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Abstract. Chemical organisation theory is a framework developed to
simplify the analysis of long-term behaviour of chemical systems. An or-
ganisation is a set of objects which are closed and self-maintaining. In
this paper, we build on these ideas to develop novel techniques for for-
mal quantitative analysis of chemical reaction networks, using discrete
stochastic models represented as continuous-time Markov chains. We
propose methods to identify organisations, to study quantitative prop-
erties regarding movement between these organisations and to construct
an organisation-based coarse graining of the model that can be used to
approximate and predict the behaviour of the original reaction network.

1 Introduction

In this paper, we study reaction networks and chemical organisation theory, in
particular, investigating the applicability of probabilistic model checking to their
analysis. Reaction networks are widely used in modelling chemical phenomena.
They describe the dynamical interaction between processes of living systems in
a formal way. Reaction networks can be difficult to understand and analyse since
they can represent complex interaction behaviour over large state spaces.

Chemical organisation theory [9,7] provides a way to analyse complex dy-
namical networks and reason about the long-term behaviour of chemical systems.
The complex network is decomposed into a set of sub-networks called “organisa-
tions”. An organisation is a set of objects (for example, the species or molecules
in a reaction system) which are closed and self-maintaining. Informally, closed
means that no new object can be produced by the interactions within the set,
and self-maintaining means that no object of the set disappears from the system,
i.e., every consumed object of the set can be generated within the set. The con-
cept of organisation allows us to lift the complex reaction network to a hierarchic
structure including all stable states and states depicting accumulating molecules
regarding to the organisations. The dynamics of the complex state space of the
reaction network can then be mapped to movements among the set of organ-
isations. Building a chemical organisation-based model thus helps us to model
the structure and behaviour of complex reaction networks, and to simplify the
dynamical analysis of the overall system.

In order to study the evolution of reaction networks, we apply probabilistic
model checking, a formal verification technique for modelling and analysis of



systems with stochastic behaviour. It has been used to study models across a
wide range of application domains, including chemical and biological systems.
Probabilistic model checking is based on the exhaustive construction and analysis
of a state-based probabilistic model, typically a Markov chain or variant. In
this work, we model the reaction networks as continuous-time Markov chains.
Quantitative properties of interest about the system being analysed are formally
specified using temporal logic. Here we use CSL (Continuous Stochastic Logic) [2]
with rewards, a quantitative extension of the temporal logic CTL.

Specifically, in this work, we use CSL model checking of continuous-time
Markov chains to investigate connections between chemical organisations using
model decompositions into strongly connected components (SCCs). We develop
an algorithm to automatically find organisations, and then perform a quantita-
tive dynamical analysis in terms of organisations, asking, for example, “what is
the probability of moving from one organisation to another?” or “what is the
expected time to leave an organisation?” A coarse grained Markov chain model
of hierarchic organisations for a given reaction network is then constructed as a
result. We implement our techniques as an extension of the probabilistic model
checking tool PRISM [15], and illustrate the approach on a set of example re-
action networks. Approximating and predicting the system behaviour over time
evolution is a direct application of our coarse grained model.

Related work. There are various approaches to modelling the dynamics of re-
action networks. Feinberg and Horn [8] proposed methods to identify positive
stationary states in which all molecular species are present in a network. Hein-
rich and Schuster [12] studied network structure based on flux modes, each of
which specifies a set of reaction rules that can take place at a steady state and
thus implies a set of species participating in those reactions. Species regarding to
a flux modes were not required to be self-maintaining or closed however. We are
more interested in the stationary states in which a subset of species are present,
which is formalised in organisation theory [7]. In that area, the focus was typ-
ically on qualitative properties, and ODEs [6], approximating the evolution of
reaction networks in continuous dynamical systems. Kreyssig et. al [14] studied
the effects of small particle numbers on long-term behaviours in discrete bio-
chemical systems. We build on their notion of discrete organisation but focus on
quantitative analysis of the transitive dynamics among the organisations, which
was not considered in [14]. Other approaches for approximate analysis of discrete
models of reaction networks include the use of Linear Noise Approximation [4],
the Central Limit Approximation [3] and “sliding window” abstractions [17].

2 Probabilistic Model Checking

Probabilistic model checking is a variant of model checking [5], a well-established
formal method to automatically verify the correctness of real-life systems. Clas-
sical model checking answers the question of whether the behaviour of a given
system satisfies a property or not. It thus requires two inputs: a description of
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the system and a specification of one or more required properties of that system,
normally in temporal logic (such as CTL or LTL).

In probabilistic model checking, the models are extended with information
about the likelihood that transitions take place. In practice, these models are
usually Markov chains or Markov decision processes. In this work, we model the
reaction systems as continuous-time Markov chains (CTMCs), which are widely
used in fields such as performance analysis or systems biology to model systems
with stochastic real-time behaviour. Formally, we define them as follows.

