.
The following prerequisites apply to the ModulesFile object:

• All of its undefined constants must have been defined.
• It must be the result of a successful parse of a PRISM model file.

This function will first unload any model that is already loaded and then set type, G,
and M to be the same as the equivalent data stored in the ModulesFile.

R5 At any particular time, the variables associated with each module in M and the variables
in G will be in a particular configuration. This configuration will be known as the current
state, scurr

R6 The engine will store and manipulate an execution path, σ.

R6.1 The simulation path, σ, will be as defined in Section 3.3.1. i.e. Each state, m ∈ σ,
will be a non-empty set of variables whose names correspond to the variable names of
the global state.

R6.2 The engine will provide a function which starts a new simulation path. The input
to this function will be an initial state s̄. s̄ will be a set of variables whose names
correspond to the variable names of in scurr. Firstly, the function assigns: scurr = s̄.
scurr then appended to σ as s0, as in R6.7. Rationale: When a simulation path is
started, it should be possible to start from any initial state.

R6.3 If type 7→ ctmc, σ will also be associated with a variable, tσ, which represents how
much time has elapsed in the execution of the path so far. When any new execution
path is started, tσ 7→ 0.

R6.4 σ will be associated with a variable SRσ which represents the total state reward
accumulated over the execution path so far. This is calculated as

∑k
i=0 sri · ti where

k is the length of σ. When any new execution path is started, SRσ 7→ 0.

R6.5 σ will be associated with a variable T Rσ which represents the total transition reward
accumulated over the execution path so far. This is calculated as

∑k
i=0 tri where k is

the length of σ. When any new execution path is started, T Rσ 7→ 0.

R6.6 σ will be associated with a variable, Rσ which represents the total reward accumulated
over the execution path so far. This is calculated as SRσ + T Rσ.

R6.7 The engine will provide a function to append a copy of scurr to the execution path,
σ.

R6.8 The engine will provide a function which removes all states from σ except for s0. This
is known as resetting the path.

R6.9 The engine will provide a function which, for a given index, i, removes all states,
sj ∈ σ, where j > i. This is known as backtracking.

R6.10 The engine will provide a function which, for a given index, i, removes all states,
sj ∈ σ, where j < i. Furthermore, i should the index for each remaining state,
transition and reward in σ. i.e. the state, si will become s0. This is known as
removing preceding states.

R6.11 For any current state, scurr, the simulator will be able to provide a list, Escurr
, of

possible update events. The calculation of Escurr
will be as described in Section 3.3.2

for when type 7→ dtmc, Section 3.3.3 for when type 7→ mdp and Section 3.3.4 for when
type 7→ ctmc.

R6.12 It will be possible to determine whether σ is looping. A loop is detected when:

• The update event sets for the last k states in σ only have one distinct destination
state, i.e.

∀sn−j ∈ σ
∣∣ j = (0..l),

(
|{s′ei

|ei ∈ Esn−j
}| = 1

)
• The update set for the last state in σ, Esn

has one distinct destination state, s′

that has appeared in the last k steps.
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It will be possible to request the value of n− k, i.e. to ask where the looping section
begins.

R6.13 The engine will provide a function that for a given list of update events, Es, and an
index i, selects the ith event, ei of Es, and then:

• Sets scurr = s′ei
;

• Appends scurr to σ as in R6.7.

If type 7→ ctmc, this function can also accept a time parameter, t. If this parameter
is provided, t and if si = scurr then ti−1 is set to t. If no parameter is provided, the
value for t is calculated automatically using Equation 3.2.
Rationale: The engine should provide a function to cater for manual event choices by
users.

R6.14 The engine will provide a function that given an input value, n, will make n automatic
update event choices. For each iteration:

• The current set of update events, Escurr
is calculated for the current state, scurr.

If Escurr
7→ ∅, scurr is a deadlock state and so the iterations should stop. Also, if

a loop is detected, as in R6.12, iterations should stop.
• The simulator engine should then sample an event, e from Escurr

. This should be
done as described in Section 3.3.2 if type 7→ dtmc, Section 3.3.3 if type 7→ mdp
and Section 3.3.4 if type 7→ ctmc.

• Once an event, e has been sampled:
– Set scurr = s′e;
– Append scurr to σ as in R6.7.

R6.15 The simulator engine will provide a function that determines whether, for any Boolean
predicate, φ, and index, i, φ

evaluates−−−−−−→ true in the state si ∈ σ.

R6.16 The simulator engine will provide a function that determines whether for a given
index, i, the state si ∈ σ is:

R6.16.1 A deadlock state. i.e. The event update set for si is empty, i.e. Esi = ∅. -or-
R6.16.2 The initial state. i.e. whether si = s0.

R6.17 The engine will provide a function which, for a given path formula, states whether
that formula is true over the current execution path, σ. Path formulae are defined
and their results calculated as in Section 3.4.

R6.18 The engine will provide a function, which for a given rewards formula, states what
the calculated reward is over the current execution path, σ. Rewards formulae are
defined and their results calculated as in Section 3.4.

R7 For any set of PRISM path or rewards properties, the simulator engine will provide a func-
tion which performs approximate verification of those properties over the current model.
This function will use the sampling algorithm, GAAmultiple, defined in Figure 3.8. As well
as the properties itself, the function will require as input, either:

• The number of iterations for the sampling algorithm;

• An approximation parameter, ε, and a confidence parameter, δ. The number of
iterations is calculated using the formulae:

4 log10(
2
δ )

ε2

It will also require the maximum path length, k and an initial state, s̄ for each sample
path, s̄. The results returned will be set of probabilities (for path properties) and positive
real numbers (for rewards properties).
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4.2.3 Simulator User Interface Requirements

R8 General Requirements

R8.1 The simulator user interface (SUI) will be contained within a new tab panel in the
existing PRISM graphical user interface.
Rationale: The functionality provided by the simulator should not interfere with
the existing features of the PRISM GUI. Displaying the SUI in a tab panel is also
consistent with the rest of the PRISM GUI, where groups of functions (i.e. editing,
verification, log) are separated by tabs.

R8.2 At the highest level, the SUI will be in one of 3 states:

No model When no valid model has been parsed via the ‘model’ tab of the PRISM
GUI, the SUI will be disabled. The SUI will return to this state only when the
user has selected ‘new’ model, or when an invalid (one that cannot be parsed)
model is loaded.

Model parsed, no path When a valid PRISM model has just been parsed, the SUI
will be in this state. To move into this state, the simulator engine will have to
load the parsed PRISM model, as described in R4.3 and will have to remove the
current execution path, σ from the simulator engine.

Model parsed, path active When an execution path is started, as in R6.2, the
simulator will move into this state, and remain in this state whilst any model
exploration takes place.

Rationale: The simulator should always work with the model that is displayed in the
parse tree of the ‘model’ tab of the PRISM GUI (See the PRISM manual for more
details [2]). When the model is edited and thus reparsed, any simulation results would
be invalid for the current model and so the simulator must be reset.

R8.3 The simulator user interface will display the following user interface components:

Execution Path This will be a table that provides a view of the current execution
path, σ, defined in R6.1. Each row will show the following information about
each model state in σ:
• The index of the model state;
• The values of each variable of the model state;
• If type 7→ ctmc, the time spent in the model state;
• The reward associated with the model state;
• The reward associated with the transition away from the model state;

This table will only be enabled if the SUI is in the (Model parsed, path active)
state.

Path Information The following statistical information about the current execution
path, σ, will be displayed:
• Model Type - Whether the model is a DTMC, MDP or a CTMC;
• Path Length - The current length of σ;
• Total Time - The sum of transition times, tσ, as defined in R6.3;
• State Rewards - The state reward accumulated, SRσ, as defined in R6.4;
• Transition Rewards - The transition reward accumulated, T Rσ, as defined in

R6.5;
• Total Reward - The total reward accumulated, Rσ, as defined in R6.6;

When the SUI is in the (No model) state, each of the above will display dashes,
‘-’. When the SUI is in the (Model parsed, no path) state, only the ‘Model Type’
field will be enabled. When the SUI is in the (Model parsed, path active) state,
every field is displayed with appropriate values.

Path Control Panel The following buttons will be provided:
• New Path;
• Reset Path;
• Export Path.
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When the SUI is in the (No Model) state, these buttons will be disabled. In the
(Model parsed, no path) state only the ‘New Path’ button will be enabled. In the
(Model parsed, path active) state all of these buttons will be enabled.

Update Event Table This will be a table that has the ability to display sets of
event updates, Es for a particular state, s. Each row will display information
about each event, e ∈ Es:
• The probability of the event, Pe when type 7→ dtmc or type 7→ mdp;
• The rate of the event, Re when type 7→ ctmc;
• The action label of the event, Ae, enclosed within square brackets. If Ae 7→

no action label, only “[]” will be displayed.
• The name of the module, Me, of the event.
• A description of the assignments that are required to update s to s′e.

This table will only be enabled if the SUI is in the (Model parsed, path active)
state.

Model Exploration Panel The following buttons will be provided:
• Automatic Update - This will be accompanied by a text field named, ‘No.

Steps’.
• Manual Update - For CTMCs this will be accompanied by a text field named,

‘Time’.
• Backtrack - This will be accompanied by a text field named, ‘To Step’.
• Remove Preceding - This will be accompanied by a text field named, ‘To

Step’.
These buttons will only be enabled if the SUI is in the (Model parsed, path active)
state.

Path Formulae List This will be a list of path formulae with icons. For each for-
mula, the icon can either be:
• A question mark;
• A tick;
• A cross;
• A number symbol.

State Formulae List This will be a list of state label formulae with icons. For each
formula, the icon can either be:
• A cross;
• A tick.

R9 Execution Path Table Requirements - These requirements describe the functionality
that will be provided concerning execution path table, defined in R8.3.

R9.1 It will be possible to adjust how the execution path table’s columns and headers are
displayed. In particular:

• It will be possible to resize each column;
• It will be possible to hide, and re-display each column.

Rationale: It is very likely that a lot of information will be produced for each execution
path. It is likely that the user will not be interested in a lot of this information, or
will be more interested in certain pieces of information. Providing this flexibility will
allow users to view whatever information they wish, in whichever order.

R9.2 At any point, the last row in of the execution path table will display the current state
of the model. By default, this row will be selected. The selected row will be coloured
differently to all other rows. It will also be possible to select other rows, one at a time.
If for any reason, a row is unselected (by pressing ctrl-click), the last row in the table
will get re-selected.

R9.3 The set displayed in the update events table, defined in R8.3, will display the update
event set, Esi for the state, si displayed by the selected row of the execution path
table. This is calculated by the simulator engine as defined in R6.11 If si 6= scurr, the
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row corresponding to the event that was selected to get into s(i+1) will be selected in
the update events table. If si = scurr the update events table will allow the user to
select one of the update events by clicking on the corresponding row in the table.

R9.4 When the ‘New Path’ button is selected, so long as the SUI is in the (Model parsed,
no path) or in the (Model parsed, path active) state, the following will happen:

• The user will be prompted to define all undefined constants for the current PRISM
model. There will be a dialog containing fields for each undefined constant name.
If a value has already been entered for a previous ‘New Path’, by default, this
value will be given.
After the user has entered the values they require, they can either press an ‘Okay’
button, or a ‘Cancel’ button. When the ‘Okay’ button is pressed, each unde-
fined constant field will be checked. For integer constants, this validity check
will depend on whether the entered string is a correctly formed integer. For
real constants, this validity check will depend on whether the entered string is a
correctly formed double, as defined in Java’s Double.parseDouble method. For
Boolean variables, the strings “true”, “false” and any correctly formed integer are
accepted. For integers, ‘0’ is treated as false and any other value is treated as
true. if the ‘Cancel’ button is pressed at any time, the whole ‘New Path’ action
is cancelled.
After the validity check, the defined constants will be loaded into the current
PRISM ModulesFile.

• The user will be prompted to define an initial state, s̄. This will be a dialog
containing fields for each variable name of the global state. Each field will con-
tain a default value calculated using the ‘GetDefaultInitValues’ method of the
ModulesFile.
After the user has entered the values they require, they can either press an ‘Okay’
button or a ‘Cancel’ button. When the ‘Okay’ button is pressed, each variable field
will be checked. The validity checks will be the same as for the undefined constants
dialog, except that there will be no real-number variables. If the ‘Cancel’ button
is pressed at any time, the whole ‘New Path’ action is cancelled.

• The current PRISM ModulesFile (with constants defined), will then be loaded
into the simulator engine, as defined in R4.3.

• The simulator engine will then be requested to start a new execution path, using
the function defined in R6.2, with s̄ as a parameter. As described in R8.2, the SUI
will move into the (Model parsed, path active state). The execution path table
and update events table will update themselves to reflect the simulator engine’s
new execution path, σ.

R9.5 When the ‘Reset Path’ button is selected, the simulator engine will reset the execution
path, as described in R6.8.

R9.6 When the ‘Export Path’ button is selected, the following will happen:

• The user will be prompted to enter a name of a new file. The will be done using
a standard file-chooser, with the default file extension set to ‘txt’.

