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Abstract— Research into safety in autonomous and semi-
autonomous vehicles has, so far, largely been focused on testing
and validation through simulation. Due to the fact that failure
of these autonomous systems is potentially life-endangering,
formal methods arise as a complementary approach. This paper
studies the application of formal methods to the verification of
a human driver model built using the cognitive architecture
ACT-R, and to the design of correct-by-construction Advanced
Driver Assistance Systems (ADAS). The novelty lies in the
integration of ACT-R in the formal analysis and an abstraction
technique that enables finite representation of a large dimen-
sional, continuous system in the form of a Markov process. The
situation considered is a multi-lane highway driving scenario
and the interactions that arise. The efficacy of the method is
illustrated in two case studies with various driving conditions.

I. INTRODUCTION

Humans do not have a good track record on the road.
Road accidents kill 1.24 million people every year and over
90% of all crashes are mainly attributed to errors of human
drivers [1]. While full self-driving technology is not yet
available at scale, in an attempt to reduce these numbers,
several car manufacturers have introduced semi-autonomous
features in the form of Advanced Driver Assistance Systems
(ADAS). Examples include Tesla’s Autopilot and Ford’s Co-
Pilot 360. However, ensuring safety for semi-autonomous
vehicles remains a major challenge with roots in the lack of
coherent understanding of the human-ADAS interaction.

Existing methods to validate the safety of semi-
autonomous systems rely on testing and simulation. Using
real data to take statistically significant conclusions, however,
is infeasible due to the time it takes to collect a sufficiently
large amount of data [2]. Several approaches are based
on modeling and simulating the semi-autonomous vehicle,
as proposed in [3]–[6]. Despite this, it is imperative to
recognize the shortcomings of simulation in safety evaluation
of complex driver assistance systems which could have life-
endangering impact [7], [8].

A promising direction is to employ formal verification
techniques, which are based on rigorous mathematical rea-
soning, to obtain strong guarantees about the ADAS, as
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Fig. 1: Overview of the ADAS design with passive and active
interventions for a specification ϕ.

proposed by several recent works [9]–[11]. In [10], Nilsson et
al. synthesized a provably-correct module for adaptive cruise
control from specifications given in temporal logic. However,
these studies ignore the human driver behavior variability
presented by a driver model, which can lead to controllers
that perform poorly in corner cases. On the other hand,
[11] applies model checking techniques to the verification
of data-driven models of human driver behavior, yet it does
not explicitly model the human cognitive process nor does
it leverage this analysis as a way to bootstrap safety in the
form of an ADAS.

The overarching goal of this study is to provide safety
guarantees in semi-autonomous vehicles through the inte-
gration of human cognition with formal methods. As a first
step in this direction, this paper focuses on giving guarantees
at the design level of the ADAS. Specifically, it employs
the cognitive architecture known as Adaptive Control of
Thought-Rational (ACT-R): a framework for specifying com-
putational behavioral models of human cognitive perfor-
mance, embodying both the abilities (e.g. memory storage
and recall, perception or motor action) and constraints (e.g.
memory decay and limited motor performance) of humans
[12]–[17]. The work builds on the human driver model in a
multi-lane highway driving scenario presented in [15]. It also
expands upon [9] by applying verification techniques to an
efficient abstraction of the model and extends it to allow the
intervention of a provably-correct synthesized ADAS based
on specifications given as temporal logic formulas.

The main contribution of this paper is threefold: first, it
studies the verification of a human driver model built in
a cognitive architecture through efficient model abstraction
techniques. Second, it builds upon the model of human
driving behavior as a way to bootstrap the desired properties



in the ADAS using formal methods. Third, it introduces a
flexible framework in terms of specifications which allows
for different guarantees to be obtained depending on the
choices made by the ADAS designer. Other contributions of
this work include case studies based on specific properties
and an open source implementation of the framework. To the
best of our knowledge, this is the first framework that brings
formal reasoning to the design of semi-autonomous vehicle
solutions by taking into account the cognitive process of the
human.