Definition 1 (CTMC). A CTMC is a tuple A = (Q,Q0, ∆, L), where: Q is a
finite set of states; Q0 ⊆ Q is the set of initial states; ∆ : Q ×Q → R≥0 is the
transition rate matrix; L : Q → 2AP is a labelling function assigning, to each
state q ∈ Q, a set of atomic propositions, from a set AP , that are true in q.

The transition rate matrix ∆ assigns a rate to each pair of states in the CTMC,
which is used as the parameter of an exponential distribution.

In this work, the probabilistic temporal logic CSL (Continuous Stochastic
Logic) is used to formally represent properties of reaction networks. It was origi-
nally introduced by Aziz et al. [1] and extended by Baier et al. [2]. The extended
version allows for the specification of reward (or cost) properties, to reason about
rewards (or costs) that have been attached to a CTMC. The extended version
of CSL that we use allows us to represent properties such as “the probability of
all of species A degrading within t time units is at most 0.1” or “the expected
time elapsed before a B molecule first appears is at most 10”.

Definition 2 (CSL syntax). An (extended) CSL formula is an expression Ψ
derived from the grammar:

Ψ ::= true | p | ¬Ψ | Ψ ∧ Ψ | P./λ(Ψ U I Ψ) | R./r[♦Ψ ]

where p ∈ AP an atomic proposition, λ ∈ [0, 1] is a probability threshold, r ∈ R≥0
is a reward threshold, ./∈ {<,≤,≥, >} and I is an interval of R≥0.

CSL formulas are described over the states of a Markov chain. A state q satisfies
P./λ(ψ) if the probability of taking a path from q satisfying ψ is in the interval
specified by ./ λ. Here, the path formula ψ is an “until” operator: Ψ U I Ψ ′

asserts that Ψ ′ is satisfied at some future time point within interval I, and that
Ψ is true up until that point. We omit the interval I when I = [0,∞). Common
derived operators include: “eventually” ♦IΨ := true U I Ψ and “always” �IΨ :=
¬♦I¬Ψ . For example, P≤λ(�IΨ) ≡ P≥1−λ(♦I¬Ψ). The R operator is used for
reward properties: R./r[♦Ψ ] is true from state q if the expected reward cumulated
before a state satisfying Ψ is reached meets the bound ./ r. We also use numerical
queries, e.g., R=?[♦Ψ ], which return the actual expected reward (or probability),
rather than check it against a bound. Rewards and costs are treated identically:
here, we will use the R operator to formalise properties about the expected time
elapsing before an event’s occurrence. We omit a full definition of the semantics of
CSL with respect to a Markov chain. Full details can be found in, for example, [2].
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3 Modelling Reaction Networks with CTMCs

A reaction network consists of a set of molecules (or, molecular species to be
more precise) and a set of reaction rules.

Definition 3. A reaction network is a pair (M,R) consisting of a set of possible
molecular species M, and a set R ⊆ PM (M) × PM (M) of possible reactions
among those species, where PM (C) denotes the set of all multisets of elements
over the set C. For a reaction (R,P ) ∈ R, the multisets R and P denote the
reactants and products of the reaction, respectively, and we write R(s) and P (s)
for the number of molecules of species s consumed by (reactants) and produced
by (products) the reaction, respectively.

For simplicity, we write s1 + s2 + · · · + sn → s′1 + s′2 + · · · + s′n′ instead of
({s1, s2, . . . , sn}, {s′1, s′2, . . . , s′n′}) ∈ R to denote the existence of a reaction.

There are multiple ways in which we can obtain a dynamical model given
a reaction network. One way is to consider (real-valued) concentrations of each
molecular species and then represent the (deterministic) behaviour of the reac-
tions as a set of ordinary differential equations. Here, we take a discrete, stochas-
tic view of the network, modelling the (integer-valued) population count of each
species and considering its evolution as a stochastic process, and in particular as
a continuous-time Markov chain [11]. The latter is particularly appropriate when
the numbers of molecules can be assumed to be relatively small in practice, and
is the approach that we take in this work.

Furthermore, we will assume also that the reaction network is executing
within a finite volume, which is modelled by limiting the total number Nmax ∈ N
of molecules that can be present at any given time [14]. We also need to define the
rates at which reaction events occur in the CTMC. To retain a general approach,
we allow an arbitrary function rater from reactant populations to rate values
for each reaction r.

Definition 4 (CTMC for reaction network). Given a reaction network
〈M,R〉, a volume limit Nmax ∈ N and a rate function rater : NM → R≥0
for each r ∈ R, we define the corresponding CTMC A = (Q,Q0, ∆, L) where:

– Q = {q :M→ N |
∑
s∈M q(s) ≤ Nmax}

is the set of population counts of M and ∆ is defined as follows. For states
q, q′ ∈ Q and reaction (R,P ) ∈ R, we write q

(R,P )−−−−→ q′ if and only if, for each
species s ∈ M, we have q(s) ≥ R(s) and q′(s) = q(s) − R(s) + P (s), and∑
s∈M q′(s) ≤ Nmax. Then, for any q, q′ ∈ Q, we have:

– ∆(q, q′) =
∑
{| rater(q) | r ∈ R and q

r−→ q′}, and we call r the transition

label of q
r−→ q′.