• Once the file has been selected, the current simulation path table will be written
to it in the following way:
– The first line will contain a space separated list of all displayable column

headers from the simulation path table.
Note: Even columns that have been hidden will be outputted.

– Each subsequent line will contain a space separated list of the data displayed
in each row of the simulation path table.

R9.7 When the ‘Backtrack’ button is selected, the simulator engine will remove all states
that follow the model state indexed by the value entered in the ‘To State’ field. If
this is not a valid positive (including 0) integer that is less than the execution path’s
length, an error will be given. If the value is valid, the simulator engine’s backtracking
function, as described in R6.9, should be used with the value as a parameter.

R9.8 When the ‘Remove Preceding’ button is selected, the simulator engine will remove
all states that precede the model state indexed by the value entered in the ‘From
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State’ field. If this is not a valid positive (including 0) integer that is less than the
execution path’s length, an error will be given. If the value is valid, the simulator
engine’s remove preceding states function, as described in R6.10, should be used with
the value as a parameter.

R9.9 If the simulator engine has detected a loop in the current execution path, σ, an arrow
from the last row in the execution path table to where the loop starts should be
displayed. The querying of the simulator engine for the presence of a loop and for
when the loop starts is described in R6.12.

R10 When the ‘Manual Update’ button is selected, the simulator engine will perform a ‘manual’
update described by the event that is currently selected in the update events table; this is
described in R6.13. If type 7→ ctmc, and if the ‘Auto-time’ checkbox is not selected, the
value described in the ‘Time’ field will be provided as a parameter to the simulator engine
function. If the value is not a valid positive real number (> 0.0), an error will be given.

R11 When the ‘Automatic Update’ button is selected, the simulator engine will make n auto-
matic update event choices, as described in R6.14. n is obtained from the value in the ‘No
Steps’ field. If the value is not a valid positive integer an error will be given.

R12 State Formulae List requirements - These requirements describe the functionality that
will be provided concerning state formulae list, defined in R8.3.

R12.1 The state formulae list will be populated with valid PRISM formulae labels when the
“New Path” button is selected. These formulae will be taken from the labels of the
current properties file loaded into the PRISM graphical user interface. Only the name
of the label will be displayed in the list. Furthermore, the list will always contain a
label named “init” and a label named “deadlock”.

R12.2 If a formula in the state formulae list is satisfied in the selected state, it will display a
tick icon. If not, it will display a cross icon. Satisfaction of a formula over a particular
state was described in R6.15. For the “init” and “deadlock” labels, this was described
in R6.16

R12.3 It will be possible to select one formula from the state formulae list at a time. When
a formula is selected, all states in the execution path table that satisfy the formula
will be highlighted in a different colour.

R13 Path Formulae List Requirements - These requirements describe the functionality that
will be provided concerning Path Formulae List, defined in R8.3.

R13.1 The Path Formulae List will be populated with valid path and rewards formulae
when the “New Path” button is selected. These formulae will be taken from the
simulatable (see Section 3.5.1) properties of the current properties file loaded into the
PRISM graphical user interface. Only the path or reward part of the property will be
taken, i.e. if the property is P=? [true U s=4] only true U s=4 will be displayed.
Furthermore, duplicate formulae will be removed.

R13.2 If the result of a formula cannot be determined over the current execution path σ,
the question icon will be displayed; If the formula is a path formula, and is proven to
be satisfied over σ, the tick icon will be displayed; If the formula is a path formula,
and can not be satisfied over σ, the cross icon will be displayed; If the formula is a
reward formula, and the reward has been calculated over σ, the numeric icon will be
displayed.

R13.3 If the result of a formula has been determined, and the user hovers the mouse over the
the corresponding element of the list, a tooltip will be shown that displays the result.

R13.4 It will not be possible to select elements of the Path Formulae List with the mouse.

4.2.4 Properties User Interface Integration Requirements

R14 In the properties user interface there is a list of actions for functions on properties that
have been loaded into the PRISM user interface. The list of actions is displayed as both a
popup menu and a menu on the title bar. A button labelled “Simulate” will be added to
this list of actions.



4.2. SOFTWARE SPECIFICATION 37

R15 In the properties user interface, it is possible to select a set of properties from those that
have been loaded. If at least one of those properties can be verified by the PRISM simulator,
(see Section 3.5.1 for a description of which properties can/cannot be simulated), the
“Simulate” action is enabled.

R16 If the “Simulate” action is selected by the user, the following will occur:

• The user will be prompted to define all undefined constants for the current PRISM
model. This will be a dialog containing fields for each undefined constant name. If a
value has already been entered for a previous ‘New Path’, by default, this value will
be given.
After the user has entered the values they require, they can either press an ‘Okay’
button, or a ‘Cancel’ button. When the ‘Okay’ button is pressed, each undefined
constant field will be checked. For integer constants, this validity check will depend
on whether the entered string is a correctly formed integer. For real constants, this
validity check will depend on whether the entered string is a correctly formed double,
as defined in Java’s Double.parseDouble method. For Boolean variables, the strings
“true”, “false” and any correctly formed integer are accepted. For integers, ‘0’ is
treated as false and any other value is treated as true. if the ‘Cancel’ button is
pressed at any time, the whole ‘New Path’ action is cancelled.
After the validity check, the defined constants will be loaded into the current PRISM
ModulesFile.

• The user will be prompted with a dialog, entitled “Approximate Verification Param-
eters”, ”to define an initial state, s̄. This will be a dialog containing fields for each
variable name of the global state. Each field will contain a default value calculated
using the ‘GetDefaultInitValues’ method of the ModulesFile.
The same dialog will enable the user to define the approximation parameter, ε and
the confidence parameter, δ, as well as the maximum path length k.
After the user has entered the values they require, they can either press an ‘Okay’
button or a ‘Cancel’ button. When the ‘Okay’ button is pressed, each variable field
will be checked. The validity checks will be the same as for the undefined constants
dialog, except that for the initial state and k there will be no real-number values
allowed. If the ‘Cancel’ button is pressed at any time, the whole “Simulate” action is
cancelled.

• The current PRISM ModulesFile (with constants defined), will then be loaded into
the simulator engine, as defined in R4.3.

• The simulator engine will then be requested perform approximate verification of all of
the simulatable (see Section 3.5.1) properties using the function described in R7 with
s̄, k, δ and ε as parameters.

• It will also be possible to request that each property be verified separately. Therefore,
the function described in R7 will be called once for each property, again with s̄, k, δ
and ε as parameters.

• The results will be passed to the properties user interface, which already provides the
means of displaying those results to the user.

R17 In order to run an experiment with the simulator, it will be necessary to integrate the
approximate verification function, described in R7, into the existing property experiments
mechanism:

R17.1 The existing dialog that requests that users define which constants they wish to vary
for the experiment will be modified to include a checkbox. A user will be able to select
this checkbox entitled “Use Simulation?” if they wish to use the simulator for their
experiment.

R17.2 If the “Use Simulation?” checkbox is selected, the user will be prompted with the
“Approximate Verification Parameters” dialog, described in R16.
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R17.3 For each configuration of model constants, those constants will be loaded into the
current PRISM ModulesFile, which will then be loaded into the simulator engine, as
defined in R4.3. Each configuration of property constants will be enumerated as a set
of properties. The simulator engine will then be requested to perform approximate
verification fo these properties using the function described in R7 with the s̄, k, δ and
epsilon collected from the “Approximate Verification Parameters” dialog.

R17.4 The results collected will be passed to the existing mechanism for dealing with exper-
iments in the properties user interface.



Chapter 5

Design and Implementation

This chapter describes the design for the PRISM simulator. It begins by giving a high level system
architecture, detailing the responsibilities of each component. The focus of this chapter is on
the design of the simulator engine. This is where all of the core data structures and algorithms
for this project are contained. This is discussed in detail in Section 5.2. Some of the key user
interface design choices are then outlined in Section 5.3. Finally, the main implementation issues
are outlined in Section 5.4.

5.1 System Architecture

At the highest level, the architecture of the system is in three components:

• The simulator engine - this component is responsible for providing all data structures and
algorithms for path generation and manipulation and for performing statistical sampling
techniques. It should conform to the interface given in the Specification;

• The simulator user interface - this component is responsible for providing an intuitive view
of the execution path and for providing ways for users to manipulate it visually. The
simulator user interface relys on functions provided by the simulator engine.

• Integration into PRISMs properties user interface - this component is responsible for pro-
viding a means of running approximate model checking techniques from the existing PRISM
user interface. Like the simulator engine, this component relys on the functions provided
by the simulator engine.

5.2 Simulator Engine Design

The simulator engine provides all of the core functionality of the PRISM simulator. The structure
of the engine is as follows:

• Storage of the current state;

• Storage of the current model;

• Storage of the current execution path through the current model;

• The update handler module, responsible for calculating update events for a particular state,
handling manual choices from those sets and selecting updates automatically from those
sets;

• The loop detection module which looks at both the current execution path and the update
handler;

• The path evalution module investigates whether formula are satisfied in the current execu-
tion path;

• The sampling module, which performs approximate model checking.

This is summarised in the Figure 5.1.

39
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Current State Current Model

Data Storage

DTMC CTMC

Current Execution Path

Update Handler

MDP

Path and Rewards
Formulae Handler Loop Detection

Sampling Module

Figure 5.1: Structure of the simulator engine

5.2.1 Model Representation

One of the main data structures that had to be considered was the storage of the current PRISM
model. PRISM itself takes a PRISM model file and parses it into an abstract syntax tree
structure. Previous simulator implementations, including PrismSim (Section 2.1) and the PRISM
simulator prototype (Section 2.2) used this abstract syntax tree structure directly.

Although it required extra time and effort, it was decided that a new data structure would
be designed specifically for the simulator engine. This was to address the main weakness in the
PRISM model abstract syntax tree structure, which was that it was designed for the purposes
of parsing PRISM model files, and not for direct calculation. The following issues were noted:

• Querying of variables was always done by searching for the value by the name of the
variable;

• Expression evaluate requires lots of checking what the type of a particular object is (in-
stanceof checks);

• In order to evaluate the value of expressions, an array of constants has to be passed around
as a parameter.

The Current State

In order to address the issue of variable querying, it was decided that the state of the current
model, scurr, would be stored as an integer array called model variables of length num model variables.
Therefore, references to variables would not be done using the variable’s name, but the variable’s
index in model variables.

Expressions

The referencing of variables is always done by expressions. Expressions are key to the repre-
sentation of the current model, but also for other parts of the PRISM engine; they are used
for:

• The guards of each command;

• The probabilities or rates of each update in each command;

• The result of a variable assignment;
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• State propositions;

• State and transition rewards.

It was important that the storage of expressions in the simulator engine was consistent with
the storage of expressions in the PRISM model abstract syntax tree. Therefore, the following
features had to be provided (based on the description given in the PRISM manual [2]):

• Literal values, e.g. 1.54, 5, true, false, etc.;

• Variable names, e.g. s, d, queue size, etc.1;

• Multiplication and division, e.g. d * 2, 1 / (2+3), etc.;

• Addition and subtraction, e.g. s + 4, 10 - s, etc.;

• Relational operators, e.g. <, <=, >=, >, =, !=2;

• Boolean not operator, e.g. !flag;

• N-ary Boolean operators, and and or, e.g. a & b & c, a | b | c, etc.;

• Conditional evaluation, <cond>?<a>:<b> meaning if <cond> is true, then <a> else <b>, e.g.
a<10?true:false;

• N-ary functions, min and max, e.g. min(x,y,z), max(x,y,z), etc.;

• Binary functions, pow and mod, e.g. pow(x, 2), mod(y, 2), etc.;

• Unary functions, ceil and floor, e.g. ceil(2.88), floor(2.54+a), etc.;

The following considerations were taken into account when designing the data structure for
storing these expressions:

• Each expression is associated with a type: ‘boolean’, ‘integer’ or ‘double’.

• One of most common operations in many of the simulator engine algorithms is the evaluate
function. Therefore, this function should not perform any unnecessary calculations, in
particular: there should never be a case whether the type of an object is not known prior
to evaluation;

The chosen expression data structure is tree-based, with each node using inheritance to extend
the Expression class. Expression is an abstract class that requires that subclasses define at
least one of the following methods:

• int Evaluate(int[]vars) - This method should calculate the integer value of the expres-
sion using the state described by the variable values in the vars parameter. This method
will only be called if the type of the subclass is ‘integer’ or ‘Boolean’.

• double Evaluate Double(int[]vars) - This method should calculate the value of the
expression using the state described by the variables values in the vars parameter. This
method will only be called if the type of the subclass is ‘double’.

The Expression class actually defines implementations of Evaluate and Evaluate Double.
The implementation for Evaluate simply casts the result of Evaluate Double to an integer
and vice-versa for the Evaluate Double method. Subclasses only have to override the most
appropriate method for the expression type.

1It should be noted that, unlike the PRISM abstract syntax tree, there is no need to store identifiers such as
constants and formula constructs. This is because the simulator engine will only ever need to deal with PRISM
models that have had all their constants defined and so it is only necessary to store the value. Also, PRISM
provides a function that removes all formula constructs and replaces them with the expanded expressions.