II. PROBLEM FORMULATION

We consider the driving scenario studied in [15], where
a vehicle, called the ego-vehicle, is in an interaction with
a lead vehicle in a multi-lane highway. We are interested
in designing a correct-by-construction ADAS system for the
ego-vehicle.

A. Vehicle Model

We consider the ego-vehicle kinematics are described by

∆x = v cos(ψ + ρ)∆t, ∆y = v sin(ψ + ρ)∆t,

∆v = a∆t, ∆ψ =
2v

l
sin(ρ)∆t,

(1)

where x and y are the coordinates of the vehicle’s center
of mass, v is the speed, and ψ is the heading angle of
the vehicle. The control inputs are steering angle ρ and
acceleration a. Finally, l is the length of the vehicle, and
∆t is the time duration between two iterations of the model.

We assume that the motion of the lead vehicle is pre-
dictable. This simplifying assumption, even though not re-
alistic in large scale, is reasonable for small road segments
due to the predictability of highway driving and the possible
improvements that can be introduced by using data [18].

B. Integrated Human Driver Model in ACT-R

The ego-vehicle is driven by a human, whose behavior is
represented in ACT-R. ACT-R is a framework for specifying
computational behavioral models of human cognitive perfor-
mance [12]–[17]. It embodies two crucial cognitive aspects
of humans: the abilities (e.g., memory storage, perception,
and motor action) and the constraints (e.g. memory decay
and limited motor performance). ACT-R can be generally
described as two distinct layers: a perceptual-motor layer and
a cognitive layer. The perceptual-motor layer corresponds to
the interface of the cognition with the environment, being
comprised of modules such as vision and motor actions.
The cognitive layer is focused on memory, which can be
divided into two different categories: declarative (consisting
of factual knowledge and goals - e.g., “The maximum driving
speed in a typical US highway is 65 mph” or “Try to get
to point B”) and procedural (consisting of rules/procedures
- e.g., “If the lead vehicle is going slowly, attempt an
overtake”) [12].

Particularly, we focus on the model proposed by [15],
which is an improved version of the model from [14] based
on advances in ACT-R and real world data. It describes how
a human controls a vehicle and performs an action (e.g. lane
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Fig. 2: Schematic overview of the interaction of the control,
monitoring and decision making modules of the integrated
human driver model in ACT-R.

change), in the presence of other vehicles. The model, shown
schematically in Fig. 2, consists of three distinct modules
interacting in a sequential way:

• control, which manages both the lower level perception
cues and the physical manipulation of the vehicle;

• monitoring, which maintains situational awareness
through the awareness of the position of other vehicles
around the ego-vehicle; and

• decision making, which uses the information gathered
in the monitoring and control stage to determine the
tactical decision to be taken (whether or not a lane
change should happen).

A full description of the model and the governing equa-
tions for vehicle control generations are provided in Sec. IV.

C. ADAS Design

We consider an ADAS that corresponds, first and foremost,
to determining the possible available interventions to the
system at each point in time. The actions considered must be
realistic in nature; otherwise, the obtained assistance system
would prove to be incompetent in a real-world scenario.
Fig. 1 summarizes the interventions we consider for the
ADAS, which are divided into two types: passive suggestions
and active control.

In passive suggestions, it is assumed that the assistance
system cannot change the decision making directly (as it is
a human cognitive process), but it can influence it to a certain
degree through suggestions [19]. Hence, the control inputs
to the vehicle are directly provided by the human (ACT-R),
i.e., a = ah and ρ = ρh, where subscript h corresponds to
the human, and the ADAS can only provide suggestions that
can lead to safe and correct behaviors.

In active control, ADAS can have incremental control-
based interventions at the level of acceleration and steering,
i.e., a = ah + aADAS and ρ = ρh + ρADAS, where the ADAS
variables are constrained to ensure incremental interventions.
The full details of the action availability, constraints, and
intervention of the ADAS are presented in Sec. V.

D. Specification Language

To formally express the behavioral properties of interest
for the semi-autonomous system, we use Probabilistic Com-
putation Tree Logic (PCTL) [20]. A PCTL formula combines
boolean and temporal operators with probabilistic reasoning,
constituting a rich specification language.