Q0 can be any subset of Q representing initial configurations of interest, and L
can be any labelling function over Q that identifies states with relevant properties.
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Fig. 1: State transition graph of the CTMC for Example 1. State labels show index and
population count, e.g., 11 : 2a2b denotes that there are 2a and 2b in state 11.

For our examples we usually follow the general law of mass-action by setting
rater(q) = λr ·

∏
s∈R q(s) with λr being a kinetic rate constant for reaction r

(and assuming the stoichimetric coefficient of each reactant is at most one).
Each state q ∈ Q of the CTMC gives the number q(s) of molecules of each

species s ∈ M that are currently present. For a state q, we also write φ(q) to
denote the set of molecular species that are present, i.e., φ(q) = {s | q(s) > 0},
and define φ(Q′) = ∪q∈Q′ φ(q) for a set of states Q′ ⊆ Q. We let Acc(q) ⊆ Q
denote the set of states that are reachable from q.

Example 1. Consider the reaction network A with speciesM = {a, b} and reac-
tions R = {a + b → a + 2b, a → 2a, b → 2b, a → ∅, b → ∅}. Assume the volume
of the system is Nmax = 4, and the rate of each reaction is of second order, i.e.,
]a · ]b, ]a · ]a, ]b · ]b, ]a · ]a, ]b · ]b, respectively, where ]a denotes the number of
molecules of species a. We obtain a CTMC with 15 states (Fig. 1). Note that
throughout this work, without loss of generality, we use second-order kinetic laws
in order to avoid any complicated issues regarding units and scaling.

4 Chemical Organisation Theory and SCC Decomposition

Chemical organisation theory [7] provides a way to cope with the complex “con-
structive” dynamics of a reaction network by deriving a set of organisations [10],
and then mapping the movement through state space to a movement between
organisations. Such an abstract view allows us to analyse and predict the dy-
namical behaviour of a complex reaction network more easily. An organisation
is a set of molecules that is algebraically closed and self-maintaining. A sub-
set C ⊆ M is called “closed” if no molecules outside C can be produced by
applying all reactions possible in C to multisets over C; a subset S ⊆ M is
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“self-maintaining” if all reactions that are able to fire in S can occur at certain
strictly positive rates without reducing the amount of any species of S. We say
that a reaction (R,P ) ∈ R can fire in a set of species S, if S contains each
reactant species from R.

Definition 5 (Organisation [7]). A subset of O ⊆ M is a chemical organi-
sation if it is closed and self-maintaining, that is, if for all (R,P ) ∈ R, R ⊆ O
implies P ⊆ O (closure), and there exists a strictly positive flux vector v > 0
such that NO · v ≥ 0 with NO being the stoichiometric matrix of the reactions
that can fire in O (self-maintenance). An entry ni,r of the stoichiometric matrix
NO = (ni,r) denotes the number of molecules of species i ∈ M produced when
firing reaction r once. The product with a flux vector, N · v, results in a vector
of the net-production rates for each species for the respective reaction rates v.

Note that the set of organizations is defined with respect to a reaction network
and thus independent from an initial state. However, given an initial state, there
is in general only a subset of organizations reachable.

As discussed above, we model the dynamics of a reaction network as a Markov
chain. A state is defined as the number of each molecular species and, with a
limited total number of molecules, cases of both too few or too many molecules
can prevent reaction rules being fired. As a consequence, we need to define
discrete organisations, and the states contributing to generate them. From now
on, Rq denotes the reactions firing in any state reachable from a state q.

Definition 6 (Discrete organisation and internal generator [14]). Let
(M,R) be a reaction network. A subset of species D ⊆ M is called a discrete
organisation if there is a state q ∈ Q such that: (i) φ(Acc(q)) = D (closure); and
(ii) there is a sequence of transition labels (r1, . . . , rk) where ri ∈ R such that
∪ki=1{ri} = Rq and q′ = (rk ◦ · · · ◦ r1)(q) satisfies ∀s ∈ D : q′(s) ≥ q(s) (self-
maintenance), where ◦ denotes a composition operator, i.e., rj ◦ ri(qi) = rj(qj)
for qj = ri(qi). Such a state q is called an internal generator of the discrete
organisation.

Definition 7 (Generator). A state q′ ∈ Q is called a generator of organisation
D iff ∃q ∈ Acc(q′) such that q is an internal generator of D.

Note that, in general, the organisation D generated by a state q′ is not unique.
However, if q is an internal generator, there is only one organisation it generates.
Unless specifically stated otherwise, we say organisation rather than discrete
organisation in the rest of the paper.

Example 2. The discrete organisations for Example 1 are: {a, b}, {a}, {b}, {}
and the corresponding generators are, respectively (cf. Fig 1): {6, 7, 8, 10, 11, 13},
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, {1, 2, 3, 4, 6, 7, 8, 10, 11, 13}, {0, 1, . . . , 14}.

