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Abstract

We report on the automatic verification of timed probabilistic properties of the IEEE
1394 root contention protocol combining two existing tools: the real-time model-
checker Kronos and the probabilistic model-checker Prism. The system is modelled
as a probabilistic timed automaton. We first use Kronos to perform a symbolic
forward reachability analysis to generate the set of states that are reachable with
non-zero probability from the initial state, and before the deadline expires. We then
encode this information as a Markov decision process to be analyzed with Prism.
We apply this technique to compute the minimal probabiliy of a leader being elected
before a deadline, for different deadlines, and study the influence of using a biased
coin on this minimal probability.

Key words: model checking, soft deadlines, probabilistic timed
automata, IEEE 1394, root contention protocol

1 Introduction

The design and analysis of many hardware and software systems, such as
embedded systems and monitoring equipment, requires detailed knowledge of
their real-time aspects, in addition to the functional requirements. Typically,
this is expressed in terms of hard real-time constraints; e.g. “after a fatal error,
the system will be shut down in 45 seconds”. In the case of safety-critical
systems, it is essential to ensure that such constraints are never invalidated.
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However, in other cases like multimedia protocols that perform in the pres-
ence of lossy media, such hard deadlines can be too restrictive. Soft deadlines
are then a viable alternative in these cases. For example, a soft deadline of a
multimedia system could be that “with probability at least 0.96, video frames
arrive within 80 to 100 ms after being sent”. Soft deadlines can also specify
fault-tolerance and reliability properties such as “deadlock will not occur with
probability 1”, or “the message may be lost with probability at most 0.01”.

Recent research [16,17] has set a theoretical framework for the specification
and verification of timed probabilistic systems. Inspired by the success of real-
time model-checkers such as Kronos [7] and Uppaal [18], the direction taken is
that of automatic verification through model checking, adapting the formalisms
and algorithms [1] for model-checking of timed systems to the case of timed
probabilistic systems. Within this approach 2 , timed probabilistic systems
are modelled as probabilistic timed automata [16], i.e. timed automata with
discrete probability distributions associated with the edges, and properties
are specified in the logic PTCTL, which extends the quantitative branching
temporal logic TCTL with a probabilistic operator. Due to the denseness of
time, model checking algorithms rely on the construction of a finite quotient
of the state space of the system, namely the region graph [16] or the forward
reachability graph [17]. By adding the corresponding probability distributions
to the transitions of the graph we obtain a Markov decision process (MDP).
The probability with which a state of this MDP satisfies a property can then
be calculated by solving an appropriate linear programming problem [6,5].

In this work we show how, based on these ideas, the real-time model-
checker Kronos [7,12] and the probabilistic model-checker Prism [13,19] can
be combined for the automatic verification of the root contention protocol of
IEEE 1394, a timed and probabilistic protocol to resolve conflicts between
two nodes competing in a leader election process. The property of interest
is the minimal probability for electing a leader before a deadline. We first
use Kronos 3 to perform a symbolic forward reachability analysis to generate
the set of states that are reachable with non-zero probability from the initial
state, and before the deadline expires. We then encode this information as
a Markov decision process in the Prism input language. Finally, we compute
with Prism the minimal probability of a leader being elected before a deadline,
for different deadlines, and investigate the influence of using a biased coin on
this minimal probability.

This article proceeds as follows. Section 2 introduces probabilistic timed
automata and defines probabilistic reachability of a set of states. In section 3
we describe the features of Kronos and Prism used in our verification approach.
The encoding of the reachability graph in Prism input language is explained in
section 4. Section 5 illustrates this approach with the verification of the root

2 We only consider in this work systems where only discrete probabilities arise.
3 We have used an experimental version, not distributed yet, that has been adapted to deal
with probability distributions and generates the corresponding output.
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Fig. 1. An example of a probabilistic timed automaton PTA1.

contention protocol of the IEEE 1394 standard. We conclude with Section 6.

2 Probabilistic Timed Automata

A timed automaton [2] is an automaton extended with clocks, variables with
positive real values which increase uniformly with time. Clocks may be com-
pared to positive integer time bounds to form clock constraints such as (x ≥
2) ∧ (x ≤ 5). There are two types of clock constraints: invariants labelling
nodes, and guards labelling edges. The automaton may only stay in a node,
letting time pass, if the clocks satisfy the invariant. When a guard is satisfied,
the corresponding edge can be taken. Transitions are instantaneous, and can
be labelled with clock resets of the form x := 0 meaning that upon entering
the target node the value of clock x is set to 0. Probabilistic automata have
probability distributions added to the edges, which model the likelihood of
the action happening.