Definition 1 (PCTL Syntax). A PCTL formula Φ over a set
of atomic propositions AP can be formed according to the
following grammar:

Φ := true | o | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | P∼p(ϕ)

ϕ :=© Φ | Φ1U≤k Φ2 | Φ1UΦ2 | ♦ Φ

where o ∈ AP is an atomic proposition, ∧ (“and”), ∨ (“or”),
and ¬ (“negation”) are boolean operators, and © (“next”),
U≤k (“bounded until”) with k ∈ N, U (“until”), and ♦
(“eventually”) are temporal operators. P is the probabilistic
operator, and ∼ p is a probability bound. The formulae Φ
and ϕ are called state and path formalas, respectively.

In this work, the atomic propositions represent boolean
facts about the driving scenario. Through them, we can
express properties of interest using PCTL, e.g., “The proba-
bility that eventually the distance to the nearest car becomes
less than dsafe is less than 0.001” can be expressed as
P<0.001

(
♦(‖ x− xnear ‖< dsafe)

)
.

E. Problem Statement
Given a vehicle, whose motion is described by (1), and

a human driver represented by ACT-R, a set of initial
conditions defined as a scenario S, and a PCTL formula
ϕ, we are interested in the following two problems:

Problem 1 (verification). Compute the probability that the
human-vehicle system satisfies ϕ in S, i.e, PS(ϕ).

Problem 2 (synthesis). Design an ADAS that optimizes
the probability of satisfying ϕ by the human-vehicle-ADAS
system in S, i.e., PS./(ϕ) with ./ ∈ {max,min}.

This is a flexible problem representation under which the
specification ϕ comes from the designer of the ADAS. It
should be noted that the two-vehicle scenario considered
in this study is non-limiting as traffic in highways tends
to be sparse, allowing to reason over each of the vehicles
separately as in [15]. In addition, the proposed solution to
Problems 1 and 2 is general and can be easily extended to
more vehicles.

III. PRELIMINARIES

In this study, we employ Markov models as the abstrac-
tions for the driving scenarios.

Definition 2 (Markov Chain (MC)). A MC is a tuple M =
(S,P, s0, AP, ι), where S is a finite set of states, P : S ×
S → [0, 1] is a transition probability function, s0 ∈ S is
the initial state, AP is a set of atomic propositions, and
ι : S → 2AP is a labelling function.

Definition 3 (Markov Decision Process (MDP)). An MDP
is a tupleM = (S,Act,P, s0, AP, ι), where S, s0, AP , and
ι are as in Definition 2, Act is a finite set of actions, and
P : S×Act×S → [0, 1] is a transition probability function.
The set of actions available in state s ∈ S is denoted by
Act(s).

Definition 4 (Path & Policy). A finite path of an MDP is a
finite sequence of states s0s1 . . . sn such that the transition

probability from si to si+1 is non-zero under some action
in Act(si) for all i ∈ {0, . . . , n − 1}. The set of all finite
paths are denote by S∗. A policy for an MDP is a function
π : S∗ → Act that maps a finite path to an action such that
π(s0s1 . . . sn) ∈ Act(sn). The set of all policies is denoted
by Π.

IV. ABSTRACTION AND VERIFICATION OF THE
HUMAN-VEHICLE SYSTEM

To verify the human driver model under a specification
ϕ, we first abstract it to a Markov Chain Mh. We achieve
this by discretizing the individual modules of the integrated
human driver ACT-R model in [15] through the use of the
vehicle model. We can then use off-the-shelf tools, e.g.,
PRISM [21], to perform the verification of the abstracted
model. Below, for the purpose of clarify of presentation,
we detail the abstraction procedure for a two-lane highway
scenario, but we emphasize that the method extends trivially
to n lanes.

