
Probabilistic Model
Checking and Autonomy

Marta Kwiatkowska,1 Gethin Norman2 and
David Parker3

1Department of Computer Science, University of Oxford, UK, OX1 3QD; email:

marta.kwiatkowska@cs.ox.ac.uk
2School of Computing Science, University of Glasgow, UK, G12 8RZ; email:

gethin.norman@glasgow.ac.uk
3School of Computer Science, University of Birmingham, UK; email:

d.a.parker@cs.bham.ac.uk

Posted with permission from the Annual

Review of Control, Robotics, and

Autonomous Systems, Volume 5;

copyright 2022 Annual Reviews,

https://www.annualreviews.org/

Keywords

probabilistic modelling, temporal logic, model checking, strategy

synthesis, stochastic games, equilibria

Abstract

Design and control of autonomous systems that operate in uncertain

or adversarial environments can be facilitated by formal modelling and

analysis. Probabilistic model checking is a technique to automatically

verify, for a given temporal logic specification, that a system model

satisfies the specification, as well as to synthesise an optimal strategy

for its control. This method has recently been extended to multi-agent

systems that exhibit competitive or cooperative behaviour modelled via

stochastic games and synthesis of equilibria strategies. In this paper,

we provide an overview of probabilistic model checking, focusing on

models supported by the PRISM and PRISM-games model checkers.

This includes fully observable and partially observable Markov decision

processes, as well as turn-based and concurrent stochastic games, to-

gether with associated probabilistic temporal logics. We demonstrate

the applicability of the framework through illustrative examples from

autonomous systems. Finally, we highlight research challenges and sug-

gest directions for future work in this area.

1

https://www.annualreviews.org/

1. INTRODUCTION

As autonomous systems become embedded within computing infrastructure, from informa-

tion systems through to security and robotics, there is a growing need for methodologies

that ensure their safe, secure, reliable, timely and resource efficient execution. Design of

computer systems can be facilitated by formal modelling and verification, and in partic-

ular model checking, which aims to automatically check if a system model satisfies given

requirements typically expressed in temporal logic. Autonomy, however, creates additional

demands of controllability, since autonomous systems operate in uncertain or adversarial

environments, and strategic reasoning, to ensure effective coordination of cooperative or

competitive behaviour of system components (agents).

Probabilistic model checking is a collection of techniques for the modelling of systems

that exhibit probabilistic and non-deterministic behaviour, which supports not only their

model checking against temporal logic, but also synthesis of optimal controllers (strate-

gies) from temporal logic specifications. Probability is used to quantify environmental

uncertainty and stochasticity, while non-determinism represents model decisions. Markov

decision processes (MDPs) are typically employed to model and reason about the strategic

behaviour of an agent against a stochastic environment, where specifications are expressed

in probabilistic extensions of the temporal logics CTL or LTL. Partially observable Markov

decision processes (POMDPs) permit similar modelling and analysis, but for contexts where

the agent has limited power to observe its environment.

MDPs and POMDPs, however, are unable to faithfully represent the behaviour of mul-

tiple players competing or cooperating to achieve their individual goals. To this end, we

employ multi-agent systems modelled via stochastic games and reason about their strate-

gic behaviour for both zero-sum and nonzero-sum (equilibria) properties. For zero-sum

properties, the utilities of an agent are the negation of the utility of its opponent, whereas

for nonzero-sum each agent is pursuing its own quantitative objective. Probabilistic model

checking has been recently extended to encompass both turn-based and concurrent stochas-

tic games, together with an extension of the temporal logic that inherits the coalition op-

erator from ATL, as well as synthesis of optimal Nash equilibria strategies (more precisely,

subgame-perfect social welfare optimal strategies).

In this paper, we provide an overview of recent advances in probabilistic model check-

ing, focusing on the model checking and strategic reasoning methods implemented in the

PRISM (1) and PRISM-games (2) tools for discrete probabilistic models. The review covers

fully observable and partially observable Markov decision processes (Sections 2 and 3 re-

spectively), as well as turn-based and concurrent stochastic games (Sections 4 and 5 respec-

tively), together with associated probabilistic temporal logics. We discuss the core types of

quantitative analyses available for each model, as well as extensions such as multi-objective

analysis and continuous-time, also called real-time in the model checking literature, models

(Section 6). We demonstrate the applicability of the framework through illustrative exam-

ples, with emphasis on the areas of robotics and autonomy. Finally, we highlight challenges

and suggest directions for future work in this area (Section 7).

2. MARKOV DECISION PROCESSES

We begin with Markov decision processes (MDPs) (3), which are a classic model for deci-

sion making under uncertainty. This is a discrete-time model, with discrete sets of states

and actions, that allows both non-determinism, e.g., to represent the choices made by the

2 Kwiatkowska et al.

s1

s2s0

east

s3south
east

0.8

0.6

{goal}

s5

s4
{hazard}

0.2 south

0.6
0.4

east

north

west

east

south

east

0.2
0.8

0.2
0.2

0.9
0.1

Figure 1

Left: A simple MDP representing a robot navigating through a grid; a (deterministic, memoryless)

optimal policy for the property Pmax=?[¬hazard U goal] is marked in bold. Right: A topological

map from (4) used to build a similar style MDP modelling a mobile robot exploring a building.

controller of a robot or vehicle, and discrete probabilistic choice, to model environmental

uncertainty arising due to, for instance, the presence of humans, noisy sensors, unreliable

communication media or faulty hardware.

We give a formal definition of MDPs below. Here, and in the remainder of the pa-

per, Dist(X) denotes the set of (discrete) probability distributions over a finite set X, i.e.,

functions µ : X → [0, 1] such that
∑
x∈X µ(x) = 1.

Definition 1 (Markov decision process). A Markov decision process (MDP) is a tuple

M = (S, s̄, A, δ,AP , L) where:

• S is a finite set of states and s̄ ∈ S is an initial state;

• A is a finite set of actions;

• δ : (S×A) → Dist(S) is a (partial) probabilistic transition function, mapping state-

action pairs to probability distributions over S;

• AP is a set of atomic propositions and L : S → 2AP is a state labelling function.

The execution of an MDP M proceeds as follows. When in a state s, there is a non-

deterministic choice over the actions that are available in the state, defined as the actions

a ∈ A such that δ(s, a) is defined and denoted A(s). It is assumed that the set of available

actions is non-empty for every state. After an action a ∈ A(s) has been chosen in s, it is

performed and the probability of transitioning to state s′ ∈ S equals δ(s, a)(s′).

Example 1. A simple example of an MDP is shown in Figure 1 (left); it models the

movement of a robot through locations in a 3×2 grid. Each state (si) represents a location

and actions taken in states result in probabilistic transitions to other locations. For example,

in state s1 there is a choice between moving east and southeast ; if east is chosen, then with

probability 0.6 the robot moves east and with probability 0.4 the robot remains in its

current location. Also shown are atomic propositions (goal and hazard) needed for property

specification. Figure 1 (right) shows a topological map used to build a larger, similar-style

MDP modelling a mobile robot traversing locations within an office building (4).

A path of M is defined by an alternating sequence of action choices and transitions. More

formally, a path is a finite or infinite sequence π = s0
a0−→ s1

a1−→ s2
a2−→ · · · such that s0 = s̄,

ai ∈ A(si) and δ(si, ai)(si+1) > 0 for all i > 0. FPathsM and IPathsM denote the sets of

finite and infinite paths of M, respectively.

www.annualreviews.org • Probabilistic Model Checking and Autonomy 3

We next introduce the notion of a strategy (often also called a policy) of an MDP M,

which resolves the non-determinism present in M. In particular, strategies decide which

actions to take in states of the MDP, depending on its execution to date.

Definition 2 (MDP strategy). A strategy of an MDP M is a function σ : FPathsM →
Dist(A) such that, if σ(π)(a) > 0, then a ∈ A(last(π)) where last(π) is the final state of π.

The set of all strategies of M is denoted ΣM. We classify a strategy σ ∈ ΣM in terms of its

use of randomisation and memory.

• Randomisation: σ is deterministic (or pure) if σ(π) picks a single action with

probability 1 for all finite paths π, and randomised otherwise.

• Memory: σ is memoryless if σ(π) depends only on last(π) for all finite paths π, and

finite-memory if there are finitely many modes such that, for any π, σ(π) depends only

on last(π) and the current mode, which is updated each time an action is performed;

otherwise, it is infinite-memory.

Under a particular strategy, the behaviour of MDP M is fully probabilistic and we can reason

about the probability of different events. For a strategy σ of M, we denote by FPathsσM and

IPathsσM the set of finite and infinite paths that correspond to the choices of σ. Following (5),

we can definite a probability measure ProbσM over IPathsσM that corresponds to the behaviour

of the MDP under σ. Using this probability measure we can then also define, for a random

variable X : IPathsM → R, the expected value EσM(X) of X under σ.

Random variables can be used to introduce a variety of quantitative properties of MDPs.

This is often achieved by augmenting an MDP with reward structures (these can in some

cases represent costs, but for consistency we will use the term rewards). Example applica-

tions of rewards include: the energy consumption of a device, the number of tasks completed

by a robot or the number of packets lost by a communication protocol.

Definition 3 (MDP reward structure). A reward structure for an MDP M is a tuple

r = (rS , rA), where rS : S → R>0 is a state reward function and rA : (S×A) → R>0 is an

action reward function.

2.1. Property Specifications for MDPs

In order to formally specify the required behaviour of a system modelled as an MDP, we

use quantitative extensions of temporal logic. Below, we show a fragment of the logic used

as the property specification language for the PRISM model checker (1), which we refer to

here as the PRISM logic. This is based on the logics PCTL (probabilistic computation tree

logic) (6) and LTL (linear temporal logic) (7), and also incorporates operators to specify

expected reward properties (8).

Definition 4 (Property syntax). The syntax for a core fragment of the PRISM logic is:

Φ := P./p[ψ] | Rr./q[ρ]

ψ := φ | ¬ψ | ψ ∧ ψ | Xψ | ψ U6k ψ | ψ U ψ

ρ := I=k | C6k | F φ
φ := true | a | ¬φ | φ ∧ φ

where a ∈ AP is an atomic proposition, ./∈{<,6,>, >}, p ∈ [0, 1], r is a reward structure,

q ∈ R>0 and k ∈ N.

4 Kwiatkowska et al.

Above, we assume that a property Φ for an MDP comprises a single probabilistic (P) or

reward (R) operator. The syntax also includes path (ψ) and reward (ρ) formulae, both

evaluated over paths, and propositional logic (φ) formulae, evaluated over states. The

intuitive meaning of the P and R operators, from the initial state of an MDP, is:

• P./p[ψ] – the probability of a path satisfying path formula ψ satisfies the bound ./ p;

• Rr./q[ρ] – the expected value of reward formula ρ, under reward structure r, satisfies

the bound ./ q.

A propositional formula φ is satisfied (or holds) in a state s if it evaluates to true in that

state, where an atomic proposition a is true if s is labelled with a (i.e., a ∈ L(s)) and the

logical connectives (¬, ∧) are interpreted in the usual way.

For path formulae ψ, the core temporal operators are:

• Xψ (next) – ψ is satisfied in the next state;

• ψ1 U6k ψ2 (bounded until) – ψ2 is satisfied within k steps, and ψ1 is satisfied until

that point;

• ψ1 U ψ2 (until) – ψ2 is eventually satisfied, and ψ1 is satisfied until then.