In order to analyse the system behaviour and perform an organisation-based
quantitative analysis of the reaction network, we study the connections between
chemical organisations and the decompositions into strongly connected compo-
nents (SCCs) of the Markov chain.
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Definition 8 (SCC [13]). A strongly connected component (SCC) of a Markov
chain is a maximal set of states T such that, for every pair of states q and q′,
there is a path from q to q′.

Intuitively, in the Markov chain for a reaction network, SCCs are important for
an organisation-based analysis. However, some but not all SCCs correspond to
organisations. In the next section, we will describe an algorithm to find organ-
isations based on a decomposition into SCCs and then identifying those self-
maintaining a set of species. We first note that bottom strongly connected com-
ponents do relate to organisations.

Definition 9 (BSCC). A bottom strongly connected component (BSCC) is an
SCC T from which no state outside T is reachable from T .

Proposition 1. Each BSCC corresponds to a (unique) organisation, which is
generated (uniquely) by any state of that BSCC.

However, there are organisations whose internal generators are not contained
in any BSCC. In order to also include such organisations, we call SCCs that
correspond to an organisation good SCCs.

Definition 10 (Good SCC). An SCC T is called good if it contains a cycle of
the firing of every “possible” reaction rule, i.e., those whose reactants R appear
in the SCC (R ⊆ {φ(q) | q ∈ T}).

Example 3. All SCCs are good in Example 1.

Clearly, some generators can contribute to multiple organisations. This makes
it more difficult to decompose the Markov into its sets of generators. However,
internal generators located in good SCCs contribute uniquely to an organisation.

Proposition 2. A generator g is an internal generator of organisation D iff it
is located in a good SCC T such that: g ∈ T ∧

⋃
q∈T φ(q) = D.

Proposition 3. Given a good SCC T , let A = φ(T ), if A is closed, then A is a
discrete organisation, then {q | q ∈ T} is the set of internal generators of A.

Example 4. In Example 1, the internal generators of organisations {a, b}, {a},
{b} and {} are {6, 7, 8, 10, 11, 13}, {5, 9, 12, 14}, {1, 2, 3, 4} and {0}, respectively.

5 Organisation-based Analysis of Reaction Networks

In this section, we propose techniques for quantitative organisation-based analy-
sis of reaction networks. We first introduce an algorithm to find the set of organi-
sations for a specific reaction network. We then use probabilistic model checking
to analyse quantitative properties regarding the dynamics of the network with
respect to its organisations. Such organisation-based quantitative analyses can
be used to construct the structure of organisation-based coarse-grained model,
and provide a framework to approximate the complex dynamical behaviours of
the original reaction networks in our next step.
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5.1 Finding Organisations

Computing the organisations of a reaction network requires an analysis of the
strongly connected components of its Markov chain’s underlying transition graph.
Since every state in a good SCC is an internal generator of an organisation,
we identify good SCCs to find the organisations of the reaction network. Al-
gorithm 1 presents the procedure for finding organisations of a given reaction
network modelled as a CTMC. It is based on the following procedures:

– Tarjan(A) returns the set of strongly connected components of the Markov
chain A, using Tarjan’s SCC algorithm [16] on the underlying digraph;

– findGoodSCCs(SCC) returns the “good” part SCCG of A in which each pos-
sible reaction rule is able to be fired;

– find a set of closed molecules appearing in each scc ∈ SCCG, and its relevant
internal generators i.e., states in scc which generate the organisation.

Algorithm 1: Finding organisations of a reaction network

Data: CTMC A of reaction network (M,R)
Result: O as a set of organisations, G : O → P(Q) as a mapping from

organisations to sets of internal generators
O = {};
G = {};
SCC← Tarjan(A);
SCCG ← findGoodSCCs(SCC) ∪ BSCC;
for scc ∈ SCCG do

Mg ← {φ(q) | q ∈ scc} ;
if Mg is closed then

if Mg 6∈ O then
O ← O ∪Mg /* add new organisation */ ;
G(Mg)← {q|q ∈ scc} /* add new internal generators */ ;

else
G(Mg)← G(Mg) ∪ {q|q ∈ scc} /* update generators */ ;

end

end

end
return O, G.

5.2 Organisation-Based Probabilistic Analysis

We now illustrate, via several examples, how we derive quantitative organisation-
based properties of reaction networks. We implemented the organisation and gen-
erator detection process described above in the PRISM model checker, along with
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a translator that converts descriptions of reaction networks into the PRISM mod-
elling language to allow construction of the corresponding CTMC. Organisation-
based properties of the network, such as probabilities (bounds or average) of the
movements among organisations, or the expected time to leave or stay at an
organisation, are computed using CSL formulae.

Example 5. Consider the reaction network with molecular species M = {a, b}
and reactions rules include: {a + b → a, a → 2a, b → 2b, a → ∅, b → ∅} with
stochastic rates: ]a · ]b, (]a)2, (]b)2, (]a)2, (]b)2 respectively.