A. Control Module

The control module of ACT-R is fully deterministic and
can be divided into lateral (i.e. steering) and longitudinal (i.e.
acceleration) control. The lateral control is determined by the
existence of two artifacts that the driver obtains using low-
level perception cues: the near and far points. In each ACT-R
cycle, the model uses perception to determine the difference
in visual angles ∆θnear and ∆θfar and the difference control
law for the steering angle ρh is:

∆ρh = kfar∆θfar +knear∆θnear +kI min (θnear, θmax)∆t, (2)

where kfar, knear and kI are proportional control gains, and
θmax is the maximum steering angle [15]. The process for
the longitudinal control is similar. In each ACT-R cycle, the
model starts by encoding the position of the lead vehicle and
calculating the time headway to it, as well as the difference
between this and the previous cycle, ∆thw

car. The difference
control law for the acceleration ah can then be written as:

∆ah = kcar∆t
hw
car + kfollow(thw

car − thw
follow)∆t, (3)

where kcar and kfollow are proportional gains of the control,
and thw

follow is the threshold time headway for following a
vehicle [15]. To initiate a lane change, the driver begins
following the near and far points of the destination lane
instead of the current one [22].

The most direct approach to abstracting this module,
widely seen in the literature for small scenarios (e.g. [18],
[23]–[25]) is to represent the road as a grid with the
position of the ego-vehicle being a cell in the grid. The
error associated with this method of discretizing space can
be reduced by decreasing the cell area, i.e., increase in
resolution. However, this incurs in the problem of state
explosion: as the resolution increases, the number of states in
the system grows exponentially and the verification becomes
intractable.

In this work, we take a different approach and focus
on reducing the dimensionality of the problem into a less



error-prone space. We project the human-vehicle system state
(x, y, v, ψ, a, ρ, t) ∈ R7 to x = (x, v, λ, a, t) ∈ R4 × {0, 1},
where x is bounded to a finite length of the road given by
the scenario S, and λ ∈ {0, 1} represents the index of the
lane (left or right). A time discretization is induced by ∆t
for all the continuous variables. Note that t is included in x
to enable the tracking of the state of the other vehicle, whose
motion is assumed to be known (see Sec. II-A). We further
reduce the representation by compressing the lane change
maneuver into a single transition, as described below.

The evolution of the compressed model is as follows.
When the vehicle is following its current lane, λ remains
the same, and x and v are given by (1) (y is the center
of lane λ and ψ = 0) with the control input ∆ρh being
zero and ∆ah given by (3). When a lane change is decided,
the controls and state of the vehicle are given by (1)-(3).
We declare the maneuver is complete when the vehicle has
merged to the center of the final lane, updating λ. During
the maneuver, we monitor the change in the truth values
of the atomic propositions in addition to possible collisions.
Then, we discard the maneuver trajectory and record only
the two states, at which the lane-change maneuver starts
and ends, and label the latter state with the propositions of
the maneuver. These values can be pre-computed, stored in
lookup tables, and used for deterministic transitions between
the control and the next ACT-R step, producing significantly
smaller models.

B. Decision Making and Monitoring

The decision making process to move from the right to the
left lane consists of localizing the lead vehicle in the right
lane and deciding whether or not to change lanes based on
the time headway, thw

car. The lower this time headway, the
more likely a driver is to perform the manoeuvre [26]. Let d
to be the distance between the two vehicles. We represent the
probability of the driver performing a lane change to the left
lane with an exponentially decreasing function (as in [27],
[28]):

Plc(thw
car | λ = 0) = e−αt

hw
car , (4)

where α is a parameter of the decision making.
A similar approach can be applied for a driver in the

left lane overtaking a vehicle behind it in the right lane,
except in this case the opposite effect occurs in the decision
making. In such a case, the probability of changing lane can
be modelled as a normalized logarithmic function over the
distance between the vehicles:

Plc(d, v | λ = 1) =
log(βd+ 1)

log(βdmax + 1)
, (5)

where dmax is the maximum length considered in the sce-
nario, and β is a parameter of the decision making. It should
be noted that the values of α and β could be estimated from
real data for a population of drivers [27], [28].

So far, this version of decision making is not influenced
by the monitoring module at all, and it relies on the measure-
ments of the values of thw

car and d by the human. It is unrealis-
tic to assume that the human’s measurements are perfect. In

order to reflect uncertainty in these values, stochastic noise is
added to the measurement of d (as this is what human drivers
have to instinctively measure through perception). The noise
is considered to be normally distributed w ∼ N (0, σ). For
an integral resolution parameter, δ ∈ [0, d], and L as the
number of discrete steps for x, we can define:

P ′lc(d, v) =

L∑
i=−L

Plc(d+ i, v)

∫ d+i+δ/2

d+i−δ/2
w(z)dz. (6)

Similarly to the control module, the values of P ′lc can be
pre-computed and stored in a table to be used in stochastic
transitions to the ACT-R control step of the following cycle.