As is standard in model checking, we use the equivalences F ψ ≡ true U ψ (eventually)

and G ψ ≡ ¬F ¬ψ (always). If we restrict the sub-formulae of a path formula to be atomic

propositions, then we get the following common property classes:

• F a (reachability) – eventually a stated labelled with a is reached;

• G a (invariance) – a labels all states;

• F6k a (step-bounded reachability) – a labels a state within the first k steps;

• G6k a (step-bounded invariance) – a labels states for at least the first k steps.

Without this restriction, path formulae allow temporal operators to be nested. In fact the

syntax of path formulae given in Definition 4 is that of linear temporal logic (LTL) (7).

LTL can express a range of useful property classes, including:

• G F ψ (recurrence) – ψ is satisfied infinitely often;

• F G ψ (persistence) – eventually ψ is always satisfied;

• G (ψ1 → Xψ2) – whenever ψ1 is satisfied, ψ2 is satisfied in the next state;

• G (ψ1 → F ψ2) – whenever ψ1 is satisfied, ψ2 is satisfied in the future.

Finally, considering reward formulae ρ, the three key operators are:

• I=k (instantaneous reward) – state reward at time step k;

• C6k (bounded cumulative reward) – reward accumulated over k steps;

• F φ (reachability reward) – reward accumulated until a state satisfying φ is reached.

Although omitted from the syntax here for simplicity, it is also common to generalise the

third case and consider the expected reward accumulated until some co-safe LTL formula

is satisfied. Intuitively, these are path formulae ψ whose satisfaction occurs within finite

time; examples include (F a1) ∧ (F a2) and F (a1 ∧ F a2), which require states labelled with

a1 and a2 to be reached, either in any order (first case) or in a specified order (second case).

www.annualreviews.org • Probabilistic Model Checking and Autonomy 5

2.2. Probabilistic Model Checking of MDPs

Probabilistic model checking is an automated technique for constructing probabilistic mod-

els such as MDPs and then analysing them against behavioural specifications expressed

in temporal logic. It can be used either to verify that a specification is always satisfied,

regardless of any adversarial behaviour, or to synthesise a strategy under whose control the

system’s behaviour can be guaranteed to satisfy a specification.

These ideas are formalised below for the PRISM logic. We first require the following

notation. Satisfaction of a path formula ψ can be represented by a random variable Xψ :

IPathsM → R where Xψ(π) = 1 if path π satisfies ψ and 0 otherwise. For a reward structure

r and formula ρ, the random variable Xr,ρ : IPathsM → R is such that Xr,ρ(π) equals the

state reward or accumulated reward corresponding to r and ρ for path π.

Verifying that an MDP M satisfies a formula Φ, denoted M |= Φ, is defined as follows.

Definition 5 (Verification problem for MDPs). The verification problem is: given an MDP

M and a formula Φ, verify whether M |= Φ, defined as:

M |= P./p[ψ] ⇔ ∀σ ∈ ΣM.
(
EσM(Xψ) ./ p

)
M |= Rr./q[ρ] ⇔ ∀σ ∈ ΣM.

(
EσM(Xr,ρ) ./ q

)
.

In practice, we often solve a numerical verification problem: given an MDP M, formula

Popt=?[ψ] or Rropt=?[ρ], where opt ∈ {min,max}, compute Eopt
M (X) where X = Xψ or

X = Xr,ρ, respectively, and:

Emin
M (X)

def
= infσ∈ΣM EσM(X) and Emax

M (X)
def
= supσ∈ΣM

EσM(X) .

Closely related is the strategy synthesis problem.

Definition 6 (Strategy synthesis problem for MDPs). The strategy synthesis problem is:

given an MDP M and formula Φ of the form P./p[ψ] or Rr./q[ρ], find a strategy σ ∈ ΣM such

that Φ is satisfied in M under σ, i.e., such that EσM(Xψ) ./ p or EσM(Xr,ρ) ./ q, respectively.

The numerical strategy synthesis problem is: given M and a formula of the form

Popt=?[ψ] or Rropt=?[ρ], where opt ∈ {min,max}, find an optimal strategy σ? ∈ ΣM such

that Eσ
?

M (X) = Eopt
M (X) for X = Xψ or X = Xr,ρ, respectively.

For general path formulae, optimal strategies are finite-memory and deterministic. On the

other hand, for some common cases (e.g., the probability or expected accumulated reward

to reach a target), memoryless deterministic strategies are sufficient.

Example 2. Returning to the MDP from Example 1, verification-style queries using the

PRISM logic include:

• P>0.8[F610goal] – under all possible strategies, the robot reaches its goal location

within 10 steps with probability at least 0.8;

• Rrhazard61.5 [C620] – for all possible strategies, the expected number of times that the robot

enters the hazard location within the first 20 steps is at most 1.5;

and examples of numerical queries include:

• Pmax=?[¬hazard U goal] – what is the maximum probability that the goal can be

reached while avoiding the hazard location?

• R
rsteps
min=?[F goal] – what is the minimum expected number of steps to reach the goal?

Above, we use the following reward structures: rsteps , which assigns 1 to all state-action

pairs; and rhazard , which assigns 1 to all states labelled with atomic proposition hazard.

6 Kwiatkowska et al.

2.3. Model Checking Algorithms

Probabilistic model checking for MDPs requires a combination of graph-based algorithms,

automata-based methods and numerical computation. The main components of the model

checking procedure require computing optimal probabilities for path formulae and optimal

expected values for reward formulae. For the simplest of these cases (e.g., the probability

or expected accumulated reward to reach a target), various standard techniques for MDPs

can be used (3), including: solving a linear programming problem; policy iteration (which

builds a sequence of strategies until an optimal one is reached); and value iteration (which

computes increasingly precise approximations to the optimal probability or expected value).

Of these, value iteration is most commonly used in probabilistic model checking tools,

for scalability and performance reasons, but variants that offer sound guarantees on the

accuracy of results have also been introduced, e.g., (9, 10), as well as methods that employ

simulation and heuristics, e.g., (10, 11). For finite-horizon (i.e., step-bounded) formulas.

computation of the required values involves a finite number of steps of value iteration.

For reward formula, graph-based precomputation is often also needed. For example,

given a reachability reward formula, a graph-based analysis must first be performed to find

the states that reach the target with probability 1 under either all or at least one strategy

(depending on whether we are interested in the minimum or maximum expected value).

For more complex path formulae, i.e., full LTL, one must first build a deterministic

Rabin automaton (DRA) representation of the path formula and then construct a product

MDP consisting of the MDP under study and the DRA. Next, through graph analysis, we

identify states of the product MDP for which the probability of satisfaction is 0 or 1, and

the maximal end components of the product. Informally, an end component is a set of

states for which, under at least one strategy, it is possible to remain in forever once entered

and a maximal end component has no other end component as a subset. After this step,

numerical computation is performed on the product in the usual way.

The overall complexity for model checking MDPs against the PRISM logic is doubly

exponential in the formula and polynomial in the size of the MDP. However, if we restrict

the sub-formulae of path formulae to be atomic formulae, then DRAs are not required and

the complexity reduces to linear in the formula and polynomial in the size of the MDP.

Further details on the techniques needed to analyse MDPs can be found in, e.g., (8, 12, 13)

and in standard texts on MDPs (14, 3).

2.4. Extensions, Tools and Applications

We conclude our discussion of MDPs by surveying extensions to the basic model checking

problems, available software and some practical applications.

2.4.1. Extensions. One important extension of probabilistic model checking is to multi-

objective model checking. This concerns verifying the satisfaction of, or synthesising a strat-

egy that satisfies, multiple properties. The first work in this area concerned multi-objective

model checking and strategy synthesis of MDPs against conjunctions of probabilistic LTL

specifications (15). The approach has since been extended to general Boolean combinations

of LTL properties (15, 16) and to include reward formulae (16, 17). The synthesised strate-

gies for multi-objective queries have two forms of (finite-)memory: the first corresponds to

the satisfaction of the individual objectives and the second, when objectives include general

path formulae, the progress towards the satisfaction of such objectives.

www.annualreviews.org • Probabilistic Model Checking and Autonomy 7

TABLE I: Pareto fronts computed for the second-order unicycle. For each of the three reference trajectories, we list the corner points of
the Pareto front, namely their probability of reaching the target Ptarg, the probability of collision Pcoll and the expected total energy Een

with the fraction of it consumed by the localization system Eenl. For comparison, we also list the performance guarantees of the schedule
&on and the percentage of the total and localization energy saved by Pareto-optimal schedules compared to &on. On the right, Pareto fronts
are visualized in three-dimensional space. For better readability of the images, we plot the projection of the polytopes onto two planes.

(a) Open trajectory 'op.

Ptarg Pcoll Een fraction Eenl

&on 1 0 21790.20 3486.44

Pareto points: Een and Eenl saved over &on

1 (&o↵) 0.8640 0 4502.19 0 79.34% 100.00%

2 1 0 5243.21 176.91 75.94% 94.93%
0.08

0.06

0.8 0.04

4400

p(Collision)

0.85
0.020.9

p(Target)

4600

0.95 0

Pareto Front

1

4800

-0.021.05

En
er
gy

5000

5200

(b) Narrow trajectory 'na.

Ptarg Pcoll Een fraction Eenl

&on 1 0 22476.90 3596.30

Pareto points: Een and Eenl saved over &on

1 0.8540 0 8213.72 840.07 63.46% 76.64%

2 1 0 8935.53 1013.56 60.25% 71.82%

3 0.9980 0.0020 8211.67 869.09 63.47% 75.83%

4 0.8523 0.0020 7491.30 695.95 66.67% 80.65%

5 0.9940 0.0060 7459.44 690.57 66.81% 80.80%

6 0.8250 0.0060 6734.18 516.92 70.04% 85.63%

7 0.9841 0.0159 6748.25 519.60 69.98% 85.55%

8 0.9703 0.0297 5959.24 337.93 73.49% 90.60%

9 0.8054 0.0297 5290.72 174.74 76.46% 95.14%

10 0.8306 0.0159 6018.15 346.52 73.23% 90.36%

11 0.9131 0.0869 5060.09 159.01 77.49% 95.58%

12 (&o↵) 0.7689 0.0869 4396.48 0.00 80.44% 100.00%

4500

5000

0.7

5500

6000

6500

7000

En
er
gy

7500

8000

8500

0.8

9000

Pareto Front

p(Target)

0.9 0.120.10.08

p(Collision)

0.061 0.040.020

(c) Winding trajectory 'wi.

Ptarg Pcoll Een fraction Eenl

&on 1 0 33354.40 5336.70

Pareto points: Een and Eenl saved over &on

1 0.9120 0 10596.90 837.37 68.23% 84.31%

2 0.9200 0 10634.30 811.57 68.12% 84.79%

3 1 0 11316.77 1011.48 66.07% 81.05%

4 0.9980 0.0020 10633.27 876.41 68.12% 83.58%

5 0.9102 0.0020 9914.84 702.64 70.27% 86.83%

6 0.9261 0.0020 9977.65 674.78 70.09% 87.36%

7 0.9243 0.0040 9296.83 540.38 72.13% 89.87%

8 0.9940 0.0060 9297.63 539.62 72.12% 89.89%

9 0.9006 0.0060 8560.97 363.32 74.33% 93.19%

10 0.9683 0.0317 8325.83 340.42 75.04% 93.62%

11 0.8773 0.0317 7608.22 168.68 77.19% 96.84%

12 0.9012 0.0988 7294.80 157.48 78.13% 97.05%

13 (&o↵) 0.8345 0.0988 6642.58 0 80.08% 100.00%

14 0.9012 0.0433 7640.69 179.72 77.09% 96.63%

6500

7000

0.8

7500

8000

8500

9000

9500

En
er
gy

10000

0.85

10500

11000

11500

0.9

Pareto Front

p(Target)

0.120.95 0.1

p(Collision)

0.080.061 0.040.020

of the Pareto points). In addition, we randomly selected 10
more Pareto points and performed similar computations. All
the simulation results were within 4% of the theoretical

values. We note that these error values are expected to
decrease as the number of simulations and the number of
particles in the particle filter increase.