Letting Nmax = 10, the resulting CTMC has 66 states and 201 transitions,
and there are 4 SCCs ({a > 0, b > 0}, {a > 0, b = 0}, {a = 0, b > 0}, {a = b = 0})
with 1 BSCC ({a = b = 0}). For reference, we show both the PRISM language
model and the CTMC for this example in the Appendix (Figs. 5 and 6).

The first property we consider is the probability of moving between organi-
sations. Specifically, the probability of moving from O1 to O2 can be specified in
CSL as: P=?[ o1 U o2 ], where o1 and o2 are atomic propositions labelling states
which represent internal generators of organisations O1 and O2. In this example,
all SCCs are good and each (good) SCC generates exactly one organisation. To
visualise the movement between organisation, we analyse the property above for
each pair of organisations and construct the abstract transition graph shown in
Fig. 2 (left). Blocks are labelled with organisations and, for each possible tran-
sition between organisations, we show the range of probabilities (over all states
in the source organisation) and the average value (over the same set of states).

We also consider the expected time to leave (the generators of) each organisa-
tion. The CSL property to specify this, for some organisation Oi, is: R=?[♦¬oi ],
where oi is an atomic proposition as above, ¬ denotes negation and we assign
a state reward of 1 to every state of the CTMC, indicating the amount of re-
ward that is accumulated per unit time until ¬oi is satisfied. This value is also
shown for each organisation in Fig. 2 (left), inside the block for the corresponding
organisation.

Finally, we consider the effect of making some constructive perturbation to
the reaction network, by adding rules to create species with a small rate. Fig. 2
(right) shows the results of the same analysis described above for the following
constructive perturbation: {∅ → a, ∅ → b} both with reaction rate γ = 0.01.
The result shows that, generating a and b with a small rate can cause an upward
movement and slightly affect the system’s behaviour. Note that the upward flow
introduced by the constructive perturbation leads to a smoother flow.

Example 6. Consider now the reaction network with M = {a, b, c, d} and R =
{a + b → a + 2b, a + d → a + 2d, b + c → 2c, c → b, b + d → c, b → ∅, c →
∅, d→ ∅}. We will consider two groups of rates for a purpose of comparison in
Section 7: R2:: ]a ∗ ]b, ]b ∗ ]c, ]c ∗ ]c, ]b ∗ ]d, ]b ∗ ]b, ]c ∗ ]c, ]d ∗ ]e and R1:: ]a ∗ ]b,
]b ∗ ]c, ]c, ]b ∗ ]d, ]b ∗ ]b, ]c, ]d. We only use R1 in this section. Fig. 7 (in the
Appendix) shows the structure of the CTMC for Nmax = 5. Even for a small
volume Nmax = 5, the structure is quite complex: 126 states, 386 transitions, 28
SCCs and 6 BSCCs.
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Fig. 2: Organisation-based transition model without/with constructive perturbation

Fig. 8 (in the Appendix) illustrates, in the same fashion as above, the tran-
sition probabilities between all SCCs of the CTMC, and the expected time
to leave them. Note that not all SCCs are good SCCs in this example: we
highlight good SCCs in colour in Fig. 8. For instance, the SCC labelled as
(99, 105; 0.25) is not a good one. There are two states in this SCC: state 99
(a = 2, b = 0, c = 1, d = 1) and state 105 (a = 2, b = 1, c = 1, d = 1). The set of
molecules appearing in this node is closed, but reaction rules such as c→ ∅ and
d→ ∅ cannot be fired within the SCC and it is therefore not good. In addition,
the SCC labelled as (12, 27; 0.25) is also not a good one. It contains state 12
(a = 0, b = 0, c = 2, d = 1) and state 27 (a = 0, b = 1, c = 1, d = 1). The set
of molecules appeared in this node is closed, but reaction rule c → ∅ is unable
to be fired locally, i.e., this decay will only introduce transitions to other SCCs.
Similar cases can happen for some of the other reaction rules.

Fig. 9 (in the Appendix) presents the
transition probabilities between good
SCCs only, and the expected time
to leave them. Note that multiple
good SCCs can contribute to the gen-
eration of one organisation. For in-
stance, both good SCCs labelled 65 . . .
and 98 . . . contribute to organisation
{a, b, c}. Based on this graph, we can
build up the transition graph over or-
ganisations. Fig. 3 presents the transi-
tion probabilities between (internal gen-
erators of) organisations, and the ex-
pected time to leave each of them.
It helps us to understand the move-
ment between organisations and can be
viewed as an abstract model capturing
the behaviour of the reaction network at
the level of organisations.