2It should also be noted that there is no need to support the range shorthand provided by the PRISM language.
This is because an expression such as: x = 1..4, 5, 9..13 can just be represented as: (x>=1 & x<=4) | (x=5)

| (x>=9 & x<=12)
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The reason for two evaluation method is for efficiency, taking into account that operations
on integers are faster than operations on floating-point numbers. An illustrative example is
the expression for multiplication. A multiplication expression of the form expr1 * expr2 has
two child expressions. If one of those children evaluates to a real number, then the type of the
multiplication expression will also be real. Therefore, the multiplication expression would be of
class, RealTimes, which itself uses floating-point arithmetic and overrides the Evaluate Double
method. This method simply calls the Evaluate Double methods of both of the children and
returns the product of the two answers.

However, if both children evaluate to integers, then the type of the multiplication expression
will also be integer. Therefore, the multiplication expression would be of class, NormalTimes,
which itself uses only integer arithmetic and overrides Evaluate method. This method simply
calls the Evaluate methods of both of the children and returns the product of the two answers.

The complete inheritance hierarchy is shown in Appendix B as Figure B.2.

The Command Table

In order to store the commands for the model, it was decided to simply store a single array of
Command objects. This array, commands, is known as the command table.

It was important to ensure that each Command object stores all of the appropriate information,
i.e:

• The module the command belongs to. This is stored as an index, module index where
each module has a unique index and module indices are ordered according to occurance in
the PRISM model file.

• The action label of the command. This is also stored as an index, action index where
each action label has a unique index. Action indices are ordered according to occurance in
the PRISM model file. If there is no action label for the command, the value -1 is stored.

• The command’s guard. This is stored as a NormalExpression object, guard, which should
evaluate to a Boolean value on any configuration of model variables.

• An array of updates. This is stored as an array, updates, of Update objects. Each Update
object must store the appropriate information, i.e:

– The update will be associated with either a probability or a rate. In either case this
can be stored as a RealExpression object, prob, which should evaluate to a real
number on any configuration of model variables.

– An array of assignments. This is stored as an array, assignments, of Assignment
objects. Each Assignment object must store the appropriate information, i.e:

∗ The index of the variable in model variables that this assignment object is
assigning to. This is stored as an integer, var index.

∗ The expression for the assignment itself. This is stored as a NormalExpression
object, assign, which should evaluate to either a Boolean or an Integer value on
any configuration of model variables according to the type of the variable being
indexed by var index.

For the purposes of synchronisation, it is necessary to store a table known as the alphabet
table. It is used to find out which modules contain which action labels. This table is stored as a
2-dimensional array, alphabet of Boolean values where the first dimension index a module and
the second is used to index an action label.

If the ith module contains the jth action label then alphabet[i][j] == true.

The Reward Tables

The final component of a PRISM model that needs to be stored is the rewards construct. This
will be stored as two arrays, one for state reward items, state rewards table and the other for
transition reward items, transition rewards table.

A state reward item is stored as a StateReward object. Each StateReward object must store
the appropriate information, i.e.
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• The reward item’s guard. This is stored as a NormalExpression object, guard, which
should evaluate to a Boolean value on any configuration of model variables.

• The reward item’s reward value. This is stored as an Expression object, reward which
will evaluate to the value of this reward on any configuration of model variables.

A transition reward item is stored as a TransitionReward object. Each TransitionReward
object must store the appropriate information, i.e.

• The reward item’s guard. This is stored as a NormalExpression object, guard, which
should evaluate to a Boolean value on any configuration of model variables.

• The action label of the reward item. This is stored as an index, action index. If there is
no action label for the reward item, the value -1 is stored.

• The reward item’s reward value. This is stored as an Expression object, reward which
will evaluate to the value of this reward on any configuration of model variables.

Important Functions

Once the model is loaded into memory, it remains static until it is unloaded. Therefore, the only
functions that are necessary are those which load and unload the model. These are summarised
below:

• For each subclass type of NormalExpression and RealExpression there is a function
which creates a new expression object with appropriate input parameters. For example,
to construct a VariableExpression, the only input parameter would be the variable’s
index. For objects such as NormalPlus, the input parameters would be references to two
NormalExpression objects.

• A function is provided to create a new Assignment object. This function will require a
parameter for each member of the new object. i.e. an index for the var index member
and a NormalExpression object for the assign member.

• A function is provided to create a new Update object. This function will require a parameter
for each member, i.e. a RealExpression object for prob and an array of Assignment
objects for assignments.

• A function is provided to create a new Command object. This function will require a parame-
ter for each member, i.e. a NormalExpression object for guard, an index for action index
and an array of Update objects for uddates.

• A function is provided to set up the command table, commands. This function will assign
to commands an input parameter which contains an array of Command objects.

• A function is provided to create a new StateReward object. This function will require a
parameter for each member.

• A function is provided to create a new TransitionReward object. This function will require
a parameter for each member.

• A function is provided to set up the reward tables. This function will require an array of
StateReward objects to assign to state rewards table and an array of TransitionReward
objects to assign to transition rewards table.

• A function is provided which sets up the storage of the current state. This will set up
the array, model variables to contain the number of variable values specified by an input
parameter.

• A function is provided which unloads all model storage information from memory.

There are also a few functions which are provided for calculations concerning the current
configuration of model variables. These are summarised below:
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• A function, Calculate State Reward, is provided to calculate the reward for being in a
state represented by an input parameter, variables, which is an int array of the same
size as model variables. The reward is calculated by the following algorithm:

real Calculate State Reward(int[]variables)
1. R := 0
2. for each StateReward sr in state rewards table
3. if sr.guard.Evaluate(variables) then
4. R := R + sr.reward.Evaluate(variables)
5. return R

• A function, Calculate Transition Reward, is provide to calculate the reward for a tran-
sition from a state given by an input parameter, variables, with an action label, given as
an index parameter, action index. The reward is calculated by the following algorithm:

real Calculate Transition Reward(int[]variables, int action index)
1. R := 0
2. for each TransitionReward sr in transition rewards table
3. if sr.guard.Evaluate(variables) and
4. sr.action index = action index then
4. R := R + sr.reward.Evaluate(variables)
5. return R

5.2.2 Path Representation

Much of the key requirements of the simulator engine involve the storage and manipulation of
the execution path, σ. In order to design the storage representation of the execution path, a few
key decisions had to be made.

Firstly, it had to be decided whether the path should be grow dynamically or whether it
should be static. It was decided that a static approach would be best because:

• Any analysis of paths always has a maximum path length, k and there would be nothing
gained from evaluating paths passed this point.

• Memory allocation and deallocation are computationally expensive. A static approach
allows the memory to be allocated once for each model, or for each time the user wishes
to change k wheras a dynamic approach would require a lot of memory allocation and
deallocation.

Therefore, it was decided that the path would be stored as an array, the path, of length k of
PathState objects. A PathState object provides storage for all information about a particular
state in the execution through the current model:

• The configuration of variables for that state. This is stored as an int array, variables,
which is the same length as model variables.

• The state reward. This is stored as a real number, state reward. If the state reward has
not yet been calculated for this, the value is stored as -1.

• The reward of the transition from that state. This is stored as a real number, transition reward.
If the transition reward has not yet been calculated for this state the value is stored as -1.

• The time spent in that state. This is stored as a real number, time in state. If the time
in this state has not yet been calculated, the value is stored as -1. For discrete-time Markov
chain and continuous-time Markov chain models, this value will always be stored as 1.

• The reward of the execution path up until that state. This is stored as a real number,
path reward. This is stored to reduce the amount of times it has to be calculated.

• For each state, there is always (apart from deadlock states) a list of possible update
events. The index of the event in the list of possible update events is stored as an in-
dex, choice made.
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Preallocation of the execution path creates k PathState objects. The values for each member
only need to store junk data at this point.

The current execution path is represented simply by storing an integer, current index, which
says the first current index states in the path are actually the states of interest and the states
current index . . . k are junk data (old execution paths or dummy values).

Therefore, to restart a path, it is only necessary to set current index to -1, rather than
deallocate the memory.

Important Functions

Three important functions are necessary for modification of the path:

• A function, Add State, is provided which adds the current state (what is in model variables)
to the path. The function accepts two parameters:

– A real number, time in last state which is the time spent in the last state before
moving to the state now stored in model variables.

– An integer, choice index which is the index of the update event that was selected to
move into the state now stored in model variables.

– An integer, action index which is the index of the action that was scheduled by the
update event.

The function does the following:

– Determines whether current index + 1 is greater than the maximum path length.
If so, an error is thrown;

– Increments current index;

– Copies model variables into the path[current index].variables;

– Adds information to the last state, i.e (unless current index is 0):

∗ the path[current index-1].time in state =
time in last state;

∗ the path[current index-1].choice made =
choice index;

∗ the path[current index-1].state reward =
Calculate State Reward

(the path[current index-1].variables);
∗ the path[current index-1].transition reward =

Calculate Transition Reward
(the path[current index-1].variables, action index)

∗ the path[current index-1].path reward =
the path[current index-2].path reward +
the path[current index-1].state reward *
the path[current index-1].time in state +
the path[current index-1].transition reward unless current index is

1 where the value of thepath[current index-2].path reward is 0.

• A function, Backtrack, is provided which allowing backtracking. The function accepts an
index parameter, to state which describes where to backtrack to and does the following:

– Sets current index to be to state;

– Copies the array stored in the path[current index] into model variables.

• A function, Remove Preceding, is provided which allows states to be removed before a
particular index. The function acepts an index parameter, before state and does the
following:
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Remove Preceding(int before state)
1. i := before state
2. j := 0
2. for i to current index
3. the path[j] = copy of the path[j]

5.2.3 Update Event Set Calculation

One of the key parts of the simulator engine design was the algorithm to calculate the set, Es,
of events from a particular state, s.

Storage of the Event Set

For the same reasons why the execution path, the path is stored as a static preallocated array, it
was decided that the update event set, updates, would be preallocated too. Therefore, updates
is stored as an array of UpdateEvent objects which have to store the appropriate information:

• The probability or rate of the update event. This is stored as a real number, prob;

• The index of the probability distribution of the update event. This is irrelevent for
discrete-time Markov chains and continuous-time Markov chains. It is stored as an in-
dex, dist index.

• The action index of the update event. This is stored as an index, action index.

• The module index of the update event. This is stored as an index, module index.

• A preallocated array, assignments of references to Assignment objects. These references
point to assignments stored in the commands of the command table. Initially, this array
consist of dummy references, with an index num assignments used to specify how many of
these references have been assigned correctly. This array should be preallocated to be the
size of the maximum possible number of assignments per update event.

The updates array is preallocated to be the size of the maximum possible number of update
events for any state. An integer, num updates is stored to represent how many of the update
events actually contain relevent data at any one time.

Combined algorithm for all Model Types

It was decided that rather than design different event set calculation algorithms for each type of
PRISM model, it would be better to analyse the similarities and differences between the three
models. This was so generic algorithms could be designed so that they could be overridden by
subclasses for each type of model, which could deal with the differences.

The solution is in fact the same for CTMCs and MDPs, with only a small change required
to DTMCs to account for the normalisation of probabilities. The analysis of this problem was
done in Section 3.3. For each type of model, it is necessary to calculate a set of commands that
evaluate to true over s.

The algorithm manipulates a preallocated 3-dimensional array, true commands of references
to Command objects, which evaluate to true over s. The first dimension of the array indexes
the module index of the true command, and the second dimension indexes the action-label of
the command. The size of the first dimension is equal to the number of modules in the model
+ 1. This is so the index [num modules] can be used for synchronisation purposes. The size
of the second dimension is equal to the number of action labels + 1. This is so the index
[num action labels] can be used for commands which have no action-label.

For MDPs and CTMCs it is possible to have more than one command of the same action-label
in the same module evaluate to true for the same state. Therefore, the third dimension is used to
index this. In order to determine how many commands are true in each slot of true commands,
a 2-dimension array, num true commands is stored to count this.