8

(a) Open trajectory 'op. (b) Narrow trajectory 'na. (c) Winding trajectory 'wi.

Fig. 4: Sample trajectories under two localization schedules for each trajectory 'op, 'na, and 'na for the unicycle robot. The light, medium,
and dark blue trajectory segments indicate localization status ao↵ , astart and aboot, and aon, respectively. In the top-left images in (a)-(c),
the performance guarantees are Ptarg = 1 and Pcoll = 0, the same as &on, while saving 60% to 75% energy over &on. In the bottom-right
images, the performance guarantees are Ptarg = 0.86 and Pcoll = 0 for 'op and Ptarg = 0.97 and Pcoll = 0.03 for 'na and 'wi in return for
additional energy saving of 73% to 75%.

B. Rover Experiments

Setup: The robotic platform used in this experimental case
study is ARC Q14 planetary rover shown in Fig. 1. It is de-
signed to mimic the configuration and specification found on
rovers deployed for planetary exploration. The rover’s base is
rectangular (0.8 m by 0.9 m) and has 4 wheels and 8 motors.
It can operate in two kinematic modes: Ackermann steering
and differential drive with maximum speed of 0.5 m�s. The
robot is equipped with a Point Grey Bumblebee XB3 camera.
We use Dub4 [25] as the high accuracy localisation module,
while low accuracy measurements are obtained using Visual
Odometry [26]. The on-board computations are carried out
on MicroSVR computer. The energy consumption model of
the robot is the same as the one in Sec. VI-A taken from
[24] that previously studied this platform.

We modeled the motion of the rover as the unicycle
in Sec. VI-A with constrained velocity, turn angle, and
acceleration. We used the same DFL as above to linearize
the dynamics and employed receding horizon controller for
reachability. Kalman filter was utilized for state estimation.
The online control computations were performed in MAT-
LAB on a MacBook Pro with 2.7 GHz Intel Core i5 and 8
GB of memory, which communicated to the robot via Wi-Fi.
We estimated motion and measurement noise as N (0,�2I),
where �w = 0.1, �od = 0.1, and �lo = 0.01, and the
frequency of sensor measurements was 4 Hz. The robot’s
task was to navigate from an entrance to exit door of a
10m-by-6m meeting room cluttered with various furniture
pieces. The robot was first driven by a human to learn
the reference trajectory ' (teach phase), during which the
localization module automatically extracts waypoints of '.
The environment and these waypoints are shown in Fig. 5a.

Pareto Front: We computed the Pareto front for this
scenario by first generating the abstraction MDP and then our
multi-objective algorithm. We considered the same objectives
as in Sec.VI-A; the vertices of the Pareto front are shown
in Table II. In this case study, both &on and &o↵ are Pareto
optimal; one gives rise to the highest Ptarg and the other
results in the smallest Een. Note that it is possible to save

18%, 24%, and 32% in Een by sacrificing small percentage
(0.5%, 1%, and 5%, respectively) in Ptarg.

Robot Deployment: We deployed the robot under &on and
&3. Fig. 5b-c show the robot’s trajectories, localization status
in different shade of blue, state estimate in orange, and
belief’s variance’s projection onto 2-D in gray. The robot
itself is shown as black-edged rectangles along the trajectory.
As evident in these figures, under &on, the robot is always safe
because it is able to stay within a very close proximity of '
at all times. Under &3, the robot uses its localization only at
the very beginning and for the last two waypoints. The use
of localization at the beginning sets the robot’s trajectory
and belief on the right path. Once localization is turned off,
the uncertainty in the robot’s belief grows, but the robot is
still able to continue with the path without deviating too far
from the ' thanks to its initial localization. Once the robot is
near a point that is dangerously close to an obstacle, and '
requires sharp maneuvers, the robot turns on its localization
to reduce its uncertainty and enable itself to perform the
maneuvers. Note that, under &3, once the localization is
turned back on, on account of the increased uncertainty, the
robot is required to make a sharper turn than under &on to
be able to reach the target. The framework is aware of such
uncertainties; therefore, under &3, the performance guarantee
is reduced by 1% to save 24% in energy in comparison to
&on, resulting in an elongation of the battery life. Fig. 5c
illustrates 50 trajectories that was obtained in simulation
prior to deployment of the robot. Note that this figure shows
only the trajectory of the center of the robot; the robot’s
volume needs to be added to every point along the trajectory.

C. Robot with choices of PCs

Hardware choices in robot design affect the capabili-
ties of the robot and can result in different achievable
resource-performance trade-offs. In this example, we ana-
lyzed resource-performance trade-offs for a mobile robot
with two different mini PCs. This type of analysis can aid the
designer in choosing the best suitable hardware to achieve a
desired level of performance.

9

Figure 2

Left: Pareto curve, from (18), showing the trade-off between three objectives (collision avoidance,

target reaching and energy consumption) for different localisation strategies along a particular
trajectory of a mobile autonomous robot. Right: sampled executions for a synthesised strategy.

Multi-objective model checking has also been extended to numerical queries, which find

the optimal value for one numerical objective when restricting to strategies that satisfy the

remaining objectives (15, 16). In (17) this has been generalised to allow the analysis of the

trade-offs between objectives by constructing the corresponding Pareto curve. Figure 2

shows results from (18), which uses multi-objective probabilistic model checking of MDPs

to study resource-performance trade-offs in mobile autonomous robots.

Another important extension incorporates parametric techniques. In this approach,

one or more aspects of the MDP or specification under study, e.g. certain probabilities in

the transition function or the step bound in a reward formula, are given as parameters.

For Boolean-valued queries, parameter synthesis determines the set of parameter values

for which the specification is satisfied. For numerical queries, parametric model checking

returns a symbolic expression for the result, which is a function of the given parameters.

These techniques were first developed for models with only probabilistic behaviour,

originally due to (19) and subsequently extended and optimised in (20) and (21), which

represented transition probabilities as rational functions and applied language-theoretic

techniques to return symbolic expressions for reachability probabilities. This approach has

since been extended to MDPs (22) for a subclass of the PRISM logic. An alternative ap-

proach applied to MDPs is parameter lifting (23), where parametric transitions are replaced

by non-deterministic choices over the extremal values. This non-determinism is placed un-

der the control of a separate player, and therefore the analysis is then performed through

probabilistic model checking of a two-player game (see Section 4).

Interval MDPs (24) generalise MDPs by having interval-valued transition probabilities,

and therefore support modelling of systems when there is uncertainty or variation in the

probabilistic behaviour. More general notions of such uncertain MDPs allow, for example,

convex uncertainty sets to represent transition probabilities. Model checking algorithms

have been developed for these models on a subset of the PRISM logic (25, 26), in a robust

setting, i.e., where specifications are satisfied for any possible transition probabilities in the

allowed set. Extensions to multi-objective queries also exist (27).

2.4.2. Tool support. A number of different software tools are available for model checking

MDPs. Probably the most widely used is PRISM (1), which supports the logic of Defini-

8 Kwiatkowska et al.

tion 4 as well as both multi-objective specifications and parametric queries. The tool uses

the PRISM modelling language, which is a simple, state-based language, based on Reac-

tive Modules (28). STORM (29) is another tool that supports model checking of MDPs,

for a subset of the logic in Definition 4, plus multi-objective and parametric extensions,

and others such as long run average rewards and conditional probabilities. Models can be

specified in a number of different modelling formalisms, including the PRISM language and

JANI (30). Other general purpose probabilistic model checking tools include the Modest

Toolset (31) and ePMC (32). PARAM (33) and PROPhESY (34) both offer tool support

for parametric model checking and synthesis of MDPs.

2.4.3. Applications. Applications of MDP-based probabilistic model checking for au-

tonomous systems include: motion planning (35, 36, 37), spacecraft reconfiguration (38),

task allocation and planning for mobile robots (4, 39), analysis of the safety and reliability of

robots in extreme environments (40), human-on-the-loop systems (41), robot battery charge

scheduling (42) and autonomic computing (43). For a survey on using formal methods (in-

cluding probabilistic model checking) for the verification of autonomous robotic systems

see (44).

3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Partially observable MDPs (POMDPs) extend MDPs by restricting the extent to which

their current state can be observed, in particular by the strategies that control them. In

the context of robotics, e.g., it may not be possible to accurately identify a robot’s cur-

rent location due to either limited precision or unreliability of their sensors. For security

applications, participants in a protocol may rely on the use of private data.

Definition 7 (POMDP). A POMDP is a tuple P = (S, s̄, A, δ,AP , L,O, obs) where:

• (S, s̄, A, δ,AP , L) is an MDP (see Definition 1);

• O is a finite set of observations;

• obs : S → O is a labelling of states with observations;

such that A(s) = A(s′) for any states s, s′ ∈ S with obs(s) = obs(s′).

In a POMDP, the current state s cannot be directly determined; only the corresponding ob-

servation obs(s) ∈ O is known. Notice that Definition 7 requires observationally equivalent

states to have the same available actions. This follows from the fact that states that have

different sets of actions available would be observationally distinguishable as the available

actions are not hidden, and hence should not have the same observations.

Above, we adopt a simple notion of observability, used in e.g. (45, 46), which is state-

based and deterministic. More general notions of observations are also commonly used, and

may depend on actions performed or are probabilistic. However, as demonstrated by (47),

given a POMDP with these more general notions of observations, we can construct an

equivalent (polynomially larger) POMDP of the form used here.

The notions of paths, strategies, probability measures and reward structures given in

Section 2 for MDPs transfer directly to POMDPs. The one difference is that the set ΣP of

all strategies for a POMDP P only includes observation-based strategies.

Definition 8 (POMDP strategy). A strategy of a POMDP P = (S, s̄, A, δ,AP , L,O, obs)

is a function σ : FPathsP → Dist(A) such that:

www.annualreviews.org • Probabilistic Model Checking and Autonomy 9

s1

s2s0

east

s3south
east

0.8

0.6

{goal}

s5

s4

{hazard}

0.2 south

0.6
0.4

east

north

west

east

south

east

0.2
0.8

0.2
0.2

o1 o35

o0 o4o2

0.9
0.1

0.1:s3
0.9:s5

0.01:s3
0.99:s5

north

0.8

0.2
1:s0 1:s2

east
0.6

0.4

1:s1 1:s3

east

1:s5

south

0.792

0.198

1:s4

south

0.8

0.2

east

0.01

o1

o0

o35
o35 o35 o35

o2
o4 {goal}{hazard}

Figure 3

Left: POMDP variant of the MDP from Figure 1, where states s3 and s5 are observationally

equivalent, and therefore cannot be distinguished by strategies. Right: Illustration of the POMDP
under the control of a finite-memory strategy; states are labelled with the strategy’s current belief

as to its current state (as a probability distribution over states).