Example 2.1 The probabilistic timed automaton PTA1 of Figure 1 models a
process which repeatedly tries to send a packet after between 4 and 5 ms, and
if successful waits for 3 ms before trying to send another packet. The packet
is sent with probability 0.99 and lost with probability 0.01 because of an error.
Notice that edges belonging to a same distribution must be labelled with the
same guard.

2.1 Syntax

Clocks and valuations. Let the set X of clocks be a set of variables taking
values from the time domain R+. A clock valuation is a point v ∈ R

|X |
+ . The

clock valuation 0 ∈ R
|X |
+ assigns 0 to all clocks in X . Let v ∈ R

|X |
+ be a clock

valuation, t ∈ R+ be a time duration, and X ⊆ X a subset of clocks. Then
v + t denotes the time increment for v and t, and v[X := 0] denotes the clock

valuation obtained from v ∈ R
|X |
+ by resetting all of the clocks in X to 0 and

leaving the values of all other clocks unchanged.

Zones. Let Z be the set of zones over X , which are conjunctions of atomic
constraints of the form x ∼ c and x−y ∼ c, with x, y ∈ X , ∼ ∈ {<,≤,≥, >},
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and c ∈ N. A clock valuation v satisfies the zone ζ, written v |= ζ, if and only
if ζ resolves to true after substituting each clock x ∈ X with the corresponding
clock value v(x). Let ζ be a zone and X ⊆ X be a subset of clocks. Then
→
ζ is the zone representing the set of clock valuations v + t such that v |= ζ
and t ≥ 0, and ζ[X := 0] is the zone representing the set of clock valuations
v[X := 0] such that v |= ζ.

Probability distributions. A discrete probability distribution over a finite
set Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be

the set of distributions over subsets of Q.

Definition 2.2 (Probabilistic timed automata.) A probabilistic timed
automaton is a tuple PTA = (L,X , Σ, I , P) where: L is a finite set of locations 4 ;
Σ is a finite set of labels; the function I : L → Z is the invariant condition;
and the finite set P ⊆ L × Z × Σ × Dist(2X × L) is the probabilistic edge
relation. An edge takes the form of a tuple (l, g, X, l′), where l is its source
location, g is its enabling condition, X is the set of resetting clocks and l′ is
the destination location, such that (l, g, σ, p) ∈ P and p(X, l′) > 0.

2.2 Semantics

A state of a probabilistic timed automaton PTA is a pair (l, v) where l ∈ L

and v ∈ R
|X |
+ such that v |= I (l). If the current state is (l, v), there is a

nondeterministic choice of either letting time pass while satisfying the invariant
condition I (l), or making a discrete transition according to any probabilistic
edge in P with source location l and whose enabling condition g is satisfied.
If the probabilistic edge (l, g, σ, p) is chosen, then the probability of moving to
the location l′ and resetting to 0 all clocks in X is given by p(X, l′).

The semantics of probabilistic timed automata is defined in terms of transi-
tion systems exhibiting both nondeterministic and probabilistic choice, called
probabilistic systems, which are essentially equivalent to Markov decision pro-
cesses.

2.2.1 Probabilistic systems.

A probabilistic system PS = (S,Act , Steps) consists of a set S of states, a
set Act of actions, and a probabilistic transition relation Steps ⊆ S × Act ×
Dist(S). A probabilistic transition s

a,µ−→ s′ is made from a state s ∈ S by
first nondeterministically selecting an action-distribution pair (a, µ) such that
(s, a, µ) ∈ Steps , and then by making a probabilistic choice of target state s′

according to µ, such that µ(s′) > 0.

Definition 2.3 (Semantics of probabilistic timed automata.) Given
a probabilistic timed automaton PTA = (L,X , Σ, I , P), the semantics of PTA
is the probabilistic system [[PTA]] = (S,Act , Steps) defined by the following.

4 We sometimes identify an initial location l̄ ∈ L represented graphically by an incoming
arrow. In this case, the model starts in l̄ with all clocks set to 0.
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(States) Let S ⊆ L × R
|X |
+ such that (l, v) ∈ S if and only if v |= I (l).

(Actions) Let Act = R+ ∪Σ. (Probabilistic transitions) Let Steps be the least
set of probabilistic transitions containing, for each state (l, v) ∈ S:

Time transitions. For each duration t ∈ R+, let ((l, v), t, µ) ∈ Steps if and
only if (1) µ(l, v + t) = 1, and (2) v + t′ |= I (l) for all 0 ≤ t′ ≤ t.