The pseudocode for the first stage of population of true commands is given below. The input
parameter is an array, vars of integer which is the same size as model variables.
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Populate True Commands(Command[][][] true commands, int[][] num true commands)
1. Set each element in num true commands := 0
2. for each Command c in command table
3. if c.guard.Evaluate(vars) then
4. if c.action index == -1 then
5. true commands[c.module index]
6. [num action labels]
7. [num true commands[c.module index][num action labels]++]
8. = c
9. else
10. true commands[c.module index]
11. [c.action index]
12. [num true commands[c.module index][c.action index]++]
13. = c

In order to deal with synchronisation, it is first necessary to sort out which action labels
which are blocked over s. Essentially, if for the ith module index and the jth action label
index, alphabet[i][j] is true, if num true commands[i][j] is 0, then the jth action label is
blocked. In which case all entries in true commands where the the second index is j are no longer
needed and so num true commands for that index is set to 0. This is summarised in the following
pseudocode:

Sort Out Blocking(Command[][][] true commands, int[][] num true commands,
bool[][] alphabet)
1. i := 0
2. for i < num action labels increment i
3. j := 0
4. for j < num modules increment j
5. if alphabet[j][i] then
6. if num true command[j][i] = 0 then
7. k := 0
8. for k < num modules increment k
9. num true commands[k][i] := 0

true commands now effectively contains the set, syncha for each action label a, as described
in Section 3.3. The next stage is to create a Command object csyncha

which is the product of the
commands for each action label in true commands. This is acheived by the following pseudocode:

Form Products(Command[][][] true commands, int[][] num true commands)
1. i := 0
2. for i < num action labels increment i
3. j := 0
4. for j < num modules increment j
5. if num true commands[j][i] == 0 then continue
6. else ifnum true commands[num modules][i] == 0 then
7. k := 0
8. for k < num true commands[j][i] increment k
9. true commands[num modules][i]
10. [num true commands[num modules][i]++] :=
11. true commands[j][i][k]
12. else
13. k := 0
14. for k < num modules increment k
13. l := 0
14. for l < num true commands[j][i] increment l
15. true commands[num modules][i]
16. [num true commands[num modules][i]++] :=
17. Product Commands(true commands[num modules][i][k],
18. true commands[j][i][l])
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This algorithm puts the resulting commands in the sorted slot for each action label e.g. for
the jth action index, the sorted slot is true commands[num modules][j]. All that is required
is a function for forming the product of two Command objects. This is shown in the following
pseudocode:

Command Product Commands(Command comm1, Command comm2)
1. Create a new Command object, prod
2. prod.guard := undefined
3. prod.action index := comm1.action index
4. Create an array, merged of Update objects of size comm1.num updates*comm2.num updates
5. k := 0
6. i := 0
7. for i < comm1.num updates increment i
8. j := 0
9. for j < comm2.num updates increment j
10. Create a new Update object, u
11. u.prob := a new RealTimes object with comm1.updates[i].prob and
12. comm2.updates[j].prob
12. Add each Assignment in comm1.updates[i].assignments to u.assignments
13. Add each Assignment in comm2.updates[j].assignments to u.assignments
14. merged[k++] := u
15. prod.updates = merged
16. return prod

true commands now contains all of the data required to populate the updates event set,
updates. This is done by extracting the updates for each remaining Command in the true commmands.
For the ith command, c, for each update u in c.updates modify updates[i] such that:

• update[i].prob := c.prob.EvaluateDouble(vars);

• update[i].dist index := i;

• update[i].module index := c.module index;

• update[i].action index := c.action index;

• update[i].assignments := u.assignments.

For discrete-time Markov chain models, each update in updates must be normalised. If
the total number of remaining commands in true commands is n, for each UpdateEvent, u in
updates:

• u.dist index := 0;

• u.prob := u.prob / n.

5.2.4 Making Manual Choices

For a current, s, the previous section described how to generate the possible set, Es of update
events to move into a state s′. This is stored in an array, updates, of Update Event objects.

Suppose s is the current state and the ith update is selected from updates calculated for
s. The simulator engine has to apply the assignments in updates[i].assignments to update
model variables and then update the path.

For CTMCs, the simulator engine has to also calculate the time spent in the last state, if this
was not specified by the user. This calculation requires the generation of a random real number,
sample, between 0 and 1. With this number the time spent in the last state is calculated as:
(-1*log(sample))/updates[i].prob

This is shown in the following pseudocode:
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Make Choice(int i, real time in last state)
1. for each Assignment a in updates[i].assignments
2. Create a temporary integer a temp
3. a temp := a.assign.Evaluate(model variables)
4. for each Assignment a in updates[i].assignments
5. model variables[a.index] := a temp
6. the path.Add State(time in last state, i, updates[i].action index)

5.2.5 Making Automatic Choices

The process of making an automatic choice from an update set, Es, where s is the current state
is just a simple case of sampling from the probability distribution in the updates array.

If an array of reals, distribution is created to be the same size of updates where distribution[i]
:= updates[i].prob, the following recursive algorithm can be applied which returns a sample
index, where the probability of selecting the ith element is distribution[i]. It assumes there
is a function Random Uniform which returns a random real number between 0 and 1.

int Sel From Dist(real[] distribution)
1. return Sel From Dist Helper(0, 1.0, distribution)

int Sel From Dist Helper(int start, double max prob, real[] distribution)
1. if start > distribution.length
2. return start-1
3. else if Random Uniform()*max prob < distribution[start]
4. return start
5. else
6. return Sel From Dist Helper
7. (start+1, max prob-distribution[start], distribution)

The simple case - CTMCs

For continuous-time Markov chains, the process of making an automatic choice starts by calcu-
lating updates as described previously. Recalling that the probability of a particular event in a
CTMC is the rate of that event divided by the sum of the rates of all events in Es, the first step
is to calculate a real number sum rates, which is calculated as the sum of all event.prob for
each event in updates.

An array, dist is then populated with the rates from each each element in updates. The auto-
matic choice is done by calculating Select From Distribution Helper(0, sum rates, dist)
to give an integer, sample.

Finally, model variables and the path are updated by calling:

Make Choice(sample, (-1*log(Random Uniform()))/updates[sample].prob)

Optimisations for DTMCs and MDPs

For discrete-time Markov chains and Markov decision processes, it is possible to perform auto-
matic updates without actually calculating the entire updates array. It should be noted that
this is not possible for continuous-time Markov chains, because probabilities are calculated from
the sum of the rates of each element in updates. The idea behind this optimisation is given
below:

• Populate True Commands and Sort Out Blocking still need to be executed.

• It is possible to determine the number of asynchronous commands, count asynch, and
how many synchronised commands there will be after all products have been formed,
count synch;

• Select a random number 0 6 sample < count asynch + count synch;

• If sample < count asynch, then there is no need to deal with any synchronisation. Suppose
comm is the sampleth Command object in true commands An array dist is then populated
with the probabilities calculated for each Update object, u, in comm as:
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u.Evaluate Double(model variables).

It is now possible to use Select From Distribution(dist) to give an index, i. The
following pseudocode should then be performed (this is similar to Make Choice except
does not require the updates array.

1. for each Assignment a in comm.updates[i].assignments
2. Create a temporary integer a temp
3. a temp := a.assign.Evaluate(model variables)
4. for each Assignment a in comm.updates[i].assignments
5. model variables[a.index] := a temp
6. the path.Add State(time in last state, -1, comm.updates[i].action index)

• If sample > count asynch, then a synchronous command has been selected. In this case,
for the sampleth action index, index, products have to be formed of all commands. The
resulting command can be selected from in the same way as comm was handled in the last
step.

The optimisation is based upon the assumption that for both types of model, the choice
between probability distributions is always a uniform probabilistic choice3.

It should also be noted that it is not possible to calculate the choice made parameter for the
Add State function without calculating updates. Therefore, if this information is required, it is
necessary to calculate updates.

This optimisation was developed because this operation is perhaps the most frequently oc-
curring in the approximate model checking algorithms.

5.2.6 Loop Detection

In order to design the algorithms for the detection of loops in the path, the following aspects
were considered:

• An algorithm which analyses the path and can return an answer as to whether it is looping
would be computationally expensive, as for each addition, the algorithm would have to
analyse the entire path. This approach does have the benefit that when the path is modified,
i.e. for backtracking, loop detection is easy to re-calculate.

• An approach which detects loops as they happen is more difficult to design, but results in
a more efficient approach. In this case, only a small subset of the path has to be analysed
for each addition.

For efficiency reasons, the second approach was chosen. Therefore, for each addition to the
path, i.e. every time the path.Add State is called, the path has to be queried for loops.

A loop can only occur in a portion of the path that is looping deterministically. That is, for
every state, s, in the looping portion, the update event set, updates, can only contain one possible
destination for each UpdateEvent, u when u.assignments are applied to s. Furthermore, the
state at the path[current index].variables should be the same as the the variables of
another state in the looping portion.

The algorithm works by maintaining an index, potential loop start to the start of de-
terministic portions of the path. Initially, potential loop start is set to -1 to indicate that
there is no deterministic portion. While potential loop start is still -1, if the update event
set, updates for a particular state is deterministic, then potential loop start is set to be
the index of that state in the path. While potential loop start is >= 0, every time a new
state is added to the path and its update event set is calculated, the path is searched from
potential loop start to current index-1. If a state at index, start, is found that is the
same as model variables then a loop has been detected. A Boolean variable, loop detected
(which is initially false for each path) is set to true and an integer variable, loop start is set to
start.

3This was the assumption made in the Background section for MDPs as the way to resolve the non-determinism.
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5.2.7 Evaluation of State Label Formulae

One of the requirements of the simulator user interface is that it must have a list of state label
formulae. It was decided that this would be stored as part of the simulator engine, as an array
loaded state formulae of NormalExpression objects. This array can be populated whenever
a label formula is added to the simulator user interface.

Important Functions

A few functions are provided which query the formulae stored in loaded state formulae:

• A function, Query Formula(int i) is provided which returns

loaded state formulae[i].Evaluate(model variables),

i.e. whether the ith loaded formula is satisfied in the current state.

• A function, Query Formula(int i, int step) is provided which returns

loaded state formulae[i].Evaluate(the path[step].variables),

i.e. whether the ith loaded formula is satisfied in state in the path indexed by step.

Furthermore, functions are required to query whether the current state, or a state in the path
is the initial state, or a deadlock state:

• A function, Query Initial() is provided which returns whether model variables is the
same as the path[0].variables, i.e. whether the current state is the initial state;

• A function, Query Initial(int step) is provided which returns whether the path[step].variables
is the same as
the path[0].variables, i.e. whether the state inthe path indexed by step is equal to
the initial state;

• A function, Query Deadlock() is provided which returns whether the update event set for
model variables is empty, i.e. whether there are no outgoing transitions from the current
state;

• A function, Query Deadlock(int step) is provided which returns whether the update
event set calculated for the path[step].variables is empty.

5.2.8 Evaluation of Path and Reward Formulae

Path and reward formulae such as [true U<=3 s=3] or [F s=3] are required for two purposes:

• One of the requirements of the simulator user interface is that it must have a list of path
and reward formulae;

• For use in statistical sampling techniques.

Therefore is was decided that these formulae would be stored as part of the simulator engine,
as an array: loaded path formulae of PathFormula objects. Each object maintains a boolean
answer known as to whether the result for particular path or reward formula is known according
to the current state of the path. If the result is known, then a boolean answer is stored which
contains the answer.

In order to determine this, each PathFormula object must be notified whenever the the path.Add State()
function is called. When this happens the PathFormula may update its answer and answer
known variables appropriately. This is done in an abstract method, Notify Current State()
which should be implemented in subclasses for each different type of formula.

Each PathFormula also provides a function, Is Answer Known() which by default returns
true if answer known is true or if proven looping is true.
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For rewards formulae, objects can be of type RewardFormula which extends PathFormula.
The only real customisation is that a double answer double is stored because each path will
have a real valued reward, rather than a Boolean value.

With the PathFormula and RewardFormula classes defined like this, all that is required is
to define the Notify Current State() method for each subclass. These are discussed in the
following sections and the inheritance hierarchy is given in Appendix B as Figure B.1.

Bounded Until

A BoundedUntil object extends PathFormula and stores all of the relevant information for a
bounded until path formula:

• The left expression, expr1, which is an Expression object;

• The right expression, expr2, which is an Expression object;

• The lower bound, lower bound, which is stored as a real number;

• The upper bound, upper bound, which is stored as a real number;

Furthermore, for each execution path, a BoundedUntil object maintains a integer, counter
which records the number of steps so far, and a real number, time so far which records the
elapsed time so far. counter is initially -1 for every path.

The function Notify Current State() essentially checks whether if the time so far is within
in bound if the right expression evaluates to false then the left must still be true. If the left ex-
pression is true and the right expression is false then the answer = false. If the right expression
evaluates to true in the time bound then answer = true.

Until

An Until object extends PathFormula and stores all of the relevant information for an unbounded
until path formula:

• The left expression, expr1, which is an Expression object;

• The right expression, expr2, which is an Expression object;

The pseudo-code for the overriding of Notify Current State() is given below: counter is
initially -1 for every path.

Notify Current State() for Until
1. if !answer known then
2. if expr2.Evaluate(model variables) then
3. answer known := true
4. answer := true
5. else if expr2.Evaluate(model variables) then
6. answer known := true
7. answer := false

Next

A Next object extends PathFormula and stores all of the relevant information for a “next” path
formula:

• An expression, expr, which is an Expression object;

Furthermore, for each execution path, a Next object maintains a integer, counter which
records the number of steps so far. counter is initially -1 for every path.

The pseudo-code for the overriding of Notify Current State() is given below:
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Notify Current State() for Next
1. counter++
2. if !answer known then
3. if counter = 1 then
4. answer known := true
5. if expr.Evaluate(model variables) then
6. answer := true
7. else
8. answer := true

Cumulative Rewards

A CumulativeReward object extends RewardFormula and stores all of the relevant information
for a cumulative reward formula:

• The time bound, time bound, which is stored as a real number;

Furthermore, for each execution path, a CumulativeReward object maintains an integer,
counter which records the number of steps so far, and a real number, time so far which records
the elapsed time so far.