• σ is a strategy of the MDP (S, s̄, A, δ,AP , L);

• for any paths π = s0
a0−→ s1

a1−→ · · · an−1−−−→ sn and π′ = s′0
a′

0−→ s′1
a′

1−→ · · ·
a′

n−1−−−→ s′n
satisfying obs(si) = obs(s′i) and ai = a′i for all i, we have σ(π) = σ(π′).

Example 3. Figure 3 (left) shows a POMDP version of the MDP from Example 1 (Fig-

ure 1). The underlying states, transition probabilities and labels are identical, but we

assume that the grid locations for states s3 and s5 are observationally indistinguishable due

to localisation issues: these states map to the same observation (o35), while other states

have unique observations (oi for si).

3.1. Model Checking for POMDPs

Properties for POMDPs can be specified using the same logic as for MDPs, presented

in Section 2.1. The only change to the verification and strategy synthesis problems (see

Definitions 5 and 6) is that the quantification is over observation-based strategies. However,

probabilistic model checking for POMDPs is more challenging than for MDPs since the

verification problem for core properties of the PRISM logic is undecidable (48).

Verification and strategy synthesis for POMDPs against finite-horizon problems, as

well as discounted reward problems, is well studied in the fields of artificial intelligence and

planning, and tool support exists, e.g., (49). However, the PRISM logic incorporates infinite-

horizon properties such as unbounded probabilistic reachability (P./p[F a]) and expected

reward accumulated to reach a target (Rr./q[F a]), without discounting, where the problem

becomes undecidable (48). For further undecidability and complexity results of various

POMDP model checking problems, see e.g., (45, 46).

Probabilistic model checking of POMDPs was proposed in (50) for a subset of the

PRISM logic where path formulae only have propositional formulae as sub-formulae (i.e.,

without full LTL). The approach uses grid-based techniques (51, 52), which transform

the POMDP under study to a fully observable belief MDP with uncountably many states

and then approximate its solution based on a finite subset of states (grid points). Since

the problem is undecidable, the approach only returns lower and upper bounds on the

quantitative property of interest, and if the bounds are not precise enough, the grid can be

refined and analysis repeated. The efficiency of this approach is improved in (53) using an

abstraction-refinement loop to build smaller MDP approximations.

Strategy synthesis can be incorporated into these methods based on an analysis of the

10 Kwiatkowska et al.

belief MDP approximation. The resulting strategies are deterministic but require memory.

Note that these methods assume a fixed initial state (or belief), in constrast to the methods

for MDPs discussed above which can be performed for all states at once.

Similar methods have been extended to LTL queries (54) by translating such formulae

to DRAs and using a product MDP construction. In the qualitative case (checking if the

optimal probability equals 0 or 1), under the restriction to finite-memory strategies, model

checking algorithms are given in (55) for LTL specifications.

Other approaches to POMDP model checking also work by imposing a limit on the

memory available to strategies; this includes (56), which converts the problem to one of to

parametric model checking, and (57) which uses a reduction to model checking for stochastic

games using PRISM-games (2). A related method from (58) synthesises finite-memory

POMDP strategies represented as recurrent neural networks.

Alternative methods include (47) which, under the requirement that all rewards in the

POMDP are positive, extends approaches developed for finite-horizon objectives to approx-

imate minimum expected reachability rewards. There is also (59), which uses counter-

example-driven refinement to approximately solve MDPs in which components have partial

observability of each other; and (60), which synthesises concurrent program constructs using

a search over memoryless strategies in a partially observable stochastic game.

Example 4. Consider again the POMDP of Example 3 (Figure 3, left) and the property

specification Pmax=?[¬hazard U goal]. Any memoryless strategy (i.e., always choosing south

or east in both s3 and s5) has zero probability of achieving this. Figure 3 (right) illustrates

a finite-memory strategy for the POMDP of Example 3 (Figure 3, left), which chooses east

twice, increasing the chance of being in s5, and then south. States are annotated with the

current belief, i.e., the probability of being in each state.

3.2. Extensions, Tools and Applications

PRISM (1) implements the algorithms of (50) for a subset of the PRISM logic. STORM (29)

also supports POMDP analysis, via the methods in (57, 56, 53). Extensions to synthesise

robust strategies for uncertain POMDPs, as discussed earlier for MDPs, can be found in,

e.g., (61). Applications of POMDP-based model checking for autonomous systems include

robot motion planning (55, 57) and human-in-the-loop planning (62).

4. TURN-BASED STOCHASTIC GAMES

We now move beyond MDPs to stochastic games, which allow for the modelling of cooper-

ative or competitive behaviour between multiple agents, in the presence of adversarial or

uncertain environments. We start with turn-based stochastic multi-player games (TSGs),

which have the same structure as MDPs, except that the states are partitioned amongst

a set of players. Each state is controlled by one player, who resolves the action choices in

that state. Formally, we have the following definition.

Definition 9 (Turn-based stochastic game). A turn-based stochastic (multi-player) game

(TSG) is a tuple T = (N,S, (Si)
n
i=1, s̄, A, δ,AP ,L), where:

• (S, s̄, A, δ,AP , L) represents an MDP (see Definition 1);

• N = {1, . . . , n} is a finite set of players;

• (Si)
n
i=1 is a partition of S.

www.annualreviews.org • Probabilistic Model Checking and Autonomy 11

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

700650600550500450
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pl(0)=0.2, ph(0)=0.1

pl(0)=0.3, ph(0)=0.1

pl(0)=0.5,
ph(0)=0.4

pl(0)=0.9,
ph(0)=0.8

time[s]

R
O

Z

Figure 4

Left: A simple TSG modelling alternating decisions between a human operator and an

autonomous robot. Right: Results from a more complex, but similar style TSG analysed in (63)
for an unmanned aerial vehicle partially controlled by a human operator.

As for MDPs, in each state s of a TSG T, there is a set of available actions denoted A(s),

which are the actions a for which δ(s, a) is defined. However, in this case the choice of which

available action is taken in s is under the control of a single player: the unique player i 6 n

such that s ∈ Si. If player i selects action a ∈ A(s) in s, then, as for MDPs, the probability

of transitioning to state s′ equals δ(s, a)(s′).

The notion of paths and reward measures are the same as for MDPs. In the case of

TSGs we do not have a single strategy, but instead a strategy for each player i of the TSG

that resolves the choice of action in each state under the control of player i, based on the

game’s execution so far. Furthermore, to reason about the behaviour of a TSG we need a

strategy for every player, called a strategy profile.

Definition 10 (TSG strategy). A strategy of a TSG T is a function σi : {π ∈ FPathsT |
last(π) ∈ Si} → Dist(A) such that, if σi(π)(a)>0, then a ∈ A(last(π)). The set of all

strategies of player i 6 n is represented by ΣiT and a strategy profile is a tuple σ = (σi)
n
i=1

where σi ∈ ΣiT for all i 6 n.

Similarly to MDPs, for a TSG T and profile σ, we denote by FPathsσT and IPathsσT the

set of finite and infinite paths of T that correspond to the choices made by the profile σ.

Furthermore, for a given profile σ, we can define a probability measure ProbσT over the set

of infinite paths IPathsσT and, for a random variable X : IPathsT → R, we can define the

expected value EσT(X) of X under σ.

Example 5. Figure 4 (left) shows a fragment of a simple TSG modelling a human-robot

system. Navigation decisions (east or west) are taken by a human operator (circular states,

coloured green); then the robot decides autonomously how to follow these instructions

(square states, coloured blue), here by choosing the speed (slow or fast) with which to pro-

ceed. Figure 4 (right) shows results from probabilistic model checking of a more complex

TSG model in which an unmanned aerial vehicle performs surveillance under partial control

of a human operator (63). It shows the trade-off between mission time and the likelihood

of straying into “restricted operating zones” (ROZs) as operator accuracy varies.

4.1. Property Specifications for TSGs

To specify properties of TSGs, we consider an extension of the logic presented earlier for

MDPs and POMDPs. This uses the coalition operator 〈〈C〉〉 from alternating temporal logic

(ATL) (64) to define zero-sum formulae. An extended version of this logic was presented

as rPATL (and RPATL*) in (65).

12 Kwiatkowska et al.

Definition 11 (Property syntax for zero-sum games). The syntax of extended PRISM

logic for zero-sum games is:

Φ := 〈〈C〉〉P./p[ψ] | 〈〈C〉〉Rr./q[ρ]

where path formulae ψ and reward formulae ρ are defined in identical fashion to the PRISM

logic in Definition 4, C ⊆ N is a coalition of players, ./∈ {<,6,>, >}, p ∈ [0, 1], r is a

reward structure and q ∈ R>0.

The zero-sum formulae 〈〈C〉〉P./p[ψ] and 〈〈C〉〉Rr./q[ρ] can be understood as specifying that

the players in the coalition C can collectively ensure that the formula P./p[ψ] or Rr./q[ρ],

respectively, is satisfied, against all possible strategies of the players in the set N \ C. In

order to formalise the semantics of the extended PRISM logic, for a TSG T and coalition

C, we denote by TC the coalition game, that is, the 2-player TSG TC in which the first

player makes all the choices of all players in C and the second all players in N \ C.

When model checking TSGs, the verification and strategy synthesis problems coincide,

since checking a property Φ reduces to showing that there exists a strategy for one coalition

of players that satisfies a property for all strategies of another coalition.

Definition 12 (Verification and strategy synthesis problems for TSGs). The verification

problem is: given a TSG T and formula Φ, verify whether T |= Φ, defined as:

T |= 〈〈C〉〉P./p[ψ] ⇔ ∃σ?1 ∈ Σ1
TC
.
(
∀σ2 ∈ Σ2

TC
.Eσ

?
1 ,σ2

TC
(Xψ) ./ p

)
T |= 〈〈C〉〉Rr./q[ρ] ⇔ ∃σ?1 ∈ Σ1

TC
.
(
∀σ2 ∈ Σ2

TC
.Eσ

?
1 ,σ2

TC
(Xr,ρ) ./ q

)
where TC is the coalition game of T induced by C. The strategy synthesis problem is to

find and return such a strategy σ?1 .

As for MDPs, in practice the numerical verification problem is often solved: given a

TSG T and formula 〈〈C〉〉Popt=?[ψ] or 〈〈C〉〉Rropt=?[ρ], where opt ∈ {min,max}, compute:

valTCopt (s,X) = supσ1∈Σ1
TC

infσ2∈Σ2
TC

Eσ1,σ2TC
(X) 1.

where Copt = C if opt = max and equals N \ C otherwise, and X = Xψ or X = Xr,ρ

respectively. The numerical strategy synthesis problem is to return a strategy σ?1 ∈ ΣTCopt

such that infσ2∈Σ2
TC

Eσ
?

TCopt
(X) = valTCopt (X).

For general path formulae, optimal strategies are finite-memory and deterministic, while

for infinite-horizon reward formulae and path formulae with only propositional formulae as

sub-formulae memoryless deterministic optimal strategies exist.

As Definition 12 shows, for verifying TSGs, the main step is computing the value in

Equation 1. If we consider the coalition game TC as a zero-sum game (66), where the utility

function of player 1 is the random variable X and the utility of the second1 is −X, then it

follows that this game is determined (67), and therefore the following equation holds:

supσ1∈Σ1
TC

infσ2∈Σ2
TC

Eσ1,σ2TC
(X) = infσ2∈Σ2

TC

supσ1∈Σ1
TC

Eσ1,σ2TC
(X) 2.

and Equation 1 is the value of this game (66). Furthermore, using Equation 2 we have the

following equivalences:

〈〈C〉〉P./p[ψ] ≡ 〈〈N\C〉〉P¬(./p)[ψ] and 〈〈C〉〉Rr./q[ρ] ≡ 〈〈N\C〉〉Rr¬(./q)[ρ] .