Discrete transitions. For each probabilistic edge (l, g, σ, p) ∈ P, let ((l, v), σ, µ) ∈
Steps if and only if (1) v |= g, and (2) for each state (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X & v′=v[X:=0]

p(X, l′) .

2.3 Probabilistic Reachability

The behaviour of a probabilistic timed automaton is described in terms of the
behaviour of its semantics, that is, the behaviour of a probabilistic system.

Paths. A path of a probabilistic system PS is a non-empty finite or infinite
sequence of transitions ω = s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · . For a path ω and i ∈ N,

we denote by ω(i) the (i + 1)th state of ω, and by last(ω) the last state of ω
if ω is finite.

Adversaries. An adversary is a function A mapping every finite path ω to
a pair (a, µ) ∈ Act × Dist(S) such that (last(ω), a, µ) ∈ Steps [22]. Let AdvPS

be the set of adversaries of PS. For any A ∈ AdvPS, let PathA
fin and PathA

ful

denote the set of finite and infinite paths associated with A. A probability
measure ProbA over PathA

fin can then be defined following [11].

Definition 2.4 Let PS = (S,Act , Steps) be a probabilistic system. Then the
reachability probability with which a set F ⊆ S of target states, can be reached
from a state s ∈ S, for an adversary A ∈ AdvPS, is:

ProbReachA(s, F )
def
= ProbA{ω ∈ PathA

fin | ω(0) = s &∃i ∈ N . ω(i) ∈ F} .

Furthermore, the maximal and minimal reachability probabilities are defined
respectively as

MaxProbReachPS(s, F )
def
= sup

A∈AdvPS

ProbReachA(s, F )

MinProbReachPS(s, F )
def
= inf

A∈AdvPS

ProbReachA(s, F )

3 Verification with KRONOS and PRISM

Due to the denseness of time, the underlying semantic model of a (probabilis-
tic) timed automaton is infinite, and hence effective decision procedures rely
on building a finite quotient of the state space, e.g. the region graph or the
forward reachability graph. This section describes the verification technique
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based on the generation of the forward reachability graph with Kronos, and
model checking the obtained graph encoded as a Markov decision process with
Prism.

3.1 Forward Reachability with KRONOS

The forward reachability algorithm of Kronos proceeds by a graph-theoretic
traversal of the reachable state space using a symbolic representation of sets of
states, called symbolic states [8]. A symbolic state is a pair of the form 〈l, ζ〉,
with l ∈ L and ζ ∈ Z, such that ζ ⊆ I (l); it represents all states (l, v) such
that v |= ζ. The traversal is based on the iteration of a successor operator in
two alternating steps: first the computation of the edge-successors and then
the computation of the time-successors of a symbolic state.

3.1.1 Edge Successors.

The edge-successor of 〈l, ζ〉 with respect to an edge e = (l, g, X, l′) is

edge succ(〈l, ζ〉, e) = 〈l′, (ζ ∧ g)[X := 0] ∧ I (l′)〉

3.1.2 Time Successors.

The time-successor of 〈l, ζ〉 is defined as

time succ(〈l, ζ〉) = 〈l,
→
ζ ∧I (l)〉

Figure 2 shows the reachability graph obtained for the probabilistic timed
automaton PTA1 for a deadline of 15 ms, measured with an extra clock y.
Since y is never reset, its value would increase indefinitely. To obtain a finite
reachability graph, we need to apply the extrapolation abstraction of [8], which
abstracts away the exact value of y when y > 15. Notice that this abstraction
is exact with respect to reachability properties.

3.2 Model Checking Reachability Properties with PRISM

Prism [19] is a model checker designed to verify different types of probabilistic
models: discrete-time Markov chains (DTMCs), Markov decision processes
(MDPs) and continuous-time Markov chains (CTMCs). Properties to be
checked are specified in probabilistic temporal logics, namely PCTL [6,5] if
the model is a DTMC or an MDP, and CSL [4] in the case of a CTMC. We
focus on the model checking of reachability properties on MDPs, since a (non-
deterministic) probabilistic reachability graph belongs to this class of model,
and deadline properties are specified as time bounded reachability properties.

3.2.1 Model Checking MDPs.

Model checking of Markov decision processes is based on the computation of
the minimal probability p(s, 3φ) or the maximal probability P(s, 3φ) with
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Fig. 2. Reachability graph of PTA1

which a state s satisfies a reachability formula 3φ. Then, a state s satisfies the
PTCL formula P≤λ(3φ) iff P(s, 3φ) ≤ λ. Maximal and minimal probabilities
are computed by solving a linear programming problem [6,9]. The iterative
algorithms implemented in Prism to solve this problem can combine different
numerical computation methods with different data structures [13,14].