C. Markov Chain Abstraction

We now define a finite MC Mh = (S,P, s0, AP, ι) that
unifies both modules using the discretization described above
and a variable µ ∈ {1, 2}, where µ = 1 corresponds to the
control step and µ = 2 to the decision making stage.

We define a state s ∈ S of Mh to be a tuple s =
(µ, x, λ, a, v, t). For a given scenario S = (λ0, x0, v0,x

ov),
where xov is the state of the other vehicle, the state space
S is automatically generated. The transition probabilities for
all s, s′ ∈ S are given by:

P(s, s′) =


1 if µs = 1 ∧ s′ = CONTROL(s),

DMM(s, s′) if µs = 2,

0 otherwise,

where CONTROL is the lookup table for the control step
described in Sec IV-A and DMM is the probability table
for the decision making and monitoring stage described in
Sec IV-B. The set AP and labeling function ι are naturally
mapped according to the tuple elements of each state s. It is
important to note that the generated model is symbolic in na-
ture, adding to the flexibility of the framework. Furthermore,
it is worth noting thatMh captures in a one-to-one mapping
all the possible outcomes of the continuous integrated driver
model, under the assumptions of the distributions given by
(4), (5) and (6).

D. Verification of the Human-Vehicle System

Given the model Mh, we are interested in computing the
probability of satisfying a property ϕ for a given scenario S,
i.e, Problem 1. This probability is defined as:

PS(ϕ) = Pr(s0 |= ϕ), (7)

that is, the probability of ϕ holding in Mh from an initial
state s0. This problem has been extensively studied in the
literature [20], and many linear programming based solutions
for it exist using off-the-shelf tools, e.g. PRISM [21], hence
solving Problem 1.

V. SYNTHESIS FRAMEWORK FOR THE ADAS

In this section, we focus on the design of the ADAS and
its representation as an MDP.



A. Passive Suggestions

At the decision making level, the human driver model in
[15] has two options: it can either change lane or continue
in the current lane. These options can be influenced using
suggestions (e.g. through visual or auditive cues) [19]. If
a driver can be influenced to make a conscious decision
to decelerate (e.g. through the suggestions of the ADAS),
then there is an argument for including this action in the
decision making. Thus, we consider a 3-option ADAS with
the following set of action suggestions:

Act = {acl, acon, adec},

where acl, acon, and adec represent “change lane”, “continue
driving in this lane”, and “decelerate” respectively. We
assume that the human applies a constant deceleration value
ad when the deceleration decision is made, i.e., ah = ad.
Then, we can abstract this human-vehicle-ADAS system as
an MDP in a similar fashion to the MC abstraction above.
Note that the MDP includes additional states that correspond
to the decision (action) of deceleration. These states can be
computed using the same procedure in Sec. IV-A and the
use of ah = ad. The set of actions of the MDP is Act.

The transition probabilities of the MDP depend on how
compliant the drivers are with the suggestions. For the case
that they are fully compliant, the decision making at each
step can be replaced by all the possible actions in Act,
obtaining an MDP with three deterministic transitions at this
level. However, full compliancy at all times is not realistic by
any means. To capture all possibilities, we define γ ∈ [0, 1]
to be the responsiveness level of a driver to the suggestions
given by the ADAS, where values 0 and 1 correspond to fully
adamant and fully compliant driver, respectively. Building
on the framework in [15] and Sec. IV-B, let p be the
probability that a driver decides to change lane at state s,
i.e., probability of deciding to continue in the current lane is
1−p. Furthermore, denote by s′i, the successor of state s if the
vehicle performs action i. Then, the transition probabilities
of the MDP from the states s ∈ S that correspond to ACT-R
decision making, i.e., µs = 2, are given by:

P(s, a, s′) =



γ + (1− γ)p if a = alc ∧ s′ = s′lc,

(1− γ)(1− p) if a = alc ∧ s′ = s′con,

γ if a = adec ∧ s′ = s′dec,

(1− γ)p if a = adec ∧ s′ = s′lc,

(1− γ)(1− p) if a = adec ∧ s′ = s′con,

γ + (1− γ)(1− p) if a = acon ∧ s′ = s′con,

(1− γ)p if a = acon ∧ s′ = s′lc,

0 otherwise

Note that, since γ, p ∈ [0, 1], the transitions are guaranteed
to sum up to one under each action.