{a, b, c, d} 0.59

{a, b, c} 0.66

{a, b} 3.46 {a, d} 3.46

{a}, ∞

{}, ∞

[0.04, 0.72], 0.34

[0.1246, 0.4158], 0.217 [0.056, 0.73], 0.356

[0.02, 0.185], 0.087
[0.65, 0.88], 0.78

[0.12, 0.35], 0.22

1 1

1

1

Fig. 3: Transition probabilities (bounds
and average) between generators of organ-
isations for Example 6 with Nmax = 5 and
the expected time to leave them.
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In addition, we also present transition graphs over the lattice of molecules
(states in which a set of molecules in the lattice with positive numbers) for a
quantitative analysis for organisations from a different point of view, see Fig. 10
in the Appendix. The transition probabilities are given in bound. Specifically,
the probability of movement from {a, b, c} to {a, b} can be specified as: P=?[(a >
0 ∧ b > 0 ∧ c > 0) U (a > 0 ∧ b > 0 ∧ c = 0)]. Note that Fig. 3, Fig. 10 can be
used to build coarse-grained model from different view.

6 Organisation-oriented Interval Markov Chain

The organisation-oriented transition graph generated by the quantitative anal-
ysis can be used to build a coarse-grained model (with either interval based
or average based probabilistic transitions). Such a coarse-grained model can
mimic the complex reaction behaviours of the reaction network in an abstract
way, whose state space and movement structure are much smaller. We can then
perform approximation, prediction, and quantitative analysis upon the coarse-
grained model instead of the complex concrete model. This section focuses on for-
malising the interval-based organisation coarse-grained model. Specifically, our
quantitative analysis computes an organisation-oriented interval Markov chain,
in which each abstract state is specified by a set of internal generators of an
organisation, and the abstract transition provides the information about the un-
certainty of the abstract behaviours of the system. Probabilities of moving from
one abstract state to another are given by the lower and upper bounds, which
provides the under and over approximation of the concrete probabilities.

Definition 11 (Organisation-oriented interval Markov chain). An organ-

isation-oriented interval Markov chain is a tuple A]I = (Q], Q]0, ∆
], L), where

– Q] is a finite set of abstract states, each of which q] ∈ Q] is a set of internal
generators of an organisation o: q] ⊆ GI(o);

– Q]0 ⊆ Q] is the set of initial abstract states;
– ∆] : Q] × Q] → [lb, ub] is the abstract transition matrix, s.t. ∆](q], q]′) =

[lb, ub], where lb and ub are the lower and upper bound of a set of concrete
probabilistic transitions: {∆(q, q′) | q ∈ q], q′ ∈ q]′} specified in the relevant
concrete model A respectively;

– L : Q] → 2AP is a labelling function over Q] that identifies properties of
interest.

An abstract path is an execution of the organisation-oriented interval Markov
chain.

Definition 12 (Abstract path). An abstract path ω] is a non-empty sequence

of states q]0q
]
1 . . . , where q]i ∈ Q] and ∀i.∆](q]i , q

]
i+1) ⊆ (0, k] where 0 < k ≤ 1.

The set of all finite and infinite paths of A]I starting in state q] are denoted as:

Path
A]

I
fin(q

]) and PathA
]
I (q]) respectively.

11



Definition 13 (Probability bounds of abstract paths). The lower (Prob−)

and upper bound (Prob+) of the probability of a finite abstract path ω]fin starting
from state q] are respectively:

Prob−
q]

(ω]fin) ,

{
1 if n = 0

Prob−
q]

(ω]0, ω
]
1)× · · · × Prob−

q]
(ω]n−1, ω

]
n) otherwise

Prob+
q]

(ω]fin) ,

{
1 if n = 0

Prob+
q]

(ω]0, ω
]
1)× · · · × Prob+

q]
(ω]n−1, ω

]
n) otherwise

where n denotes the length of the abstract path, ω]i denotes the ith element of ω].

We focus on the reachability properties, for instance, the probability bounds of
reaching or moving to an organisation of interests from another.

Definition 14 (Reachability properties). Let A]I be an organisation-based
interval Markov chain. The lower and upper bound of the probability of reaching
an abstract state q]′ from q] are computed by:

Reach−
A]

I

(q], q]′) , min


∑

ω]∈Path
A]

I
fin (q

])

{Prob−
q]

(ω]) | ω]0 = q] ∧ ∃i ≥ 0.ω]i = q]′}, 1


Reach+

A]
I

(q], q]′) , min


∑

ω]∈Path
A]

I
fin (q

])

{Prob+
q]

(ω]) | ω]0 = q] ∧ ∃i ≥ 0.ω]i = q]′}, 1

 .

Our organisation-oriented interval Markov chain should safely approximate the
concrete CTMC describing the probabilistic behaviours of the system.

Theorem 1 (Soundness of the abstract semantics). Let A]I and A be the
coarse-grained model and the relevant concrete model of a reaction network re-
spectively, ∀q] = Q, q]′ = Q′ ∈ Q] ⊆ Q, we have:

Reach−
A]

I

(q]1, q
]
2) ≤ Reach−A(Q,Q′), Reach+

A]
I

(q]1, q
]
2) ≥ Reach+A(Q,Q′).