The function Notify Current State() works by checking whether the time so far is greater
than the time bound. If so, answer double is set to be the the path[current state-1].path reward.

Instantaneous Rewards

An InstantaneousReward object extends RewardFormula and stores all of the relevant informa-
tion for an instataneous reward formula:

• The time bound, time bound, which is stored as a real number;

Furthermore, for each execution path, a CumulativeReward object maintains an integer,
counter which records the number of steps so far, and a real number, time so far which records
the elapsed time so far.

The function Notify Current State() works in the same say as for CumulativeReward ex-
cept answer double is set to the path[current state-1].state reward.

Reachability Rewards

A ReachabilityReward object extends RewardFormula and stores all of the relevant information
for a reachability reward formula:

• An expression, expr, which is an Expression object;

The pseudo-code for the overriding of Notify Current State() is given below:

Notify Current State() for Until
1. if !answer known then
2. if expr.Evaluate(model variables) then
3. answer known := true
4. answer double := the path[current index].path cost

5.2.9 Approximate Model Checking Algorithm

The approximate model checking algorithm was extended in Figurefig:gaa-multiple in order to
deal with multiple properties. This section considers the design of this algorithm as part of the
simulator engine.

Properties for approximate model checking are stored in an array, properties of Sample Holder
objects.
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The Sample Holder

A Sample Holder object, sh stores all of the data required to perform approximate model check-
ing on a particular path or reward formula stored as a PathFormula object sh.formula:

• A real value, cumulative value, which for path formula is the sums of 0s and 1s and for
rewards formula is the sum of rewards.

• The number of samples so far, no samples.

The following functions are provided:

• Sample(real sample) - This increments no samples and adds sample to cumulative value.

• bool Done() - This returns true if number of samples is greater than the number of iter-
ations, N .

• Get Result() - This returns cumulative value / no samples, which is the result.

Implementation of the Extended Generic Approximation Algorithm for Multiple
Properties

The following pseudocode performs the approximate model checking technique for N iterations:

GAA extended(int N)
1. initial := clone of initial state
2. iter := 0
3. for iter < N incrementiter
4. model variables := initial
5. current index := -1
6. Add State(current index, -1, -1)
7. Make automatic choices until all formulae have answer known = true
7. or until k is reached
8. for each Sample Holder sc in properties
9. sc.Sample(sc.formula.Get Answer Double())
10. textrmresetsc.formula

5.3 Simulator User Interface Design

The simulator user interface is built on top of the simulator engine and uses its functionality
as described in the specification. It is also built on top of the existing PRISM user interface.
When considering the design of the simulator user interface, the following factors were taken into
account:

• All components included in the specification needed to be laid out in an intuitive way;

• An existing layout had already been developed for the PRISM simulator prototype, which
was reasonably successful;

• The specification requests the view of the current execution path be customisable.

5.3.1 Component Layout

It was decided that components would be grouped according to functionality. For example, all
buttons that concern the current execution path are grouped together and all components that
concern the current update event set are grouped together.

The process of creating the user interface was iterative, with user input taken into account
after each iteration. The chosen layout is shown in Figure 5.2.
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Current Execution Path

Path and Model Information

New Path

Reset Path

Export Path
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State Label Table

Backtrack Backtrack
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No Steps

State time

To Step Before
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Figure 5.2: Layout of the simulator user interface

5.3.2 Current Execution Path Table

The specification suggests the current execution path table should display a grid of data values,
with columns for the behaviour of each variable over time. However, for most models, only a small
subset of variables actually change from one state to another. It was decided that rather than
display the grid of data values,only changes in values should be rendered to create a sequence
diagram style for the execution path. However, when the user selects a particular state, the
values for that row are re-displayed. A portion of a sample path rendered using this design is
shown in Figure 5.3.

Figure 5.3: A portion of a path rendered using the sequence diagram style

5.4 Implementation Issues

The PRISM graphical user interface is written in the Java programming language. Most of the
computational engines of PRISM are implemented using C and C++, using the Java Native
Interface to communicate with Java.

Because one of the key parts of the project was that the simulator should be as fast as
possible, it was decided that the simulator engine would also be written in C++. The hope was



56 CHAPTER 5. DESIGN AND IMPLEMENTATION

that a compiled language such as C++ would perform faster than the interpreted Java.
One important issue to note is that PRISM has to be released on three different platforms:

Windows, Linux and Solaris. For Java, this is not an issue, but all C++ code had to conform to
ANSI C++ standards, so that it was compiler independent.

5.4.1 The Simulator Engine

The interface for the simulator engine was written in the Java, using native methods to integrate
with the C++ code. All of the model, path, expression and path formula data structures were
implemented in C++.

The decision to use C++ for the simulator engine did however cause many problems through-
out the project. Most problems were to do with memory management and memory leaks, issues
that do not arise in Java programming.

5.4.2 Simulator User Interface

PRISM allows new graphical user interface components to be added via its “plug-in” mechanism.
This mechanism provides an abstract class GUIPlugin, which provides all base functionality of
integrating with the PRISM graphical user interface:

• It allows new plug-ins to communicate with existing parts of the system via a message
passing protocol. For the simulator user interface, this was used to listen for when new
models were loaded and parsed into PRISM.

• It allows the plug-in to be displayed within the PRISM GUI as a new tab panel, with
menus and options panels. The options panel feature was utilised to integrate a simulator
options panel.

The simulator user interface itself extended GUIPlugin and was constructed using Java Swing
components. The layout of the interface was put together using the Netbeans form editor tool.
For components such as the execution path table, it was required to use inheritance to override
the way that Swing renders its components. This technique was used to render the sequence
diagram style and for the display of loops.

5.4.3 Properties Integration

The integration of the statistical sampling techniques into the PRISM graphical user interface
involved the modification of several PRISM graphical user interface components. These compo-
nents included:

• The properties list had to have a new “Simulate” button integrated into its popup menu;

• The experiments dialog had to have a new “Use Simulation” check box added to it;

• The mechanism for handling PRISM experiments had to be considerably modified to cope
with using results from the simulator engine rather than from PRISM’s numerical engines.

Despite having to understand and manipulate a lot of existing components, the integration
of the statistical sampling techniques was relatively problem free.

5.4.4 Implementation Tools

For code written in C++, Microsoft’s Visual Studio .NET 2003 was used. This was particularly
useful because it enabled the handling of the large amount of source files involved in the PRISM
tool.

For Java editing, the tool Netbeans was used. This tool also provided a useful mechanism of
managing large numbers of files. The most useful feature of this tool was its form editing utility,
which allows powerful user interfaces to be developed very quickly.
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Testing

This section discusses the techniques that were used test the PRISM simulator at various stages
of the software lifecycle. Section 6.1 describes how the requirements were validated by the
development of prototypes. Section 6.2 states the strategies employed to rigourously test the
most important units of the tool.

Once developed, the PRISM tool was applied to a wide variety of case studies to test the
performance of the system and the correctness of the statistical sampling techniques. This is
discussed in Section 6.3.

The tool was then released to a small number of users as an alpha release. This is discussed
in Section 6.4.

6.1 Requirements Validation

The process of validating requirements started with the development of the PRISM simulator
prototype. Because of this tool, it was possible to see which parts of the specification were useful
and which parts required further development.

The requirements of the prototype that were successfully validated were incorporated as part
of the requirements for this project. In order to continue this process, an expert user was asked
to analyse any new requirements and state whether they were correct. A number of proposed
features that would not have provided any real benefit were eliminated in this way.

6.2 Unit Testing

The development of the most important algorithms of the system included rigourous unit testing
techniques. For example, the generation of the update set for a particular state is one of the
most frequently executed functions in the simulator. In order to test its correctness, a test was
performed that for a wide selection of PRISM models, the transition matrix generated by PRISM
was compared state by state to the update set calculated by the simulator. In this case, a number
of errors were found and corrected.

Most tests required results calculated by PRISM to be used as a reference.

6.3 System Testing

When most of the components of the PRISM simulator had been developed, the whole system
was tested. The following elements were investigated:

• The scalability of the simulator to very large PRISM models;

• The robustness of the simulator user interface,

• The correctness of the statistical techniques, as compared with results calculated by PRISM.
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6.4 Alpha Testing

In order to test the usability of the tool, the PRISM simulator was introduced to a wide variety
of different users, including:

• The PRISM development team;

• A group of students using PRISM for the first time for a coursework exercise.

The alpha testing process also provided further means of testing the aspects investigated in
system testing.
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Project Management

This chapter describes how the PRISM simulator project was managed. Section 7.1 describes
how the development lifecycle was planned and Section 7.2 indicates how the actual development
of the project differed from the original schedule. Finally, an appraisal of the project management
methodology is given, describing the lessons learnt.

7.1 Work Breakdown

The development life cycle used in this for this project was iterative. The result of the initial
planning around this life cycle was a work breakdown structure, which is summarised below:

• Project Planning and Initialisation - All work concerning planning, proposal writing and
project standards should be done in the first phase.

• Requirements and Graphical User Interface Design - All of the explicit requirements of the
system should be collected in the second phase. The user interface should be designed at
the same time as the elicitation process to ensure that the specification is as complete and
accurate as possible.

– Domain Analysis - Although some domain analysis will have already been performed,
throughout the elicitation and analysis process, it will be important to gain as much
necessary knowledge as possible.

– Planning - Strategies and techniques should be found for eliciting requirements. For
each technique selected, all of the appropriate preparations should be made including
arranging meetings with users and developers.

– Elicitation - The strategies outlined in the requirements elicitation plan should be ap-
plied. This stage will involve conducting meetings with potential users of the system.
These meetings should be used to draw up and agree upon a set of user requirements.

– Analysis - A requirements document should be produced and approved by potential
users of the system.

– Design for GUI - At the same time as requirements elicitation, a design for the user
interface should be produced. Suggestions should be drafted as simple prototypes
for/in meetings (possibly using tools such as MS-Visio or Netbeans) and then modified
according to any feedback from users.

• 1st Iteration: Core Data Structures and Algorithms - The foundations of this project
involve the design and implemention of core data structures and algorithms that will be
used in future iterations. The majority of the work will be performed in this phase, the final
result being a simple command line simulator, which tests all of the necessary functionality.

• 2nd Iteration: Simulator User Interface - This phase involves research into the existing
PRISM GUI, and then the production an efficient class design for the new user interface.
The user interface should then be implemented and tested. It will be important to consider
that for the second project extension, it may be necessary to add to this user interface in
order to incorporate graphical module diagrams.
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• 3rd Iteration: Properties User Interface Integration - The PRISM GUI includes an interface
that deals with all model checking operations. This includes the verification of properties
against a model using one of PRISMs model checking engines. In this phase the simulator’s
data structures and algorithms from should be integrated into the existing properties user
interface .

The following phases were considered as possible extensions to the system, listed in order of
priority.

• 1st Extension: Rewards Integration - A current development of the PRISM tool allows
paths to be given a reward value. This phase invovles the integratation of the idea of
rewards into the manual and automatic exploration algorithms and to allow reward based
properties to be verified using the statistical sampling techniques.

• 2nd Extension: Graphical module integration - A current development of the PRISM
user interface is the Graphical Model Editor. This allows PRISM models to be specified
diagrammatically. This extension would enable users of the simulator user interface to see
the current state of graphical modules diagrammatically as they step through the model.

• 3rd Extension: MDP Automatic Path Generation: Further Research and Improvements
- The initial work into MDP simulation will only be very approximate. This extension
is to perform further research into the area, with the hope of producing a more effective
solution.

The detailed breakdown of each of these phases is given in the Project Plan, which is given
as a supporting document to this dissertation.

7.2 Scheduling

This section compares the original project schedule with the actual series of events that led to
the project’s completion.

Phase Original schedule Actual times Explanation
Project Planning
and Initialisation

July to Mid
September 2004

July to Mid
September 2004

Requirements and
GUI Design

Mid September to
Mid October 2004

Mid Septem-
ber 2004 to Mid
November 2004

Domain research and analysis
was much more complicated than
anticipated. Also, the process of
documenting requirements took
longer than expected.

1st Iteration Mid October to
Mid November
2004

Mid November
2004 to Mid Febru-
ary 2005

This work was considerably more
complex than the original esti-
mates. However, this time was
also spent developing the 1st ex-
tension of the project because it
was decided that concurrent de-
velopment would be more appro-
priate. Also, much of January
was lost due to unforseen non-
project related circumstances.
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2nd Iteration Mid November
2004 to January
2005

March to Mid
March 2005

This work was actually per-
formed last because it was de-
cided that the “Properties User
Interface” should be given prior-
ity. However, with the ability to
do 60 hours per week, it was pos-
sible to complete this iteration
before the presentation deadline.

3rd Iteration January to Mid
February 2005

Mid February to
March 2005

Due to prior experience of the
properties user interface, this
work was performed much more
quickly and problem free than
expected.

1st Extension Mid February to
March 2005

January to Mid
February 2005

It was decided that the priority
of the rewards extension was ac-
tually higher than the user inter-
face iterations and so it was de-
veloped along with the core data
structures and algorithms.