B. Active Control

Active Acceleration Control: Active acceleration con-
trol by the ADAS is an incremental addition to the accel-
eration values applied by the human in the control module,
i.e., a = ah + aADAS. Let the acceleration of the vehicle
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Fig. 3: Example of the simulation of a lane change (x
and y in meters) for 3 different sets of parameters Ci =
(kADAS

far , kADAS
near , kADAS

I ) for the steering control law, with C1 =
(15, 3, 5), C2 = (17, 3, 6) and C3 = (14.5, 3, 7).

bounded by a ∈ [amin, amax]. In this module, a value
aADAS ∈ {amin

ADAS, . . . , a
max
ADAS} is considered such that:

amin
ADAS > amin and amax

ADAS < amax. (8)

Hence, the final acceleration applied to the vehicle becomes

a = max(min(ah + aADAS, a
max), amin). (9)

The restriction to the values of aADAS presented in (8) allows
the system to be incremental instead of enforcing the specific
values chosen by the ADAS, i.e., it is corrective instead of
assertive.

Active Steering Control: The human driver model in
ACT-R uses the control law in (2) for the steering angle ρ
for given kfar, knear and kI [15]. We design the active steering
control of the ADAS (ρADAS) to be given by the same control
law with different sets of gains. Thus, actions in this part
of the assistance system at the model level correspond to
different sets of Ci = (kADAS

far , kADAS
near , kADAS

I )i available to
the ADAS. The resulting steering angle applied to vehicle
ρ = ρh + ρADAS essentially becomes the control law in (2),
where the gains are the sum of gains for the human and
ADAS, i.e., incremental (corrective) control, as exemplified
in Fig. 3.

We augment the MDP obtained in Sec. V-A by adding
the deterministic actions described to the control stage of
the model. That is the transition probabilities of the MDP
for the states s ∈ S that correspond to ACT-R control, i.e.,
µs = 1, are given by:

P(s, a, s′) =

{
1 if s′ = ACTCONTROL(s, a),

0 otherwise,

where ACTCONTROL is the state-action lookup table for the
active control step described above.

C. Policy Synthesis

Recall that we are interested in designing an ADAS that
optimizes the probability of satisfying a given property ϕ
for a scenario S, i.e, Problem 2. The finite MDP constructed
by adding the actions at the decision making and control
levels, MADAS, represents all the possible choices of the
ADAS at every ∆t step of the driving scenario S. Therefore,
the optimal ADAS problem is reduced to finding an optimal
policy over MADAS.



Fig. 4: Example of a run for ϕ1 with S = (0, 0m, 25ms , 50m, 15ms ). Top in red: human-vehicle system (no ADAS). Bottom
in blue: human-vehicle system with ADAS. Gray: the other vehicle. For readability purposes, the opacity of the cars decreases
with time. The red ‘x’ marks a collision between the vehicles.
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Fig. 5: Analysis of the probability of satisfaction of ϕ1 and ϕ2 in various conditions. (a) varying scenarios S =
(0, 0m, v0, 50m, vov0 ) with v0 ∈ {20, ..., 30}ms and vov0 ∈ {15, ..., 20}ms ; (b) a randomly sampled population of 100 different
scenarios S; and (c) a randomly sampled population of 100 different scenarios S and T = 21s.

The policy that maximally satisfies ϕ is defined as:

π∗ ∈ arg supπ∈ΠPπ(ϕ) (10)

and, respectively, arg inf for minimally. The computation
algorithms for such policies are well-studied in the formal
synthesis literature, and there exist many off-the-shelf tools,
e.g., PRISM [21], that solve this optimization problem ef-
ficiently. In addition to the optimal policy π∗, these tools
compute the probability of satisfying ϕ under π∗, denoted
by Pπ∗

(ϕ).