Proof. Let ω] denote an abstract path starting from q] and reaching q]′. For any
ω] ∈ PathA]

I
(q], q]′), such as ω]0 = q], ω]|ω]| = q]′, assume |ω]| = n ∈ N, and let

ω ∈ PathA(q, q′) denote a concrete path starting from a state in Q and reaching

12



a state Q′, we have:

Reach−(q], q]′) =
∑
ω]

Prob−
q]

(ω]) =
∑
ω]

(
Prob−(ω]0, ω

]
1)× · · · × Prob−(ω]n−1, ω

]
n)
)

=
∑
ω]

(
n−1∏
i=0

inf{Prob(qi, qi+1)|qi ∈ ω]i , qi+1 ∈ ω]i+1}

)
≤
∑
ω]

inf{Prob(q0, qn)|q0 ∈ ω]0, qn ∈ ω]n}

=
∑
ω

inf{Prob(ω0, ωn)|ω0 ∈ Q,ωn ∈ Q′} = Reach−(Q,Q′).

Similarly, we have Reach+(q], q]′) ≥ Reach+(Q,Q′). �

Example 7. Consider again the reaction network described in Example 6:

– by applying the coarse-grained model shown in Fig. 3, we can calculate the
probability of movement from q]{a,b,c,d} to q]{a,b} is: [0.1506, 1]; the probability

of movement from q]{a,b,c,d} to q]{a} is: [0.2314, 1];

– by applying the concrete model shown in Fig. 7, we obtain the probability
of movement from Q{a,b,c,d} to Q{a,b} is: [0.1776, 0.8268]; the probability of
movement from Q{a,b,c,d} to Q{a} is: [1, 1].

Note that our abstract model safely approximates the concrete one.

7 An Application of the Coarse-grained Model

This section presents an application of our organisation-oriented coarse grained
model. We address the following problem: given a reaction network and a fixed
number of the maximum population of the system, construct the average-based
organisation coarse-grained model Ā] (focus on the average transition probabil-
ities between abstract states for simplicity and intuition, this can be replaced by
interval-based transitions directly), can we predict the behaviour of the system
at any future time using Ā]?

¯A]t
¯A]′t+4t

At At+4t

f ]

go go

f

The diagram to the left captures the idea of using the
organisation-based coarse grained model to approximate
the concrete one. In the concrete world, At denotes the
concrete model at time t, f denotes the dynamical tran-
sition function over At, and At+∆t denotes the concrete
model after ∆t time units; go denotes the organisation
based coarse graining function, which maps the con-
crete modelAt (c.f.At+∆t) to the average coarse-grained

model
¯A]t (c.f.

¯A]t+∆t); f ] denotes the coarse-graining

dynamical transition function on
¯A]t.

13



We apply the traditional “master equation” approach to calculate the stochas-
tic time evolution of the reaction network. We briefly review the main fea-
tures of the master equation formalism for our purpose of calculating the pre-
diction of an reaction network at any future time. The probability function
P (X1, X2, . . . , Xn; t) defines the probability of number of Xi molecules of species
Si for i ∈ {1, . . . , n} at time t. This function thus describes the “stochastic state”
of the system at time t. The master equation is the time-evolution equation for
the function P (t). Function P (X1, . . . , Xn; t+dt) can be viewed as the sum of the
probabilities of different ways that the system can reach the state X1, . . . , Xn at
time t+dt: P (X1, . . . , Xn; t+dt) = P (X1, . . . , Xn; t)(1−

∑m
i=1 αidt)+

∑n
j=1 βjdt,

where the quantity βjdt denotes the probability that the system is entering the
state (X1, . . . , Xn) at time t + dt, and the quantity αidt denotes the proba-
bility that is leaving (X1, . . . , Xn) at time t. To avoid confusion, we use P (t)
as a short notation of P (X1, . . . , Xn; t). Consider a coarse-grained model Ā],
and any abstract state q]i , let αi denote the average rate of leaving state q]i ,

i.e., dPi(t)
dt = −αiPi(t), Ei denote the expected time to leave state q]i , we have:

Ei =
∫∞
0
Pi(t)dt =

∫∞
0
e−αitdt = 1

αi
, i.e., αi = 1

Ei
is the rate of leaving q]i .

In addition, for any j 6= i and ∆](q]j , q
]
i ) > 0, similarly, βj = 1

Ej
is the rate of

coming to q]i from q]j . Therefore, for all i ∈ {1, . . . , n}, we have:

dPi(t)

dt
= − 1

Ei
Pi(t) +

n∑
j=0,j 6=i,∆](q]j ,q

]
i )>0

1

Ej
Pj(t).

We therefore build a set of equations for all i. By solving the set of equations,
we can obtain the distributions of the system at any future time.