1In a zero-sum game the utility of the second player is the negation of the first player’s utility.

www.annualreviews.org • Probabilistic Model Checking and Autonomy 13

Example 6. Returning to the TSG of Example 5, PRISM logic queries for this include:

• 〈〈human〉〉P>0.6[¬crash U target] – a human controller can ensure the robot reaches its

target without crashing with probability at least 0.6, no matter what the robot does;

• 〈〈rbt〉〉Rrbatterymax=?[I=10] – what is the maximum expected battery level that the robot can

ensure after 10 steps, no matter what the choices of the human controller are?

• 〈〈rbt〉〉Rrsteps>3.2[F target] – the expected time that the robot requires to reach the target

is at least 3.2, no matter what choices the human controller makes.

4.2. Model Checking Algorithms for TSGs

Model checking TSGs against the extended PRISM logic can be performed in a similar

manner to MDPs (see Section 2.3) using numerical methods, automata and graph-based

analysis (65). For basic properties such as the probability or expected accumulated reward

to reach a target, numerical computation can be performed using several methods including

solving a quadratic programming problem, policy iteration and value iteration (68). As for

MDPs, variants of value iteration that yield error guarantees have also been developed (69).

For the full logic, including LTL, we can translate path formulae to deterministic parity

automata (DPAs) and solve a product model which is a stochastic two-player zero-sum

parity game (70). Graph-based algorithms are presented in (71). Overall, model checking is

doubly exponential in the formula and polynomial in the size of the TSG. Similarly to MDP

model checking, when the sub-formulae of path formulae are restricted to propositional

formulae (i.e., no LTL), then DPAs are not required and parity winning conditions are

replaced with reachability objectives and the complexity reduces to NP ∩ coNP.

4.3. Extensions, Tools and Applications

Lastly, we discuss extensions, tools and practical applications for model checking of TSGs.

4.3.1. Extensions. Multi-objective model checking has also been developed for TSGs,

e.g., (72, 73) gives algorithms for the synthesis of ε-optimal strategies for TSGs which

almost surely satisfy conjunctions of mean payoffs, ratio rewards and Boolean combina-

tions of expected mean-payoffs. On the other hand, (74) concerns synthesising strategies

of TSGs that almost surely surely maintain the averages of a number of long-run average

reward specifications remaining above a given multi-dimensional threshold vector.

4.3.2. Tools and applications. PRISM-games (2) enables the modelling and analysis of

TSGs against the extended PRISM logic (see Definition 11) and multi-objective specifica-

tions. Applications using TSGs and PRISM-games to model autonomous systems include

autonomous urban driving (72), smart grids (65), human-in-the-loop planning (75, 76),

managing collections of autonomic systems (77, 78) and self-adaption (79). In addition,

GIST (80) allows the analysis of ω-regular properties of TSGs and GAVS+ (81) is a general-

purpose tool for algorithmic game solving including TSGs.

5. CONCURRENT STOCHASTIC GAMES

In this section, we generalise TSGs to concurrent stochastic games (CSGs), in which players

choose their actions simultaneously in each state and without already knowing the actions

14 Kwiatkowska et al.

0
east

1 2
east

0
west

1 2
west

{goal1}

{goal2}

0,2

east,⊥

0.9

0.1

1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

0.9
0.1

0.9
0.1

0.9

0.1

east,⊥

east,⊥
east,⊥

east,⊥
east,⊥

⊥,west east,
west

east,
west

⊥,west

east,
west

east,
west

⊥,west⊥,west

⊥,
west

0.9
0.1

⊥,west

{goal1,
goal2}

{goal1}

{crash,
goal1}

{crash,
goal2}

{goal2}

{crash}

Figure 5

CSG model of two robots moving through a 3× 1 grid. Left: the transitions of robot 1 (blue) and
robot 2 (red). Right: CSG representing their concurrent execution.

being taken by other players. This can provide a more realistic model of interactive au-

tonomous agents operating concurrently.

Definition 13 (Concurrent stochastic game). A concurrent stochastic multi-player game

(CSG) is a tuple C = (N,S, s̄, A,∆, δ,AP ,L) where:

• (S, s̄, A, δ,AP , L) represents an MDP (see Definition 1);

• N = {1, , . . . , n} is a finite set of players;

• A = (A1∪{⊥})× · · ·×(An∪{⊥}) where Ai is a finite set of actions available to player

i 6 n, Ai ∩Aj = ∅ for all i 6= j and ⊥ is an idle action disjoint from the set ∪ni=1Ai;

• ∆: S → 2∪n
i=1Ai is an action assignment function.

As previously, we specify available actions for a CSG, where for each state s and player i

the set of available actions, denoted Ai(s), equals ∆(s) ∩ Ai if this set is non-empty, and

{⊥} otherwise. If each player i 6 n selects action ai ∈ Ai(s) in state s, then the probability

of transitioning to state s′ equals δ(s, (a1, , . . . , an))(s′).

The notions of paths and reward measures are the same as for MDPs. Similarly to

TSGs, there is not a single strategy but instead a strategy for each player i of the CSG that

resolves the choices of that player.

Definition 14 (CSG Strategy). A strategy for player i in a CSG C is a function of the

form σi : FPathsC → Dist(Ai ∪ {⊥}) such that, if σi(π)(ai) > 0, then ai ∈ Ai(last(π)). We

denote by ΣiC the set of all strategies for player i and a strategy profile is a tuple σ = (σi)
n
i=1

where σi ∈ ΣiC for all i 6 n.

As for the previous models, given a CSG C and profile σ, we denote by FPathsσC and

IPathsσC the set of finite and infinite paths of C that correspond to the choices made by σ.

Furthermore, for a given profile σ, we can define a probability measure ProbσC over the set

of infinite paths IPathsσC and, for a random variable X : IPathsC → R, we can define the

expected value EσC(X) of X under σ.

Example 7. Figure 5 illustrates a CSG modelling two robots aiming to traverse the same

3× 1 grid in opposite directions. On the left are the transitions of robot 1 (top, blue) and

robot 2 (bottom, red). On the right is the CSG over the product state space (state (l1, l2)

www.annualreviews.org • Probabilistic Model Checking and Autonomy 15

is when robot i is in location li), where, if the robots attempt to move to the same grid

point with probability 0.1, they both move and crash into each other2, and with probability

0.9 they do not move. The states of the product are labelled with atomic propositions

representing when the robots have reached their goals and if they have crashed.

5.1. Property Specifications for CSGs

We now extend the logic syntax previously defined for zero-sum games in Section 4.1. We

add the specification of nonzero-sum properties, using the notion of equilibria, which allows

players to have objectives that are distinct, but not necessarily directly opposing.

Definition 15 (Property syntax for zero-sum and nonzero-sum games). The syntax of the

extended PRISM logic for zero and nonzero-sum games is:

Φ := 〈〈C〉〉P./p[ψ] | 〈〈C〉〉Rr./q[ρ] | 〈〈C1: · · · :Cm〉〉opt./q(θ)

θ := P[ψ]+· · ·+P[ψ] | Rr[ρ]+· · ·+Rr[ρ]

where path formulae ψ and reward formulae ρ are defined in identical fashion to the PRISM

logic in Definition 4, C and C1, , . . . , Cm are coalitions of players such that Ci ∩Cj = ∅ for

all 1 6 i 6= j 6 m and ∪mi=1Ci = N , opt ∈ {min,max}, ./∈{<,6,>, >}, p ∈ [0, 1], r is a

reward structure and q ∈ R>0.

The logic has been further extended with nonzero-sum formulae and sums of probabilistic

and reward objectives. Nonzero-sum formulae take the form 〈〈C1: · · · :Cm〉〉opt./q(θ), where

C1, . . . , Cm are sets of coalitions that represent a partition of players N , and θ is either

the sum P[ψ1]+· · ·+P[ψm] of m probabilistic objectives or the sum Rr1 [ρ1]+· · ·+Rrm [ρm]

of m reward objectives. We can consider the ith element in these sums as representing

the objective Xθ
i for the coalition Ci, where Xθ

i = Xψi or Xθ
i = Xri,ρi , respectively (see

Section 2.1). Their meaning is as follows. The formula 〈〈C1: · · · :Cm〉〉max./q(θ) is satisfied if

there exists a profile σ? such that:

• no coalition Ci for i ∈M can deviate from σ? in order to increase their objective Xθ
i ;

• there is no other such profile for which the sum of the objectives (Xθ
i)mi=1 is greater

than the sum under σ?;

• the sum of the objectives (Xθ
i)mi=1 under σ? satisfies ./ q;

and we call such a profile that satisfies the first two conditions a social welfare optimal Nash

equilibrium (SWNE). The first condition is the standard definition of a Nash equilibrium

(NE) profile (82) and the second additionally requires that the sum of the objectives is

maximal, making it an SWNE. On the other hand, the formula 〈〈C1: · · · :Cm〉〉min./q(θ) is

satisfied if there exists a profile σ? such that:

• no coalition Ci for i ∈M can deviate from σ? in order to decrease their objective Xθ
i ;

• there is no other such profile for which the sum of the objectives (Xθ
i)mi=1 is less than

the sum under σ?;

• the sum of the objectives (Xθ
i)mi=1 under σ? satisfies ./ q;

and we call such a profile that satisfies the first two conditions a social cost optimal NE

(SCNE). The first condition corresponds to the standard definition of a NE profile for the

2For simplicity, in this model we assume the robots do not crash when swapping grid points.

16 Kwiatkowska et al.

objectives (−Xθ
i)mi=1 and the second is what is required for the profile to be social cost

optimal. For further details and formal definitions see (83). To give formal semantics, for

a CSG C and partition C of the players into m coalitions, we denote by CC the m-player

coalition game, that is, the game C in which the ith player makes the choices for all players

in coalition Ci.

We can now define the verification and strategy synthesis problems for CSGs which, as

for TSGs, coincide as the verification problem reduces to demonstrating the existence of a

certain profile. For these problems, we restrict our attention to subgame-perfect NE (84),

which are NE in every state of the corresponding CSG.3

Definition 16 (Verification and strategy synthesis problems for CSGs). The verification

problem is: given a CSG C and formula Φ, verify whether C |= Φ, where for zero-sum

formulae the satisfaction relation is the same as for TSGs (see Definition 12) and for nonzero-

sum formulae we have:

C |= 〈〈C1: · · · :Cm〉〉opt./q(θ) ⇔ ∃σ? ∈ ΣCC .
(∑m

i=1 E
σ?

CC (Xθ
i)
)
./ q

and σ? is a subgame-perfect SWNE if opt = max, and a subgame-perfect SCNE if opt =

min, for the objectives (Xθ
i)mi=1 in the coalition game CC . The strategy synthesis problem is

then to return such a profile σ?.

The numerical verification and strategy synthesis problems for zero-sum formulae are

as for TSGs (see Definition 12): for nonzero-sum formulae, given a CSG C and formula

〈〈C1, . . . , Cm〉〉opt=?[θ] where opt ∈ {min,max}, compute, for the objectives (Xθ
i)mi=1, the

sum
∑m
i=1 E

σ?

CC (Xθ
i) for a sub-game perfect SWNE profile σ? if opt = max and for a SCNE

profile σ? otherwise, and then return σ?.

Optimal strategies are finite-memory randomised, and in both cases memoryless randomised

strategies are sufficient when restricting to infinite-horizon properties with only proposi-

tional formulae as sub-formulae.