VI. EXPERIMENTAL RESULTS

The proposed framework is implemented as an open
source tool in Python using PRISM1. To illustrate its efficacy,
we performed a series of case studies using various scenarios
and specifications. Due to space constraints, we can show
only two of them here. We refer the reader to [29] for the
full report on all the case studies.

We considered a two-lane highway scenario with both the
ego-vehicle and lead vehicle driving on the right lane on a
road segment that is 500 meters long (xmax = 500m). The
lead vehicle is assumed to be moving at a constant speed
with xov(0) = (xov0 , v

ov
0 ). The analysis below is performed

based on the ACT-R parameters given in [15].
Case Study 1: We are interested in minimizing (./= min)

the safety property of crashing, i.e,

ϕ1 = ♦ CRASH,

1Github repository: https://github.com/fgirbal/cbc adas

for initial conditions given by S = (λ0, x0, v0, x
ov
0 , v

ov
0 ). For

S = (0, 0m, 25ms , 50m, 15ms ) with no ADAS intervention,
the verification framework generates PS(ϕ1) = 0.489. In this
situation, the ego-vehicle is travelling at a high speed when
compared to the lead vehicle, leaving the human with little
room for mistakes. The constraints imposed by the human
cognitive modeling, such as memory decay, distraction and
limited motor performance, inevitably lead to a high proba-
bility of crashing. By adding the ADAS to the ego-vehicle,
however, this probability is reduced by more than half to
PS,π

∗

min (ϕ1) = 0.242, showing the effectiveness of the ADAS.
Fig. 4 shows an example run for the human driver model
(top), which results in a crash, and ADAS system (bottom),
which avoids a crash by suggesting and actively contributing
to the lane changing action early on.

Fig. 5a presents the variation of the probability of satis-
faction of the safety specification with the change of v0 and
vov0 . As it can be observed, the introduction of the ADAS
reduces the probability of crashing significantly in all the
cases. Fig. 5b shows boxplots for the same safety property
in a randomly generated sample of 100 different scenarios,
obtained by uniformly sampling over bounded intervals for
each of the variables. In this case, it is also observed a
decrease in the probability of satisfaction of ϕ1, with the
first, second and third quartiles in Fig. 5b being lower for
the system with the ADAS than those for the human driver
alone.

https://github.com/fgirbal/cbc_adas


Case Study 2: We are interested in maximizing (./=
max) the liveness property of completing the road segment
in under T seconds, i.e,

ϕ2 = (¬CRASH) U
(
(x = xmax) ∧ (t ≤ T )

)
,

for various sets of initial conditions given by S.
Fig. 5c shows boxplots of the probability of the liveness

property for T = 21s in a randomly generated sample of 100
different scenarios S, obtained using the method previously
described. In this situation, an increase in the probability
of satisfaction of ϕ2 is observed, with the first, second
and third quartiles in Fig. 5c being higher for the system
with the ADAS than those for the human driver alone. This
again illustrates the efficacy of the ADAS in terms of the
satisfaction of the liveness property, i.e., the ADAS makes
the system reach the end of the road safely and faster as
required by ϕ2.

VII. FINAL REMARKS

In this work, we proposed a framework for providing
guarantees in (i) analyses of semi-autonomous driving sce-
narios and (ii) designing ADAS through the means of formal
methods and modeling of the driver’s cognitive process.
We achieved this by employing ACT-R to represent the
human and a novel abstraction method that enables the
representation of the infinite, continuous system of human-
vehicle by a finite Markov model. In the future, a data
driven approach should be followed to validate the obtained
results and evaluate the assumptions made about the drivers.
A similar perspective can be taken for the design of the
specifications, which could be learned in a closed loop
fashion to minimize the difference between the full system
with the ADAS and expert drivers. This is only possible
due to the flexibility of the specifications allowed in the
framework. Once the models are accurate according to the
real world data, it is possible to deploy the obtained solutions.
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