Example 8. Consider again Example 6. Due to the coarse-grained model shown
in Fig. 3 (Nmax = 5), we construct the master equations as follows:

dP{a,b,c,d}(t)

dt
= − 1

0.59
P{a,b,c,d}(t)

dP{a,b,c}(t)

dt
= − 1

0.66
P{a,b,c}(t) + 0.34 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a,b}(t)

dt
= − 1

3.46
P{a,b}(t) + 0.217 ∗ 1

0.59
P{a,b,c,d}(t) + 0.78 ∗ 1

0.66
P{a,b,c}(t)

dP{a,d}(t)

dt
= − 1

3.46
P{a,d}(t) + 0.356 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a}(t)

dt
= 0.087

0.59
P{a,b,c,d}(t) + 0.22

0.66
P{a,b,c}(t) + 1

3.46
P{a,b}(t) + 1

3.46
P{a,d}(t)

By solving the above equation systems, Fig. 4 presents a comparison between the
time evolution of the reaction network via master equation simulation through
the organisation-based average coarse-grained model (left) and the exact evolu-
tion of the system through the original concrete model (right).

Fig. 11 and 12 (in Appendix) present experimental results for the case of Nmax =
10 with rates R1 and R2 respectively. Note that our prediction produces a similar
pattern of the concrete behaviours with time evolution for this case. We focus on
the average-based approximation here for the purpose of presenting and compar-
ing the pattern of the system behaviours with time evolution more clearly and
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Fig. 4: Organisation dynamics predication via the average coarse-grained model(left)
and the concrete model(right) of Example 6, for Nmax = 5.

intuitively. Our further experiments also demonstrate that the interval-based
prediction can safely approximate the concrete model. The precision of the re-
sults varies regarding to different models and rates of reaction rules, however
the basic pattern of behaviours can be captured. Further note that the coarse-
grained model can be used to predict qualitative dynamical properties of the
original model, like the absence (or presence) of asymptotically stable attractors
inside organizations that have small (or large) time to leave probabilities.

8 Conclusions

This paper investigates the combination of chemical organisation theory and
probabilistic model checking for the analysis of reaction networks modelled as
continuous-time Markov chains. We use model decompositions into strongly con-
nected components (SCCs), and study the problem of how to analyse the model
in terms of organisations. We have presented an algorithm to compute a coarse-
grained Markov chain model of hierarchic organisations for a given reaction
network. The algorithm computes chemical organisations by identifying a set of
good SCCs which can contribute to generating organisations, and building an
interval Markov chain based on the organisation-based quantitative analysis.

Experiments with our method on a set of example reaction network models
demonstrate that the movements between organisations and the expected time
spent in them can approximate the concrete long-term behaviour of the reaction
network. The organisation-based coarse grained model helps to summarise and
reason about the structure and behaviour of the complex model by focusing on
stable states featuring accumulating species.

We also demonstrate how our model can be used to approximate the system
behaviour with time evolution. The experiments show that our prediction can
mimic the main pattern of concrete behaviour in the long run, but the interval-
based organisation coarse graining may suffer from over-estimation. We apply
an average-based organisation coarse graining and compute its stochastic time
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evolution. Our experiments show that the precision of the prediction and approx-
imation varies regarding to different models and rates of their reaction rules. As
future work, to improve the precision of the approximation and predictions, we
plan to develop algorithms to selectively refine the the coarse-grained models.
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APPENDIX: Supplementary Details for Examples 5 and 6

ctmc

const int N_MAX = 10;
const double rA = N_MAX; // rA
const double rB = N_MAX; // rB
formula total = a + b;
init total <= N_MAX endinit

module RN
a : [0..N_MAX]; // range value of species a
b : [0..N_MAX]; // range value of species b
c : [0..N_MAX]; // range value of species c

// r1: a+b -> a
[r1] (a*b > 0) & (a > 0) & (b > 0) & (total<= N_MAX) -> a*b : (a’=a-1) & (b’=b);

// r2: a -> 2a
[r2] (rA*a > 0) & (a > 0) & (total+1<= N_MAX) -> rA*a : (a’=a+1) ;

// r3: b -> 2b
[r3] (rB*b > 0) & (b > 0) & (total<= N_MAX) -> rB*b : (b’=b+1) ;

// r4: a -> 0
[r4] (a*a > 0) & (total<= N_MAX) -> a*a : (a’=a-1);

// r5: b -> 0
[r5] (a*b > 0) & (total<= N_MAX) -> a*b : (b’=b-1);

endmodule

Fig. 5: Example 5 in the PRISM modelling language
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Fig. 6: Example 5: CTMC model with 4 SCCs and 1 BSCC
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Fig. 7: CTMC for the reaction network from Example 6, with 28 SCCs and 6 BSCCs.
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Fig. 8: Transition probabilities (bounds/averages) between all SCCs of the CTMC for
Example 6 and expected leaving times.
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Fig. 9: Transition probabilities (bounds and average) between good SCCs for Example 6
and the expected time to leave them.
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Fig. 10: Example 6: transition probabilities in bounds among the lattice of molecules
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Fig. 11: Organisation dynamics predication via master equation simulation over the
average coarse-grained model(left) and the original model(right) of Example 6, for
Nmax = 10 with rates: ]a ∗ ]b, ]b ∗ ]c, ]c, ]b ∗ ]d, ]b ∗ ]b, ]c, ]d for each reaction rule
respectively.
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