Unfortunately, time did not allow the 2nd and 3rd extensions to be developed.

7.3 Appraisal

The original work breakdown and project schedule provided a very useful means of partitioning
the project into manageable units and of monitoring progress via the various milestones. For
example, in January, it seemed unlikely that some of the user interface work would be completed,
because many deadlines were still overdue. This allowed priorities to be reassessed and resulted
in a re-scheduling of the rewards extension and the properties user interface.

The iterative lifecycle proved successful for this type of project, although in a lot of cases,
it was not as rigidly applied as the work breakdown structure would suggest. This was mainly
due to the fact that it was necessary to design and implement parts of the software in order to
understand some of the background material or to understand or validate the requirements.

The main lesson learnt from this project was that it is important to consider the risk of un-
forseen consequences by providing several fallback positions should the full range of functionality
prove unfeasible.
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Chapter 8

Evaluation

This chapter gives an evaluation of the PRISM simulator. The simulator user interface is ap-
praised in terms of its usability, scalability, robustness, responsiveness and specification confor-
mance. The following sections give two case studies that attempt to show the success of the
approximate verification techniques by comparing results and performance to PRISM, as well as
to similar techniques of related tools.

8.1 Simulator User Interface

The main motivation for the simulator user interface was to give users the opportunity to further
understand the models they develop. In order to evaluate the success of the simulator user inter-
face, a number of users were given the opportunity to use it as part of their model development
process. As well as providing a useful means of obtaining further user requirements, these tests
allowed feedback to be gathered.

It should be noted that the software released was a development version of the PRISM
simulator. Any errors found by users were immediately corrected. The feedback is summarised
below:

8.1.1 Usability

The PRISM simulator has already been used extensively by members of the PRISM development
team to debug their PRISM models and to help users from other universities with their problems.
The team have found that the tool makes light work of spotting modelling errors that otherwise
would have had to have been searched for manually.

One particular student used the tool whilst developing a PRISM model from scratch for
a coursework assessment within the university. One result that was not anticipated was that
simulator was a helpful teaching tool of probabilistic modelling and the PRISM language. The
student stated that he was able to understand the more advanced features of the PRISM language,
such as module synchronisation and label formulae, more quickly because of the simulator. As
well as this, a number of modelling errors were found, that had not been noticed during modelling
or in analysis. When these errors were resolved, verification results were significantly different
and were closer to the expected results.

Many users commented on how some of the visual features were successful:

• When asked about usefulness of the sequence diagram style for the execution path table
as compared to the ordinary plain table style (these are illustrated in Figure 8.1), users
commented on how it enabled them to see patterns and therefore better understand the
execution behaviour of their models.

• The feature which allows users to select a particular label, and then highlights all of the
states in the current execution path which satisfy the predicate for that label, was liked
by users. Again, this was because it made it easier to spot patterns. For example, Figure
8.2 gives an example where the selected label formula is very rarely false and is relatively
complex. Therefore, the non-satisfying states would be very difficult to spot without this
feature.
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Sequence Diagram Style Plain Table Style

Figure 8.1: Comparison of the different styles of path table.

Formula label highlighted:
"premium" = (left n>=left mx&Toleft n)|
(right n>=right mx&Toright n)|
((left n+right n)>=left mx&Toleft n&line n&Toright n)

Figure 8.2: Highlighting the satisfaction of state formula labels

• Users who developed models with a large number of variables found that the column hiding
feature was useful. In particular, they liked how it was possible to hide multiple columns
in one selection of the menu.
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8.1.2 Scalability

A member of the PRISM development team wanted to use the simulator for a very large model.
This model had 523 variables and over 7000 commands. Originally, the simulator user interface
did not scale up to such a large model, but after a few modifications, it worked correctly and
reasonably quickly: To calculate a path of 100 steps takes around 3 seconds. For each step, the
simulator hass to evaluate over 7000 guards and then sample from around 100 possible updates.

The only real weakness was that for such a large number of variables, the column hide/show
menu could not display all of the variables, even when the application was run with a screen size
of 1280 by 1024 pixels.

8.1.3 Robustness

Many features were provided to stop unexpected behaviour, such as validation checks on all
text box entries and an error handling mechanism for when parsed PRISM models are loaded.
Furthermore, the system has been tested successfully, with a range of valid and invalid data
values, on a wide and varied range of existing case studies.

Despite this, there are still a few outstanding issues concerning memory allocation, which in
rare cases cause the program to crash.

8.1.4 Responsiveness

For the majority of PRISM models, the user interface works quickly, with all operations being
performed almost instantaneously. However, the following exceptions have been observed:

• When a label formula is selected, the highlighting of large paths is often quite slow;

• When the execution path is large, scrolling and menu selection lag behind mouse input;

• When a large path length is set, (e.g. > 106), the “New Path” function takes a considerable
amount of time.

8.1.5 Specification Conformance

All functional requirements for the simulator user interface, specified in Section 4.2, were met by
the implemented solution.

8.2 Approximate Model Checking

The approximate model checking techniques developed as part of the PRISM simulator were
implemented to provide an alternative to numerical model checking in circumstances where
model size and computation times are unfeasibly large. This section gives two case studies
designed to give a comparison of the PRISM simulator’s model checking results with the results
produced by PRISM’s numerical engines. Furthermore, the first case study compares results
calculated using PRISM simulator with the results calculated using alternative tools and the
second demonstrates how the PRISM simulator can be used to check models that are unfeasible
to check with PRISM’s numerical engines.

8.2.1 Dice Programs

This case study considers a probabilistic program that attempts to model a fair dice using only
fair coins. It is taken from the PRISM web site [3].

The Model

The system is modelled as a discrete-time Markov chain. For each state of the model, there are
two outgoing transitions, each with a probability of 0.5, modelling the two possible outcomes
of tossing a fair coin. When the model enters the terminating state, it assigns a value to the
variable d which is the value of the dice. Also, for each state, a reward of 1 is accumulated.

The PRISM code for this model is shown in Figure 8.3, and a graphical version has already
been shown in Figure 1.2
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1. probabilistic
2.
3. module die
4.
5. // local state
6. s : [0..7] init 0;
7. // value of the dice
8. d : [0..6] init 0;
9.

10. [] s = 0 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 2);
11. [] s = 1 → 0.5 : (s ′ = 3) + 0.5 : (s ′ = 4);
12. [] s = 2 → 0.5 : (s ′ = 5) + 0.5 : (s ′ = 6);
13. [] s = 3 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 7) & (d ′ = 1);
14. [] s = 4 → 0.5 : (s ′ = 7) & (d ′ = 2) + 0.5 : (s ′ = 7) & (d ′ = 3);
15. [] s = 5 → 0.5 : (s ′ = 7) & (d ′ = 4) + 0.5 : (s ′ = 7) & (d ′ = 5);
16. [] s = 6 → 0.5 : (s ′ = 2) + 0.5 : (s ′ = 7) & (d ′ = 6);
17. [] s = 7 → (s ′ = 7);
18.
19. endmodule
20.
21. rewards
22.
23. true : 1;
24.
25. endrewards

Figure 8.3: PRISM model of a fair dice using only fair coins

Properties

For the purposes of analysis, the following properties were defined:

• “What is the probability of throwing x?” where x is an undefined integer constant:

P=?[ true U s=7&s=x ]

• “What is the expected reward to reach the terminating state?”:

R=?[ F s=7 ]

Results - PRISM

When the PRISM numerical engines (specifically, the hybrid engine) are used to verify these
properties, as expected, the probability of throwing any value from 1 to 6 is exactly 1/6 and is 0
for any other value. The expected reward to reach the terminating state is exactly 11/3. Model
construction took 0.287 seconds and each property took 0.002 seconds1 to verify.

Comparison of PRISM Simulator results with PRISM

The PRISM simulator was used to model check the same properties using an approximation
parameter ε = 0.01, a confidence parameter δ = 10−10 and a maximum path length k = 2000.
This means that the the probability of the results being within 0.01 of the actual answer should
be 0.9999999999. These parameters mean that 412042 iterations of the approximation algorithm
are required.

The results for the probability of throwing x are shown in the following table:

1These results and statistics were calculated on a Pentium 4, 2GHz with 1GB RAM running Red Hat Linux.
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Figure 8.4: Comparison of the PRISM simulator with PRISM for the dice program

Simulator PRISM
x Result Time (seconds) Result Time (seconds) Result Difference
0 0.0 3.23 0.0 0.002 0.0
1 0.1666141 3.39 0.1666665 0.002 0.000052
2 0.1661141 3.19 0.1666665 0.002 0.000552
3 0.1666068 3.26 0.1666665 0.002 0.000060
4 0.1668277 3.27 0.1666665 0.002 0.000161
5 0.1665995 3.26 0.1666665 0.002 0.000067
6 0.1672378 3.21 0.1666665 0.002 0.000571
7 0.0 3.51 0.0 0.002 0.0

These results are shown in Figure 8.4, which also shows the effect that changing the number
of iterations has on the accuracy of the results.

When the results were calculated simultaneously, using the technique outlined in Figure 3.8,
the PRISM simulator took 5.21 seconds.

From these results, the following conclusions can be made:

• The difference in results between the simulator and PRISM is never greater than approxi-
mation parameter of 0.01. Therefore, it can be concluded the approximation technique is
working correctly for this example.

• For this example, PRISM’s numerical engines are significantly faster than the PRISM
simulator for the purposes of verification.

• When the results are calculated simultaneously the average verification time per property
is vastly improved as compared to separate calculation. In this example, the total time
was 5 times less. However, greater improvements are possible, as shown in Figure 8.5.
This graph demonstrates the clear benefits of the extension to GAA [6] implemented in the
PRISM simulator.

The result for the expected reward to reach the terminating state was calculated as 3.669980
which is very close to the actual answer of 3.666667.

Comparison of PRISM simulator with alternative techniques

The following table compares the verification times of the first property for the PRISM simulator,
the prototype simulator and the Approximate Probabilistic Model Checker (APMC), which are
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Figure 8.5: Comparison of separate and simultaneous evaluation using the PRISM simulator

three tools that perform approximate model checking. Each property was verified using 412042
iterations and the actual returns were comparable (expect for APMC (k = 4)). The numbers for
the APMC results represent the chosen value of k.

x Simulator Prototype APMC (4) APMC (10) APMC (20) APMC (200)
0 3.23 22.10 3.77 4.01 6.02 48.19
1 3.39 21.85 1.91 3.83 5.94 47.87
2 3.19 21.99 1.93 3.89 5.90 47.94
3 3.26 21.98 1.93 3.93 5.94 47.95
4 3.27 21.81 1.94 3.91 5.95 47.91
5 3.26 21.82 1.93 3.92 5.95 53.95
6 3.21 21.89 1.93 3.91 5.95 47.95
7 3.51 21.87 3.91 3.96 5.90 47.95
Simul 5.21 30.298 N/A N/A N/A N/A

From these results, the following conclusions can be made:

• Even though in general, the prototype simulator only provides a small subset of the func-
tionality provided by the PRISM simulator, for this simple example the algorithms are
the same. i.e. the prototype simulator implements loop detection and the simultaneous
verification of properties. The prototype simulator used PRISM’s ‘ModulesFile’, but it
was decided that this structure could be improved for the purposes of simulation, and this
was indeed the case. A comparison of the evaluation times for these two tools, shows the
clear benefit of and justifies the extra development time of re-designing and implementing
the underlying data structures.

• Comparison with APMC is not so straight forward, because APMCs algorithms do not
incorporate the extensions added by this project. i.e. loop detection and simultaneous
verification of properties. This meant that a direct comparison with identical parameters
produced results suggesting that the PRISM simulator was many times faster than APMC.
However, these results are misleading: If it is assumed that the average path length to the
terminating state is 4:

– The PRISM simulator will produce paths with an average length of 4, because it will
detect the loop in the terminating state.

– APMC will continue evaluating paths up until length k, whether the loop has been
detected or not.
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Therefore, if k is set to 4, it is possible to see which tool performs each step of the path
generation more quickly. From the table, it can be seen that APMC is around 50% faster
when compared in this way. However, in this case the results are always underestimates
because many paths are longer than 4. As k gets larger, the results get more accurate
and at around k = 10 the results are consistently within the error bounds. At this point,
verification times are comparable to, if not longer than the PRISM simulator. In conclusion,
it can be seen that a clear advantage that the PRISM simulator has over APMC is that a
user can just use a value of k that is so large that paths are extremely unlikely to be that
long.

• APMC does not provide the feature and therefore enjoy the benefits of simultaneous veri-
fication.

8.2.2 Cell Cycle Control in Eukaryotic Cells

This case study investigates a more complex model of a biological system. It is taken from the
PRISM web-site [3] and is a translation of a formal specification given in [7].

The cell cycle is a process that occurs in eukaryotic cells, a common class of cells in single or
multi-cellular organisms. The process regulates how the cell grows, how DNA is replicated and
when mitosis should occur. Each phase of the cell cycle is dependent many complex pathways
whose rates depend on a series of base rates and the concentrations of different proteins.