Example 8. Returning to the CSG of Example 7, specifications for this model include:

• 〈〈rbt1〉〉Pmax=?[¬crash U goal1] – what is the maximum probability with which the first

robot can ensure that it reaches its goal without crashing, regardless of the behaviour

of the second robot;

• 〈〈rbt2〉〉Rrsteps64.5[F goal2] – there is a strategy for the second robot that can ensure its

goal is reached within 4.5 expected steps, no matter the behaviour of the first robot;

• 〈〈rbt1:rbt2〉〉max>2(P[F goal1]+P[¬crash U610goal2]) – the robots can collaborate so

that both reach their goal with probability 1, with the additional condition that the

second has to reach its goal within 10 steps and not crash;

• 〈〈rbt1:rbt2〉〉min=?(Rrsteps [F goal1]+Rrsteps [F goal2]) – what is the sum of expected reach-

ability values when the robots collaborate and each minimises the expected number

of steps to reach their goal?

3Since the existence of NE is an open problem (85) for infinite-horizon properties, while ε-NE
profiles have been shown to exist for any ε > 0, the definitions are in fact given in the context of a
particular ε, see (83) for details.

www.annualreviews.org • Probabilistic Model Checking and Autonomy 17

5.2. Model Checking Algorithms for CSGs

For CSG model checking, only limited progress has been made to date. In the qualitative

case, (86, 87) present graph-based algorithms for reachability properties and omega-regular

languages (which can encode all LTL properties). In the quantitative case, (83) introduces

model checking algorithms for the extended PRISM logic restricted to a subset of the logic

in which the sub-formulae of path formula are propositional formulae and there are only

two coalitions in nonzero-sum formulae. There are also restrictions on the class of CSGs

that can be analysed, which can be viewed as a variant of stopping games (88).

The model checking algorithms presented in (83) involve graph-based analysis followed

by value iteration. In the case of zero-sum games, during value iteration for each state, at

each iteration, an LP problem of size |A| must be solved (corresponding to finding the value

of a zero-sum one-shot game), which has complexity PTIME (89). On the other hand, for

nonzero-sum formulae, during value iteration for each state, at each iteration, all solutions

to an LCP problem of size |A| must be found (corresponding to finding all the NE of a

nonzero-sum one-shot two-player game). It has been shown that the complexity of such

problems is PPAD (polynomial parity argument in a directed graph) (90). Regarding the

number of iterations required in either case, for finite-horizon objectives this is equal to the

step bound in the formula. On the other hand, for infinite-horizon objectives, the number

of iterations depends on the convergence criterion and an exponential lower bound has been

shown in the worst-case (91).

This approach has since been extended (92) to allow any number of coalitions to appear

in nonzero-sum formulae. In this case, during value iteration, for each state, at each itera-

tion, one must find all the NE of a nonzero-sum one-shot m-player game, and it has been

shown that finding all the NE when there are three (or more) players is PPAD-complete (93).

Other work related to CSGs and nonzero-sum properties includes: (94, 95), which study

the existence and complexity of finding NE; (96), which analyses the complexity of finding

subgame-perfect NE for reachability properties; and (97), which investigates the complexity

of equilibrium design. The existence of stochastic equilibria with imprecise deviations and

a PSPACE algorithm to compute such equilibria is considered in (98).

5.3. Tools and Applications

PRISM-games (2) supports the model checking of CSGs against a restricted class of the

extended PRISM logic, where the only sub-formulae of path formulae are propositional

formulae and nonzero-sum formula are restricted to two coalitions. An extension of PRISM-

games that supports more general nonzero-sum formulae is presented in (92). Applications

of CSG model checking to date include robotics, computer security and communication

protocols such as Aloha (83).

6. FURTHER EXTENSIONS

In this section, we discuss some further extensions to the models, logics and model checking

algorithms to broaden the range of systems and properties that can be analysed.

6.1. Continuous-Time Models

The models we have so far presented are all discrete-time models exhibiting both proba-

bilistic and non-deterministic behaviour. However, for certain systems it is necessary to also

18 Kwiatkowska et al.

model continuous-time characteristics and the interplay between the continuous, discrete

and stochastic dynamics.

Probabilistic timed automata (PTAs) (99, 100, 101) extend MDPs with continuous-time

clocks, which are variables whose values range over the non-negative reals and increase at

the same rate as time. POMDPs, TSG and CSGs have also been extended with continuous-

time to POPTAs (102), TPTGs (103) and CPTGs (104), respectively. Reward structures

for these models are again specified in terms of both state and action rewards, though

state rewards now specify the rate at which rewards are accumulated as time passes in a

state. The PRISM logic can also be applied to these continuous-time models, where the key

difference is that the bounds appearing in path and reward formulae now correspond elapsed

time, rather than the number of discrete steps. Additional continuous-time properties can

be modelled by adding formula clocks and freeze quantifiers to the logic (100).

Model checking and strategy synthesis algorithms for these models are based on first

constructing a finite-state discrete-time model (e.g., an MDP) and then performing model

checking on this model. There are a number of approaches that can be employed, including:

• the region graph construction for PTAs (100);

• the boundary region graph for PTAs (105) and CPTGs (104);

• the digital clocks method for PTAs (102), POPTAs (102) and TPTGs (103);

• forwards reachability for PTAs (100);

• backwards reachability for PTAS (106, 107);

• abstraction refinement with stochastic games for PTAs (108).

Although this survey focuses on discrete-state models, we also mention briefly that

probabilistic model checking techniques have been developed for models with continuous

state, and for hybrid stochastic systems with both discrete and continuous aspects to their

state space; see, for example, (109, 110).

6.2. Verification of Complex Systems

One of the most successful approaches to improve the scalability of non-probabilistic model

checking of complex systems is through abstraction-refinement frameworks (111). This is

based on first constructing a small model that abstracts aspects of the complex system that

do not relate to the specification, while preserving the satisfaction of a given specification.

This abstraction can then be verified and, if the abstraction indeed satisfies the specification,

then so does the complex system. If the abstraction does not satisfy the specification, then

information from the model checking process, which in the non-probabilistic case is usually

a counter-example path, can then be used to either show that the specification is not

satisfied by the complex system or, if this is not possible, to refine the abstraction until the

satisfaction of specification by the complex system can be determined.

In the setting of probabilistic models the focus has been on MDPs. The first frame-

work was introduced by (112, 113) using probabilistic simulations (114). Extending this,

(115, 116) have developed a framework based on predicate abstraction (117) and probabilis-

tic counter-examples (118) implemented in the PASS tool (119). An alternative refinement

of MDPs is presented in (120) using TSGs for the abstract model to maintain a distinction

between the non-determinism of the original MDP and that introduced through the abstrac-

tion process. By maintaining this distinction, model checking of the abstract models yields

separate lower and upper bounds for the given specification, and therefore a quantitative

www.annualreviews.org • Probabilistic Model Checking and Autonomy 19

measure of the quality of the abstraction.

An alternative approach to improve scalability is compositional verification (121, 122),

which allows the correctness of a system to be verified through the model checking of

individual components in isolation.

7. CONCLUSIONS

We have provided an overview of probabilistic model checking techniques with an emphasis

on autonomous system modelling, verification and strategy synthesis from temporal logic

specifications. The described techniques have been implemented in the PRISM and PRISM-

games probabilistic model checkers and used to model and analyse a variety of case studies

from robotics, security and computer networks.

SUMMARY POINTS

1. Probabilistic model checking provides a unified framework and a formal language

to facilitate the construction of a wide range of single- and multi-agent autonomous

system models that operate in uncertain or adversarial environments, and whose

agents cooperate or compete, and proceed concurrently or in turn-based fashion.

2. Temporal logic can be extended with suitable operators (probabilistic, coalition,

reward) to conveniently specify a variety of quantitative, zero-sum or distinct, ob-

jectives of autonomous agents and supports high-level motion planning, strategic

reasoning and coordination of their behaviours.

3. Optimal controllers (or strategies) for autonomous agents (or coalitions of agents),

including equilibria, can be automatically synthesised from temporal logic specifica-

tions. For partially observable models and infinite-horizon objectives, it cannot be

guaranteed that the controllers are optimal due to undecidability of the underlying

problem. For multi-agent models, optimality is defined in terms of social welfare

and may need to be weakened to ε-optimality for infinite-horizon objectives.

FUTURE ISSUES

1. Model checking of partially observable stochastic games has been studied (123).

However, little progress has so far been made on developing practical, approximate

verification and strategy synthesis algorithms.

2. Efficiency is still a major limitation when verifying complex real-world systems.

Therefore it is essential to continue to improve scalability, which includes extending

compositional probabilistic model checking to all models.

3. In the case of CSGs, the efficiency of equilibria computation of normal form

games (82) is the main limitation. Enhancing the performance of this method is

thus necessary, as is extending the computation to different notions of equilibria and

games including: Stackelberg (124), correlated (125) and psychological games (126).

4. One limitation is that none of the presented models allows the modelling of agents

that can learn and adapt, e.g. through reinforcement learning (127) or neuro-

symbolic reasoning (128). This is an important issue that needs to be addressed.

20 Kwiatkowska et al.

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme (grant agreement

No. 834115) and the EPSRC Programme Grant on Mobile Autonomy (EP/M019918/1).

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings

that might be perceived as affecting the objectivity of this review.

LITERATURE CITED

1. Kwiatkowska M, Norman G, Parker D. 2011. PRISM 4.0: verification of probabilistic real-time

systems. In Proc CAV’11, vol. 6806 of LNCS, pp. 585–591. Springer. prismmodelchecker.org

2. Kwiatkowska M, Norman G, Parker D, Santos G. 2020. PRISM-games 3.0: stochastic game

verification with concurrency, equilibria and time. In Proc. CAV’20, vol. 12225 of LNCS, pp.

475–487. Springer. prismmodelchecker.org/games/

3. Puterman M. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley and Sons

4. Lacerda B, Parker D, Hawes N. 2014. Optimal and dynamic planning for Markov decision

processes with co-safe LTL specifications. In Proc. IROS’14, pp. 1511–1516. IEEE

5. Kemeny J, Snell J, Knapp A. 1976. Denumerable Markov Chains. Springer

6. Hansson H, Jonsson B. 1994. A logic for reasoning about time and reliability. FAC 6(5):512–

535

7. Pnueli A. 1981. The temporal semantics of concurrent programs. TCS 13:45–60

8. Forejt V, Kwiatkowska M, Norman G, Parker D. 2011. Automated verification techniques for

probabilistic systems. In SFM’11, vol. 6659 of LNCS, pp. 53–113. Springer

9. Haddad S, Monmege B. 2018. Interval iteration algorithm for MDPs and IMDPs. TCS

735:111–131

10. Brázdil T, Chatterjee K, Chmeĺık M, Forejt V, Křet́ınský J, et al. 2014. Verification of Markov

decision processes using learning algorithms. In Proc. ATVA’14, vol. 8837 of LNCS, pp. 98–

114. Springer

11. Křet́ınský J, Meggendorfer T. 2020. Of cores: a partial-exploration framework for Markov

decision processes. Logical Methods in Computer Science 16(4)

12. Baier C, Katoen JP. 2008. Principles of Model Checking. MIT Press

13. de Alfaro L. 1997. Formal verification of probabilistic systems. Ph.D. thesis, Stanford Univer-

sity

14. Bellman R. 1957. Dynamic Programming. Princeton University Press

15. Etessami K, Kwiatkowska M, Vardi M, Yannakakis M. 2008. Multi-objective model checking

of Markov decision processes. LMCS 4(4):1–21

16. Forejt V, Kwiatkowska M, Norman G, Parker D, Qu H. 2011. Quantitative multi-objective

verification for probabilistic systems. In Proc. TACAS’11, vol. 6605 of LNCS, pp. 112–127.