The Model

In PRISM, this system can be modelled as a CTMC, with the reaction times being sampled from
a negative exponential distribution. The model itself uses many of PRISM’s advanced langauge
features, such as synchronisation, undefined constants and rewards and is fairly complex: it
consists of 7 modules, 13 variables and 37 commands. The PRISM code for this model is given
in Appendix C. The table [3] below gives the number of states and transitions for different values
of N , a constant which determines the maximum relative amount of each protein in the model.

N States Transitions
2 4,666 18,342
3 57,667 305,502
4 431,101 2,742,012
5 2,326,666 16,778,785
6 9,960,861 78,768,799

The purpose of showing this table is to illustrate that when N > 6, the number of states
increases beyond 106 states, which is regarded as the maximum number of states that can be
handled by PRISM on a standard desktop PC.

Properties

The property investigated here concerns the amount of cyclin, an important protein in the cell
cycle, that is bound to another protein called MPF (mitosis promoting factor). This binding
is important, because it promotes the activation of further proteins that are involved in cell
replication. The property itself attempts to determine: “the probability of their being i bound
cyclin units at a particular instant in time, T”.

Comparison of PRISM simulator results with PRISM

A PRISM experiment was ran where N = 3, i ranged from 0 to 3 and, t ranged from 0 to 40. The
approximation parameter, ε was set to 0.01 and the confidence parameter, δ was set to 10−10,
meaning that 412,042 paths were generated. Each combination of i and t was enumerated into
a set of properties that was evaluated concurrently.

The results are displayed in Figure 8.6. PRISM simulator results are indicated by vertical
markers and PRISM results are indicated by horizontal markers.

Similar experiments were repeated for N ranging from 2 to 5, and the correlations were as
strong for each case. From these results, it can be concluded that the PRISM simulator has been
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Figure 8.6: Comparison of PRISM and PRISM simulator results for the cell cycle example

successful in approximately verifying the behaviour of this model for input parameters that can
be handled by PRISM.

Larger models

One of the key motivations for the PRISM simulator was that statistical sampling techniques do
not need to enumerate the entire state space, and thus can handle larger models. In order to
test this, the PRISM simulator was set up to consider the same property for models that were
larger than could be handled by PRISM on a standard desktop PC.

For this experiment, i = 0 and T was varied from 20 to 60 in steps of 10. The chart displayed
in Figure 8.7 shows the results for values of N varying from 1 to 16. For comparison purposes,
the results calculated by PRISM are shown for N varying from 1 to 5.

From these results, the following observations can be made:

• When data is available for both PRISM and the PRISM simulator, the results are within
the predefined error bounds.

• For this example, for larger values of N , the results calculated by the PRISM simulator
appear to continue the trend calculated by PRISM.

• Without the PRISM simulator, it would not have been possible to observe some interesting
patterns including where the different data series’ cross each other and how the probability
actually starts to increase with N for the T = 20 data series.

Taking into account that the correlation in results is strong for when PRISM can produce
answers and that any trends appear to continue when calculated by the PRISM simulator, it could
be concluded that the PRISM simulator is successful when applied to larger models. However,
because there is still no source of comparison for the results of the larger models, such conclusions
are dangerous.
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Figure 8.7: Continuation of trends calculated by PRISM by evaluating results with the PRISM
simulator for larger models.
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Chapter 9

Conclusions

This chapter summarises the achievements and deficiencies of the PRISM simulator project. A
number of possible extensions to the project are also suggested in Section 9.3.

9.1 Summary of Project Acheivements

PRISM is a probabilistic model checker which allows the modelling and analysis of systems that
exhibit probabilistic behaviour. This project added to the functionality of PRISM by providing
a simulator, a tool which calculates and reasons about execution paths through probabilistic
models.

9.1.1 The Simulator User Interface

The first part of the project was to create a simulator user interface, allowing users to manually
or automatically generate and visualise paths through their models. For any given state of the
model, the simulator calculates all possible transitions from that state, along with the probability
or rate of that transition. The user is able to either select one of these transitions or specify that
the simulator should make the selection. The states and transitions of a particular system model
are calculated by loading in a model specified in the PRISM language, whose relevant features
are supported in full for each model type.

Many features were incorporated to make the interface as useful as possible. For example,
users are able to see which states satisfy certain logical predicates, whether execution paths
satisfy path based formula and what the results of reward based formulae are over execution
paths. To display a state satisfying a logical predicate, the user can either select a single state
and query it’s result, or they can select the predicate itself and request that the display of the
execution path highlight all satisfying states.

The design for the user interface included many visual features in an attempt to make it more
aesthetically pleasing but also to make it more usable. A sequence based view of the current
execution path was designed to only display changes in variable values, an effect which was aimed
at making it easier to spot patterns. Also, a loop detection feature was added, so that users could
easily see where loops were starting and ending.

Feedback from users indicates that the tool is very useful as a debugger of PRISM models and
properties, but also as a means of understanding the behaviour of models and even the behaviour
of PRISM itself. Users even found it helpful as a teaching tool of probabilistic modelling and the
PRISM language. For a wide variety of case studies the simulator user interface was evaluated as
robust, responsive and scalable to large examples. Also, the visual features and interface layout
received mainly positive feedback.

9.1.2 Approximate Model Checking

The second part of the project was to investigate and develop efficient algorithms to use statistical
sampling techniques to approximate the probabilities or rewards of PRISM properties. The
solution allows the user to specify the degree of approximation and the amount of confidence to
which they require their results.
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Figure 9.1: The simulator user interface integrated into PRISM

Several extensions to the simple generic approximation algorithm [6], provided a more efficient
way of approximately verifying PRISM properties both independently and simulataneously. The
solution ensured that paths were only as long as they needed to be, therefore saving computation
time for models that had loops or paths that often satisfied a particular formula in just a few
steps.

Despite the fact that these techniques can only be applied to a subset of the properties that
can be handled by PRISM, this is due to reasons that could not be addressed by this project.
These were discussed in Section 3.5.1.

These techniques were applied to property specifications of a wide range of discrete-time
Markov chain and continuous-time Markov chain case studies. For all tests, results were produced
that conformed to the approximation and confidence parameters. Also, results were produced
for models whose state spaces are too large for PRISM to handle with a standard desktop PC.
Although these results appear to continue the trends from the results calculated by PRISM on
feasibily sized models, without a source of comparison for the larger models, it is difficult to
conclude that the simulator produces reliable results for such large models. Nevertheless, the
results are still quite convincing (see Figure 8.7).

9.1.3 Integration with PRISM

The simulator user interface and the statistical sampling techniques were integrated into the
latest development version of PRISM as part of the user interface. The simulator user interface
was included as an extra ‘tab’ and an extra button was provided to allow properties to be verified
using the statistical sampling techniques, rather than PRISMs numerical engines. A screenshot
of the simulator user interface is shown in Figure 9.1.

Furthermore, the simulator was integrated with PRISM’s experiments user interface - a fea-
ture which allows properties to be verified against models using a range of input values. This
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Figure 9.2: Integration of the PRISM simulator into the experiments user interface.

feature allows graphs of results to be generated quickly and compared with the results of PRISM’s
numerical engines. A screenshot of the integration of the simulator into the experiments user
interface is shown in Figure 9.2.

9.2 Deficiencies

This section lists some of the main deficiences of the PRISM simulator together:

• The PRISM simulator does not support two features supported by the PRISM language.
The first is that of specifying a process algebra to further customise the synchronisation
of transitions. This feature was not included due to its relative complexity and the fact
that it is rarely used in any of the available case studies. However, because this feature
is not included, it is not possible to use the PRISM simulator for models that have been
converted from the PEPA tool 1.
The second feature that is not supported is that of specifying multiple initial states for the
purposes of analysis. This feature was not included because it is relatively new and the
benefits of including it as part of the simulator were unclear.

• The statistical sampling techniques are of little use for the analysis of the non-deterministic
Markov decision process models. This is because their analysis requires analysis over all
possible resolutions of non-determinism. With PRISM, it is possible to obtain the minimum
and maximum probabilities over all possible resolutions, however, this cannot be done with
a simulator without first enumerating the state space.

1This is a feature that is built into PRISM, where PEPA models are parsed into the PRISM abstract syntax
tree and then built as PRISM models. The convertion of PEPA models tend to always use the process algebra
feature.
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• The statistical sampling techniques assumed that the storage of one sample path at a time
would be sufficient to ensure that large PRISM models could be analysed. However, an
example was found that had a very large number of variables, and required very long path
lengths. It was not possible to store such a model in memory. The deficiency lies in the
fact that it is not absolutely necessary to store an entire sample path at a time. In fact, it
is only necessary to store the current state and a small set of states that could potentially
form a loop at any one time.

• The statistical sampling techniques require unfeasibly large amounts of time to calculate
very small probabilities. Unfortunately, many PRISM models require such small probabil-
ities and so cannot be analysed by the PRISM simulator. This deficiency is really due to
the complexity of the algorithm, and not the design of implementation of the project itself.

• For models with large numbers of variables, the menu, designed to allow users to hide /
redisplay columns of the current execution path, is too big to fit onto the screen. This
means that it is sometimes not possible to redisplay hidden variables.

• The feature that allows the user to highlight all states in the current execution path that
satisfy a particular logical predicate is sometimes slow to the extent that it irritates users.

9.3 Extensions

This section suggests a number of possible extensions to the PRISM simulator. Many of these
extensions were considered, but ultimately not implemented due to time constraints and com-
plexity; some are to address specific deficiencies.

• Extend the coverage of the PRISM language to support the specification of process algebra
to control the synchronisation of transitions. For more information, see the PRISM manual
[2].

• Investigate the usefulness and feasiblity of extending the coverage of the PRISM langauge
to support the specification of multiple initial states.

• Modify the data structures for the statistical sampling techniques so that they do not store
entire sample paths. They should only store the current state and any previous states that
are required for the purposes of loop detection.

• One possible approach to extend the range of properties that can be verified is to let the
PRISM numerical engines calculate the set of states that satisfy particular nested formulae.
Then, for each state in the execution path, σ, one would only have to check whether each
state, si is in that set. This is the approach used in [9] and this extension is to integrate
this into the PRISM simulator.

• A current development of the PRISM tool allows the user to specify models diagrammati-
cally by use of a graphical model editor. Design and implement a link with the graphical
model editor to allow graphical models to be visualised as part of the simulation user
interface.

• Perform a more thorough analysis of applying statistical sampling techniques to Markov
decision processes with the hope of producing better data structures, algorithms and results.
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Project Proposal

A.1 Introduction

PRISM [2] is a probabilistic model checker, a tool which allows the modelling and analysis of
systems that exhibit probabilistic behaviour. Modelling of a probabilistic system is done using
the PRISM language, which can specify:

• DTMCs (Discrete-Time Markov Chains)

• MDPs (Markov Decision Processes)

• CTMCs (Continuous-Time Markov Chains)

The analysis of these models is done by specifying properties using the following temporal
logics:

• PCTL (Probabilistic Computation Tree Logic) for DTMCs and MDPs

• CSL (Continuous Stochastic Logic) for CTMCs

PRISM builds a representation of the model into memory and performs numerical analysis
to verify properties against it.

This project proposes to add to the functionality of PRISM by providing a simulator to allow
further analysis of probabilistic models. Simulation involves the generation of paths through a
model, which can either be generated manually or automatically. For each path, it is possible to
determine whether certain properties have been satisfied, allowing the user to investigate PCTL
and CSL specifications.

Simulation enables the user to manually explore the state space. This has the following
benefits:

• It provides a good sanity check for users as they develop their models.

• Users may be able to spot errors and/or understand the behaviour of their model more
easily if it is displayed visually.

In addition, simulation can be combined with statistical sampling techniques [9], to be used
as an alternative to numerical analysis. This is particularly advantageous because a consequence
of building certain models into memory is that build times and memory usage can be great,
sometimes making numerical analysis impractical. Conversely, combined simulation and sam-
pling techniques only require a single state of the model at a time, saving memory. Although
these techniques yield less accurate results than numerical analysis, it is possible to obtain results
within predefined error bounds.

This project will build upon an existing prototype simulator for PRISM DTMC models.
This prototype allows automatic exploration of PRISM DTMC models, and some sampling
based analysis of properties. Its main weakness is its limited functionality in terms of manual
exploration, but it also suffers with speed, efficiency and usability problems.
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A.2 Aims and Objectives

The aim of this project is to design and implement a simulator for PRISM. This shall be done
by achieving the following objectives:

• Investigate, design and implement efficient data structures and algorithms for:

– The automatic and manual generation of paths through each type of PRISM model;

– The verification and analysis of PCTL and CSL properties over generated paths;

– The computation of probabilities of certain PCTL and CSL properties, based on
statistical sampling techniques.

• Design and implement an intuitive, but powerful graphical user interface for:

– The automatic and manual exploration of PRISM models;

– Allowing property verification using statistical sampling techniques, with the results
also being made available for use in the PRISM experiments user interface.

• Investigate the use of error bounds and acceptance testing [6, 9] for use with the statistical
sampling techniques and implement if feasible.