Springer

17. Forejt V, Kwiatkowska M, Parker D. 2012. Pareto curves for probabilistic model checking. In

Proc. ATVA’12, vol. 7561 of LNCS, pp. 317–332. Springer

18. Lahijanian M, Svorenova M, Morye AA, Yeomans B, Rao D, et al. 2018. Resource-performance

trade-off analysis for mobile robots. IEEE RA-L 3(3):1840–1847

19. Daws C. 2004. Symbolic and parametric model checking of discrete-time Markov chains. In

Proc. ICTAC’04, vol. 3407 of LNCS, pp. 280–294. Springer

www.annualreviews.org • Probabilistic Model Checking and Autonomy 21

https://www.prismmodelchecker.org/games/
https://www.prismmodelchecker.org/games/

20. Hahn E, Hermanns H, Zhang L. 2011. Probabilistic reachability for parametric Markov models.

STTT 13(1):3–19

21. Jansen N, Corzilius F, Volk M, Wimmer R, Ábrahám E, et al. 2014. Accelerating Parametric

Probabilistic Verification. In Proc. QEST’14, pp. 404–420

22. Hahn E, Han T, Zhang L. 2011. Synthesis for PCTL in parametric Markov decision processes.

In Proc. NFM’11, vol. 6617 of LNCS. Springer

23. Quatmann T, Dehnert C, Jansen N, Junges S, Katoen JP. 2016. Parameter synthesis for

Markov models: faster than ever. In Proc. ATVA’16, vol. 9938 of LNCS, pp. 50–67. Springer

24. Givan R, Leach S, Dean T. 2000. Bounded-parameter Markov decision processes. Artif. Intell.

122(1-2):71–109

25. Wolff E, Topcu U, Murray R. 2012. Robust control of uncertain Markov decision processes

with temporal logic specifications. In Proc. CDC’12, pp. 3372–3379

26. Puggelli A, Li W, Sangiovanni-Vincentelli A, Seshia S. 2015. Polynomial-time verification of

PCTL properties of MDPs with convex uncertainties. In Proc. CAV’13, vol. 8044 of LNCS,

pp. 527–542. Springer

27. Hahn E, Hashemi V, Hermanns H, Lahijanian M, Turrini A. 2019. Interval Markov decision

processes with multiple objectives: from robust strategies to Pareto curves. ACM Trans.

Model. Comput. Simul. 29(27):1–31

28. Alur R, Henzinger T. 1999. Reactive modules. FMSD 15(1):7–48

29. Dehnert C, Junges S, Katoen JP, Volk M. 2017. A Storm is coming: A modern probabilistic

model checker. In Proc. CAV’17, vol. 10427 of LNCS, pp. 592–600. stormchecker.org

30. Budde C, Dehnert C, Hahn E, Hartmanns A, Junges S, Turrini A. 2017. JANI: quantitative

model and tool interaction. In Proc. TACAS’17, vol. 10206 of LNCS, pp. 151–168. Springer.

jani-spec.org

31. Hartmanns A, Hermanns H. 2014. The Modest toolset: an integrated environment for quantita-

tive modelling and verification. In Proc. TACAS’14, vol. 8413 of LNCS, pp. 593–598. Springer.

modestchecker.net

32. Hahn EM, Li Y, Schewe S, Turrini A, Zhang L. 2014. iscasMc: a web-based probabilistic model

checker. In Proc. FM’14, vol. 8442 of LNCS, pp. 312–317. Springer. iscasmc.ios.ac.cn/IscasMC

33. Hahn E, Hermanns H, Wachter B, Zhang L. 2010. PARAM: a model checker for parametric

Markov models. In Proc. CAV’10, vol. 6174 of LNCS, pp. 660–664. Springer. depend.cs.uni-

saarland.de/tools/param/

34. Dehnert C, Junges S, Jansen N, Corzilius F, Volk M, et al. 2015. PROPhESY: A PRObabilis-

tic ParamEter SYnthesis tool. In Proc. CAV’15, vol. 9206 of LNCS, pp. 214–231. Springer.

moves.rwth-aachen.de/research/tools/prophesy/

35. Lahijanian M, Andersson S, Belta C. 2012. Temporal logic motion planning and control with

probabilistic satisfaction. IEEE Trans. Robot. 28(2):396–409

36. Lahijanian M, Andersson S, Belta C. 2015. Formal verification and synthesis for discrete-time

stochastic systems. IEEE Trans. Automat. Contr. 60(8):2031–2045

37. Fraser D, Giaquinta R, Hoffmann R, Ireland M, Miller A, Norman G. 2020. Collaborative

models for autonomous systems controller synthesis. FAC 32:157–186

38. Nardone V, Santone A, Tipaldi M, Glielmo L. 2016. Probabilistic model checking applied to

autonomous spacecraft reconfiguration. In Proc. MetroAeroSpace’16, pp. 556–560. IEEE

39. Lacerda B, Faruq F, Parker D, Hawes N. 2019. Probabilistic planning with formal performance

guarantees for mobile service robots. Int. J. Robot. Res. 38(19):1098–1123

40. Zhao X, Robu V, Flynn D, Dinmohammadi F, Fisher M, Webster M. 2019. Probabilistic

model checking of robots deployed in extreme environments. In Proc. AAAI’19, vol. 33, pp.

8066–8074. AAAI Press

41. Li N, Adepu S, Kang E, Garlan D. 2020. Explanations for human-on-the-loop: a probabilistic

model checking approach. In Proc. SEAMS’20, pp. 181–187. ACM

42. Tomy M, Lacerda B, Hawes N, Wyatt J. 2019. Battery charge scheduling in long-life au-

22 Kwiatkowska et al.

http://www.stormchecker.org
https://jani-spec.org
https://www.modestchecker.net
https://iscasmc.ios.ac.cn/IscasMC/login/login/
https://depend.cs.uni-saarland.de/tools/param/
https://depend.cs.uni-saarland.de/tools/param/
https://moves.rwth-aachen.de/research/tools/prophesy/

tonomous mobile robots. In Proc. ECMR’19, pp. 1–6. IEEE

43. Calinescu R, Ghezzi C, Kwiatkowska M, Mirandola R. 2012. Self-adaptive software needs

quantitative verification at runtime. Communications of the ACM 55(9):69–77

44. Luckcuck M, Farrell M, Dennis L, Dixon C, Fisher M. 2019. Formal specification and verifi-

cation of autonomous robotic systems: A survey. ACM Comput. Surv. (100):1–41

45. Baier C, Bertrand N, Größer M. 2008. On decision problems for probabilistic Büchi automata.

In Proc. FOSSACS’08, vol. 4962 of LNCS, pp. 287–301. Springer

46. Chatterjee K, Chmeĺık M, Tracol M. 2013. What is decidable about partially observable Markov

decision processes with omega-regular objectives. In Proc. CSL’13, pp. 165–180

47. Chatterjee K, Chmeĺık M, Gupta R, Kanodia A. 2016. Optimal cost almost-sure reachability

in POMDPs. Artif. Intell. 234:26–48

48. Madani O, Hanks S, Condon A. 2003. On the undecidability of probabilistic planning and

related stochastic optimization problems. Artif. Intell. 147(1–2):5–34

49. Poupart P. 2005. Exploiting structure to efficiently solve large scale partially observable markov

decision processes. Ph.D. thesis, University of Toronto

50. Norman G, Parker D, Zou X. 2015. Verification and control of partially observable probabilistic

real-time systems. In Proc. FORMATS’15, vol. 9268 of LNCS, pp. 240–255. Springer

51. Lovejoy W. 1991. Computationally feasible bounds for partially observed Markov decision

processes. Oper. Res. 39(1):162––175

52. Yu H, Bertsekas D. 2004. Discretized approximations for POMDP with average cost. In Proc.

UAI’04, pp. 619–627. AUAI Press

53. Bork A, Junges S, Katoen JP, Quatmann T. 2020. Verification of indefinite-horizon POMDPs.

In Proc. ATVA’20, vol. 12302 of LNCS, pp. 288–304. Springer

54. Bouton M, Tumova J, Kochenderfer M. 2020. Point-based methods for model checking in

partially observable Markov decision processes. In Proc. AAAI’20, vol. 34(06), pp. 10061–

10068. AAAI Press

55. Chatterjee K, Chmeĺık M, Gupta R, Kanodia A. 2015. Qualitative analysis of POMDPs with

temporal logic specifications for robotics applications. In Proc. ICRA’15, pp. 325–330. IEEE

56. Junges S, Jansen N, Wimmer R, Quatmann T, Winterer L, et al. 2018. Finite-state controllers

of POMDPs using parameter synthesis. In Proc. AUAI’18, pp. 519–529

57. Winterer L, Junges S, Wimmer R, Jansen N, Topcu U, et al. 2021. Strategy synthesis for

POMDPs in robot planning via game-based abstractions. IEEE Trans. Autom. Control 1040–

1054(66):3

58. Carr S, Jansen N, Topcu U. 2020. Verifiable RNN-based policies for POMDPs under temporal

logic constraints. In Proc. IJCAI’20, pp. 4121–4127

59. Giro S, Rabe M. 2012. Verification of partial-information probabilistic systems using

counterexample-guided refinements. In Proc. ATVA’12, vol. 7561 of LNCS, pp. 333–348.

Springer

60. Cerný P, Chatterjee K, Henzinger T, Radhakrishna A, Singh R. 2011. Quantitative synthesis

for concurrent programs. In Proc. CAV’11, vol. 6806 of LNCS, pp. 243–259. Springer

61. Suilen M, Jansen N, Cubuktepe M, Topcu U. 2020. Robust policy synthesis for uncertain

POMDPs via convex optimization. In Proc. IJCAI’20, pp. 4113–4120

62. Carr S, Jansen N, Wimmer R, Fu J, Topcu U. 2018. Human-in-the loop synthesis for partially

observable Markov decision processes. Proc. ACC’18 :762–769

63. Feng L, Wiltsche C, Humphrey L, Topcu U. 2016. Synthesis of human-in-the-loop control

protocols for autonomous systems. IEEE Trans. Autom. Sci. Eng. 13(2):450–462

64. Alur R, Henzinger T, Kupferman O. 2002. Alternating-time temporal logic. J. ACM 49(5):672–

713

65. Chen T, Forejt V, Kwiatkowska M, Parker D, Simaitis A. 2013. Automatic verification of

competitive stochastic systems. FMSD 43(1):61–92

66. von Neumann J, Morgenstern O, Kuhn H, Rubinstein A. 1944. Theory of Games and Economic

www.annualreviews.org • Probabilistic Model Checking and Autonomy 23

Behavior. Princeton University Press

67. Martin D. 1998. The determinacy of Blackwell games. J. Symbolic Logic 63(4):1565–1581

68. Condon A. 1993. On algorithms for simple stochastic games. Advances in computational com-

plexity theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science

13:51–73

69. Kelmendi E, Krämer J, Kret́ınský J, Weininger M. 2018. Value iteration for simple stochastic

games: stopping criterion and learning algorithm. In Proc. CAV’18, vol. 10981 of LNCS, pp.

623–642. Springer

70. Chatterjee K, Henzinger T. 2006. Strategy improvement and randomized subexponential al-

gorithms for stochastic parity games. In Proc. STACS’06, vol. 3884 of LNCS, pp. 512–523.

Springer

71. Chatterjee K, Henzinger T. 2012. A survey of stochastic ω-regular games. J. CSS 78(2):394–

413

72. Chen T, Kwiatkowska M, Simaitis A, Wiltsche C. 2013. Synthesis for multi-objective stochastic

games: an application to autonomous urban driving. In Proc. QEST’13, vol. 8054 of LNCS,

pp. 322–337. Springer

73. Basset N, Kwiatkowska M, Wiltsche C. 2018. Compositional strategy synthesis for stochastic

games with multiple objectives. IC 261(3):536–587

74. Basset N, Kwiatkowska M, Topcu U, Wiltsche C. 2015. Strategy synthesis for stochastic

games with multiple long-run objectives. In Proc. TACAS’15, vol. 9035 of LNCS, pp. 256–

271. Springer

75. Feng L, Wiltsche C, Humphrey L, Topcu U. 2015. Controller synthesis for autonomous systems

interacting with human operators. In Proc. ICCPS’15, pp. 70–79. ACM

76. Junges S, Jansen N, Katoen JP, Topcu U, Zhang R. 2018. Model Checking for Safe Navigation

Among Humans. In Proc. QEST’18, vol. 11024 of LNCS, pp. 207–222. Springer

77. Glazier T, Cámara J, Schmerl B, Garlan D. 2015. Analyzing resilience properties of different

topologies of collective adaptive systems. In Proc. SASOW’15, pp. 55–60. IEEE

78. Glazier T, Garlan D, Schmerl B. 2020. Automated management of Collections of autonomic

systems. In Proc. ACSOS’20, pp. 82–91. IEEE

79. Cámara J, Garlan D, Schmerl B, Pandey A. 2015. Optimal planning for architecture-based

self-adaptation via model checking of stochastic games. In Proc. SAC’15, pp. 428–435. ACM

80. Chatterjee K, Henzinger T, Jobstmann B, Radhakrishna A. 2010. Gist: a solver for proba-

bilistic games. In Proc. CAV’10, vol. 6174 of LNCS, pp. 665–669. Springer. pub.ist.ac.at/gist/

81. Cheng C, Knoll A, Luttenberger M, Buckl C. 2011. GAVS+: an open platform for the research

of algorithmic game solving. In Proc. TACAS’11, vol. 6605 of LNCS, pp. 258–261. Springer.

sourceforge.net/projects/gavsplus/

82. Nash J. 1950. Equilibrium points in n-person games. Proc. Natl. Acad. Sci 36:48–49

83. Kwiatkowska M, Norman G, Parker D, Santos G. 2021. Automatic verification of concurrent

stochastic systems. FMSD

84. Osborne M, Rubinstein A. 2004. An Introduction to Game Theory. Oxford University Press

85. Bouyer P, Markey N, Stan D. 2014. Mixed Nash equilibria in concurrent games. In Proc.

FSTTCS’14, vol. 29 of LIPICS, pp. 351–363

86. de Alfaro L, Henzinger T, Kupferman O. 2007. Concurrent reachability games. TCS

386(3):188–217

87. Chatterjee K, de Alfaro L, Henzinger T. 2013. Strategy improvement for concurrent reacha-

bility and turn-based stochastic safety games. J. CSS 79(5):640–657

88. Chen T, Forejt V, Kwiatkowska M, Simaitis A, Wiltsche C. 2013. On stochastic games with

multiple objectives. In Proc. MFCS’13, vol. 8087 of LNCS, pp. 266–277. Springer

89. Karmarkar N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica

4(4):373–395

90. Papadimitriou C. 1994. On the complexity of the parity argument and other inefficient proofs

24 Kwiatkowska et al.

http://pub.ist.ac.at/gist/
https://sourceforge.net/projects/gavsplus/

of existence. J. CSS 48(3):498–532

91. Hansen K, Ibsen-Jensen R, Miltersen P. 2011. The complexity of solving reachability games

using value and strategy iteration. Theory Comput. Syst. 55:380–403

92. Kwiatkowska M, Norman G, Parker D, Santos G. 2020. Multi-player equilibria verification for

concurrent stochastic games. In Proc. QEST’20, LNCS, pp. 74–95. Springer

93. Daskalakis C, Goldberg P, Papadimitriou C. 2009. The complexity of computing a Nash equi-

librium. Com. ACM 52(2):89–97

94. Chatterjee K, Majumdar R, Jurdziński M. 2004. On Nash equilibria in stochastic games. In

Proc. CSL’04, vol. 3210 of LNCS, pp. 26–40. Springer

95. Ummels M. 2010. Stochastic multiplayer games: Theory and algorithms. Ph.D. thesis, RWTH

Aachen University

96. Brihaye T, Bruyère V, Goeminne A, Raskin JF, van den Bogaard M. 2019. The complexity of

subgame perfect equilibria in quantitative reachability games. In Proc. CONCUR’19, vol. 140

of LIPICS, pp. 13:1–13:16

97. Gutierrez J, Najib M, Giuseppe P, Wooldridge M. 2019. Equilibrium design for concurrent

games. In Proc. CONCUR’19, vol. 140 of LIPICS, pp. 22:1–22:16

98. Bouyer P, Markey N, Stan D. 2016. Stochastic equilibria under imprecise deviations in

terminal-reward concurrent games. In Proc. GandALF’16, vol. 226 of EPTCS, pp. 61–75

99. Jensen H. 1996. Model checking probabilistic real time systems. In Proc. Nordic Workshop

Programming Theory, pp. 247–261

100. Kwiatkowska M, Norman G, Segala R, Sproston J. 2002. Automatic verification of real-time

systems with discrete probability distributions. TCS 282:101–150

101. Beauquier D. 2003. Probabilistic timed automata. TCS 292(1):65–84

102. Kwiatkowska M, Norman G, Parker D, Sproston J. 2006. Performance analysis of probabilistic

timed automata using digital clocks. FMSD 29:33–78

103. Kwiatkowska M, Norman G, Parker D. 2019. Verification and control of turn-based probabilis-

tic real-time games. In The Art of Modelling Computational Systems, vol. 11760 of LNCS,

pp. 379–396. Springer

104. Forejt V, Kwiatkowska M, Norman G, Trivedi A. 2016. Expected reachability-time games.

TCS 631:139–160

105. Jurdziński M, Kwiatkowska M, Norman G, Trivedi A. 2009. Concavely-priced probabilistic

timed automata. In Proc. CONCUR’09, vol. 5710 of LNCS, pp. 415–430. Springer

106. Kwiatkowska M, Norman G, Sproston J, Wang F. 2007. Symbolic model checking for proba-

bilistic timed automata. IC 205(7):1027–1077

107. Jovanovic A, Kwiatkowska M, Norman G, Peyras Q. 2017. Symbolic optimal expected time

reachability computation and controller synthesis for probabilistic timed automata. TCS

669:1–21

108. Kwiatkowska M, Norman G, Parker D. 2009. Stochastic games for verification of probabilistic

timed automata. In Proc. FORMATS’09, vol. 5813 of LNCS, pp. 212–227. Springer

109. Tkachev I, Abate A. 2013. Formula-free finite abstractions for linear temporal verification of

stochastic hybrid systems. In Proc. HSCC’13, pp. 283–292

110. Haesaert S, Soudjani S, Abate A. 2018. Temporal logic control of general Markov decision

processes by approximate policy refinement. In Proc. ADHS’18, pp. 73–78

111. Clarke E, Grumberg O, Jha S, Lu Y, Veith H. 2000. Counterexample-guided abstraction re-

finement. In Proc. CAV’00, vol. 1855 of LNCS, pp. 154–169. Springer

112. D’Argenio P, Jeannet B, Jensen H, Larsen K. 2001. Reachability analysis of probabilistic

systems by successive refinements. In Proc. PAPM/PROBMIV’01, vol. 2165 of LNCS, pp.

39–56. Springer

113. D’Argenio P, Jeannet B, Jensen H, Larsen K. 2002. Reduction and refinement strategies for

probabilistic analysis. In Proc. PAPM/PROBMIV’02, vol. 2399 of LNCS, pp. 57–76. Springer

114. Segala R, Lynch N. 1995. Probabilistic simulations for probabilistic processes. Nordic J. Com-

www.annualreviews.org • Probabilistic Model Checking and Autonomy 25

puting 2(2):250–273

115. Wachter B, Zhang L, Hermanns H. 2007. Probabilistic model checking modulo theories. In

Proc. QEST’07, pp. 129–140. IEEE

116. Hermanns H, Wachter B, Zhang L. 2008. Probabilistic CEGAR. In Proc. CAV’08, vol. 5123

of LNCS, pp. 162–175. Springer

117. Graf S, Saidi H. 1997. Construction of abstract state graphs with PVS. In Proc. CAV’97, vol.

1254 of LNCS, pp. 72–83. Springer

118. Han T, Katoen JP, Damman B. 209. Counterexample generation in probabilistic model check-

ing. IEEE Trans. Softw. Eng. 35(2):241–257

119. Hahn E, Hermanns H, Wachter B, Zhang L. 2010. PASS: abstraction refinement for infi-

nite probabilistic models. In Proc. TACAS’10, vol. 6105 of LNCS, pp. 353–357. Springer.

depend.cs.uni-saarland.de/tools/pass/

120. Kattenbelt M, Kwiatkowska M, Norman G, Parker D. 2010. A game-based abstraction-

refinement framework for Markov decision processes. FMSD 36(3):246–280

121. Kwiatkowska M, Norman G, Parker D, Qu H. 2013. Compositional probabilistic verification

through multi-objective model checking. IC 232:38–65

122. Basset N, Kwiatkowska M, Wiltsche C. 2014. Compositional controller synthesis for stochastic

games. In Proc CONCUR’14, vol. 8704 of LNCS, pp. 173–187. Springer

123. Chatterjee K, Doyen L. 2014. Partial-observation stochastic games: How to win when belief

fails. ACM TOCL 15(2):1–44

124. Simaan M, Cruz J. 1973. On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory.

Appl. 533–555(11):5

125. Aumann R. 1974. Subjectivity and correlation in randomized strategies. J. Math. Econ.

1(2):67–96

126. Battigalli P, Dufwenberg M. 2009. Dynamic psychological games. J. Econ. Theory 244:67–96

127. Kaelbling L, Littman M, Moore A. 1996. Reinforcement learning: a survey. J. Artif. Intell.

Res. 4:237–285

128. d’Avila Garcez A, Lamb L, Gabbay D. 2009. Neural-Symbolic Cognitive Reasoning. Cognitive

Technologies. Springer

26 Kwiatkowska et al.

https://depend.cs.uni-saarland.de/tools/pass/

	INTRODUCTION
	MARKOV DECISION PROCESSES
	Property Specifications for MDPs
	Probabilistic Model Checking of MDPs
	Model Checking Algorithms
	Extensions, Tools and Applications

	PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
	Model Checking for POMDPs
	Extensions, Tools and Applications

	TURN-BASED STOCHASTIC GAMES
	Property Specifications for TSGs
	Model Checking Algorithms for TSGs
	Extensions, Tools and Applications

	CONCURRENT STOCHASTIC GAMES
	Property Specifications for CSGs
	Model Checking Algorithms for CSGs
	Tools and Applications

	FURTHER EXTENSIONS
	Continuous-Time Models
	Verification of Complex Systems

	CONCLUSIONS