A.3 Extensions

The following extensions will also be considered:

• A current development of the PRISM tool allows the user to specify models diagrammati-
cally by use of a graphical model editor. Design and implement a link with the graphical
model editor to allow graphical models to be visualised as part of the automatic and manual
exploration user interface.

• If the initial research into simulating MDP models does not yield good results, perform
a more thorough analysis of the area with the hope of producing better data structures,
algorithms and results.

• A current development of the PRISM tool allows paths to be given a cost or reward
value. Integrate the idea of costs and rewards into the manual and automatic exploration
algorithms and allow cost or reward based properties to be verified using the statistical
sampling techniques.

A.4 Work Breakdown and Schedule

Project planning and initialisation All work concerning planning, proposal writing and project
standards. Completion time: Late-September, 2004.

Requirements and Graphical User Interface Design All of the explicit requirements of
the system should be collected. The user interface should be designed at the same time
as the elicitation process to ensure that the specification is as complete and accurate as
possible. Completion time: Mid-October, 2004.

1st iteration: Core data structures and algorithms The foundations of the project in-
volve the design and implementation of core data structures and algorithms that will be
used in future iterations. Completion time: Mid-November, 2004.

2nd iteration: Simulator user interface This phase involves research into the existing PRISM
GUI, and then the production of an efficient class design and implementation of the new
user interface. Completion time: Early-January, 2005.

3rd iteration: Properties user interface integration In this phase, the simulator’s data
structures and algorithms should be integrated into the existing ‘properties user interface’.
Completion time: Early-February, 2005.
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1st Extension: Graphical module integration The simulator user interface should be ex-
tended to enable the users to see the current state of graphical modules diagrammatically.

2nd Extension: MDP simulation - further research and improvements Further research
into MDP simulation should be performed with the aim of producing a more effective so-
lution.

3rd Extension: Cost and Rewards Integration The idea of costs and rewards should be
integrated into the simulator.

Dissertation Writing of the dissertation must have begun by 1st March, 2005 for completion
on the 14th April, 2005. Any extra time before 1st March, 2005 can be used for the three
project extensions. In addition, certain sections of the dissertation should be written as
part of an ongoing documentation process.

A.5 Feasibility

All of the software and hardware needs for this project are met by the school.
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Appendix B

UML Class Definitions

PathFormula

bool answer_known
bool answer

abstract void Notify_Current_State()
void Reset()
bool Is_Answer_Known()
bool Get_Answer()
double Get_Answer_Double()

BoundedUntil

Expression expr1
Expression expr2
double upper_bound
double lower_bound
int counter
double time_so_far

override void Notify_Current_State()
override void Reset()

RewardFormula

double answer_double

override void Reset()
override double Get_Answer_Double()

Until

Expression expr1
Expression expr2

override void Notify_Current_State()

Next

Expression expr
int counter

override void Notify_Current_State()
override void Reset()

CumulativeReward
double time_bound
int counter
double time_so_far

override void Notify_Current_State()
override void Reset()
override void Is_Answer_Known()

InstantaneousReward

double time_bound
int counter
double time_so_far

override void Notify_Current_State()
override void Reset()
override void Is_Answer_Known()

ReachabilityReward
Expression expr

override void Notify_Current_State()

Figure B.1: UML diagram of the PathFormula inheritance hierarchy
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Expression (abstract)

int Evaluate()

int Evaluate(int[]vars)
double Evaluate_Double()

double Evaluate_Double(int[]vars)

IntegerVariable

int Evaluate()

int Evaluate(int[]vars)

int index

NormalExpression (abstract)

abstract int Evaluate()

abstract int Evaluate(int[]vars)

RealExpression (abstract)

abstract double Evaluate_Double()

abstract double Evaluate_Double(int[]vars)

BooleanVariable

int Evaluate()

int Evaluate(int[]vars)

int index

IntegerLiteral

int Evaluate()

int Evaluate(int[]vars)

int value

BooleanLiteral

int Evaluate()

int Evaluate(int[]vars)

bool value

Ceil

int Evaluate()

int Evaluate(int[]vars)

Expression expr

Floor

int Evaluate()

int Evaluate(int[]vars)

Expression expr

Not

int Evaluate()

int Evaluate(int[]vars)

NormalExpression expr

And

int Evaluate()

int Evaluate(int[]vars)

NormalExpression[] exprs

Or

int Evaluate()

int Evaluate(int[]vars)

NormalExpression[] exprs

NormalIfThenElse

int Evaluate()

int Evaluate(int[]vars)

NormalExpression condition

NormalExpression true_case

NormalExpression false_case

NormalMax

int Evaluate()

int Evaluate(int[]vars)

NormalExpression[] exprs

NormalMin

int Evaluate()

int Evaluate(int[]vars)

NormalExpression[] exprs

NormalPow

int Evaluate()
int Evaluate(int[]vars)

NormalExpression lexpr

NormalExpression rexpr

Mod

int Evaluate()
int Evaluate(int[]vars)

NormalExpression lexpr

NormalExpression rexpr

NormalTimes

int Evaluate()

int Evaluate(int[]vars)

NormalExpression lexpr

NormalExpression rexpr

NormalPlus

int Evaluate()

int Evaluate(int[]vars)

NormalExpression lexpr

NormalExpression rexpr

NormalMinus

int Evaluate()

int Evaluate(int[]vars)

NormalExpression lexpr
NormalExpression rexpr

DoubleLiteral

int Evaluate_Double()

int Evaluate_Double(int[]vars)

double value

RealMin

int Evaluate_Double()

int Evaluate_Double(int[]vars)

Expression[] exprs

RealMax

int Evaluate_Double()

int Evaluate_Double(int[]vars)

Expression[] exprs

NormalIfThenElse

int Evaluate_Double()

int Evaluate_Double(int[]vars)

NormalExpression condition

Expression true_case

Expression false_case

RealPow

int Evaluate_Double()
int Evaluate_Double(int[]vars)

Expression lexpr

Expression rexpr

RealTimes

int Evaluate_Double()

int Evaluate_Double(int[]vars)

Expression lexpr

Expression rexpr

RealPlus

int Evaluate_Double()

int Evaluate_Double(int[]vars)

Expression lexpr

Expression rexpr

Divide

int Evaluate_Double()
int Evaluate_Double(int[]vars)

Expression lexpr

Expression rexpr

RealMinus

int Evaluate_Double()

int Evaluate_Double(int[]vars)

Expression lexpr
Expression rexpr

RelOp

int Evaluate()

int Evaluate(int[]vars)

Expression lexpr
Expression rexpr

Figure B.2: UML diagram of the Expression inheritance hierarchy
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Cell Cycle Case Study Model

// cell cycle control in eukaryotes
// based on the stochastic pi caclulus model of Lecca and Priami

// model is a ctmc
stochastic

// initial number of elements
const int CYCLIN = 2 ∗N ;
const int CDK = N ;
const int CDH1 = N ;
const int CDC14 = 2 ∗N ;
const int CKI = N ;

const int N ;

// base rates of reactions
const double R1 = 0.005;
const double R2 = 0.001;
const double R3 = 0.003;
const double R4 = 0.5;
const double R5 = 0.3;
const double R6 = 0.005;
const double R7 = 0.009;
const double R8 = 0.009;
const double R9 = 0.01;
const double R10 = 0.017;
const double R11 = 0.02;

// module for including the base rates
module base rates

[degp] true → R1 : true;
[degc] true → R2 : true;
[degd ] true → R3 : true;
[lb] true → R4 : true;
[bb] true → R5 : true;
[cdh1r ] true → R6 : true;
[pcdh1r ] true → R7 : true;
[removep] true → R8 : true;
[removecki ] true → R9 : true;
[donothing ] true → R10 : true;
[bind ] true → R11 : true;
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endmodule

// CYCLIN
module cyclin

cyclin : [0..CYCLIN ] init CYCLIN ;
cyclin bound : [0..CYCLIN ] init 0;
degc : [0..CYCLIN ] init 0;
trim : [0..CYCLIN ] init 0;
dim : [0..CYCLIN ] init 0;

[lb] cyclin > 0 & cyclin bound < CYCLIN
→ cyclin : (cyclin bound ′ = cyclin bound + 1) & (cyclin ′ = cyclin − 1);

[degp] cyclin bound > 0 & degc < CYCLIN
→ cyclin bound : (degc′ = degc + 1) & (cyclin bound ′ = cyclin bound − 1);

[degd ] cyclin bound > 0
→ cyclin bound : (cyclin bound ′ = cyclin bound);

[bind ] cyclin bound > 0 & trim < CYCLIN
→ cyclin bound : (trim ′ = trim + 1) & (cyclin bound ′ = cyclin bound − 1);

[degc] degc > 0 → degc : (degc′ = degc − 1);

// rate dependent on the number of cyclin/cdk pairs which have a private channel
[bb] trim > 0 & dim < CYCLIN → 1 : (dim ′ = dim + 1) & (trim ′ = trim − 1);

[removecki ] dim > 0 & cyclin bound < CYCLIN
→ dim : (cyclin bound ′ = cyclin bound + 1) & (dim ′ = dim − 1);

[donothing ] dim > 0 → dim : (dim ′ = dim);

endmodule

// keeps track of the number of cyclin/cdk bounded pairs
// i.e. pairs what have a private channel
module counter

bound1 : [0..min(CDK ,CYCLIN )]; // pairs bound (cyclin has not bound with cki)
bound2 : [0..min(CDK ,CYCLIN )]; // pairs bound (cyclin bound with cki)

[lb] bound1 < min(CDK ,CYCLIN ) → (bound1 ′ = bound1 + 1);

[degp] cyclin bound > 0 & bound1 ≤ cyclin bound →
// probability cyclin which is bound takes part in the reaction
bound1/cyclin bound : (bound1 ′ = bound1 − 1)
// probability cyclin which is not bound takes part in the reaction
+ 1− bound1/cyclin bound : true;

[bind ] cyclin bound > 0 & bound1 ≤ cyclin bound & bound2 < min(CDK ,CYCLIN ) →
// probability cyclin which is bound takes part in the reaction
bound1/cyclin bound : (bound1 ′ = bound1 − 1) & (bound2 ′ = bound2 + 1)
// probability cyclin which is not bound takes part in the reaction
+ 1− bound1/cyclin bound : true;

[degc] cdk cat > 0 & bound1 + bound2 ≤ cdk cat →
// probability cdk which is bound (cyclin not bound to cki) takes part in the reaction
bound1/cdk cat : (bound1 ′ = bound1 − 1)
// probability cdk which is bound (cyclin bound to cki) takes part in the reaction
+ bound2/cdk cat : (bound2 ′ = bound2 − 1)
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// probability cdk which is not bound takes part in the reaction
+ 1− (bound1 + bound2 )/cdk cat : true;

[bb] bound2 > 0 → bound2 : (bound2 ′ = bound2 − 1);

endmodule

// CDK
module cdk

cdk : [0..CDK ] init CDK ;
cdk cat : [0..CDK ] init 0;

[lb] cdk > 0 & cdk cat < CDK → cdk : (cdk cat ′ = cdk cat + 1) & (cdk ′ = cdk − 1);

[cdh1r ] cdk cat > 0 → cdk cat : (cdk cat ′ = cdk cat);
[degc] cdk cat > 0 & cdk < CDK → cdk cat : (cdk ′ = cdk + 1) & (cdk cat ′ = cdk cat − 1);

// rate dependent on the number of cyclin/cdk pairs which have a private channel
[bb] cdk cat > 0 → 1 : (cdk cat ′ = cdk cat − 1);

[removecki ] cdk < CDK → 1 : (cdk ′ = cdk + 1);

endmodule

// CDH1
module cdh1

cdh1 : [0..CDH1 ] init CDH1 ;
inact : [0..CDH1 ] init 0;

[degp] cdh1 > 0 → cdh1 : (cdh1 ′ = cdh1 );
[cdh1r ] cdh1 > 0 & inact < CDH1 → cdh1 : (cdh1 ′ = cdh1 − 1) & (inact ′ = inact + 1);
[removep] cdh1 > 0 → cdh1 : (cdh1 ′ = cdh1 );

[pcdh1r ] inact > 0 & cdh1 < CDH1 → inact : (inact ′ = inact − 1) & (cdh1 ′ = cdh1 + 1);

endmodule

// CDC14
module cdc14

cdc14 : [0..CDC14 ] init CDC14 ;

[pcdh1r ] cdc14 > 0 → cdc14 : (cdc14 ′ = cdc14 − 1);

[removep] cdc14 < CDC14 → (CDC14 − cdc14 ) : (cdc14 ′ = cdc14 + 1);

endmodule

// CKI
module cki

cki : [0..CKI ] init CKI ;

[degd ] cki > 0 → cki : (cki ′ = cki − 1);
[bind ] cki > 0 → cki : (cki ′ = cki − 1);
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endmodule

// rewards (number of proteins)
const int cost ; // variable used to specify which reward we are interested in

rewards

cost = 3 : cdh1 ;
cost = 2 : cdc14 ;
cost = 1 : cyclin bound ;

endrewards
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