3.2.2 Model Checking PTAs.

We verify a PTA by model checking its probabilistic reachability graph using
the following result [17]: the maximal probability computed on the reachability
graph is an upper bound to the maximal probability defined on the semantic
model of the probabilistic timed automaton. That is,

MaxProbReachPS(s, F ) ≤ P(s, 3φF),

where φF is a formula characterizing the set of states F .

4 Encoding of a Reachability Graph in PRISM

The reachability graph obtained with Kronos is a list of symbolic states and
transitions between them. In order to model-check probabilistic properties
we must encode it as a Markov decission process using Prism’s description
language, a simple, state-based language, similar to Reactive Modules [3].

The behaviour of a system is described by a set of guarded commands of
the form [] <guard> -> <command>. A guard is a predicate over variables of
the system. A command describes a transition which the system can make if
the guard is true, by giving a new value to primed variables as a function on
the old values of unprimed variables. We consider two types of encoding of a
reachability graph in this language.
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4.1 Explicit Encoding

The first solution is a direct explicit encoding of the reachability graph using
a single variable s whose value is the index of the state of the reachability
graph. Transitions of the system are encoded by guarded commands such
that the guard tests the value of s and the command updates it according to
the transition relation of the reachability graph. For example, the encoding
of the outgoing transitions from states 0, 4 and 7, corresponding to location
send in the reachability graph of figure 2 is:

[] (s=0) -> 0.99:(s’=1) + 0.01:(s’=2)

[] (s=4) -> 0.99:(s’=5) + 0.01:(s’=6)

[] (s=7) -> 0.99:(s’=8) + 0.01:(s’=9)

This encoding generates a description the size of the reachability graph,
which can grow drastically with the value of the deadline. Prism involves a
model construction phase, during which the system description is parsed and
converted into an MTBDD representation for further analysis. This phase
can be extremely time consuming when the input file does not correspond to
a modular and structured description of a system, such as with the explicit
encoding. Thus, an encoding allowing for a more compact description of the
system is needed.

4.2 Instances Encoding

States of a reachability graph correspond to several instances of locations of
the timed automaton from which it was generated. We can then encode them
with two variables, a location variable l and an instance variable n describing
to which instance of the location it corresponds. For example, let l = 0 be the
value of the location variable corresponding to send. Then, states 0, 4 and 7
correspond to three different instances of this location, say n = 0, n = 1 and
n = 2. Then, the outgoing transitions from states corresponding to send can
be specified by:

[] (l=0)&(n=0) -> 0.99:(l’=1)&(n’=0) + 0.01:(l’=2)&(n’=0)

[] (l=0)&(n=1) -> 0.99:(l’=1)&(n’=1) + 0.01:(l’=2)&(n’=1)

[] (l=0)&(n=2) -> 0.99:(l’=1)&(n’=2) + 0.01:(l’=2)&(n’=2)

4.2.1 Relative compaction

The instance variable n is left unchanged by the command, meaning that the
transition only affects the location variable for instances 0, 1 and 2. This is
equivalent to write that n′ = n, which can be omitted since, by default, a
non updated variable takes its old value. Thus, the transitions above can be
described more compactly in a single line:

[] (l=0)&(0<=n<=2) -> 0.99:(l’=1) + 0.01:(l’=2)
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Since in a reachability graph a transition between two given locations can
be repeated several times for different instances, this encoding allows us to
specify them in a more compact manner. We will refer to this as the relative
compaction, because it is based on specifying the updated value n′ relative to
its old value n.

The compaction algorithm is based on a traversal of the set of transitions
of the reachability graph in order to find those which correspond to the same
update command, and then describe them in a single line as a transition from
multiple sates. Moreover, we combine different source states corresponding to
the same location and successive numbers of instance, in a simple constraint
where n is between two bounds, as in the example above.

4.2.2 Absolute compaction

In a reachability graph, we can encounter states which are the destination of
many different transitions, such as state error before (l = 3, n = 0) in the
example of Figure 2. In this case, if we specify the updated value n′ with its
absolute value, an algorithm similar to the one above will allow us to describe
all the incoming transitions in a single line. For example, the two transtions
to error before can be described by:

[] (l=2)&(0<=n<=1) -> 1:(l’=3)&(n=0)

We will refer to this as the absolute compaction, because it is based on specify-
ing the absolute value of n′. Note that this compaction could also be applied
to the explicit encoding. However, since in practise the relative compaction
leads to a more compact description, compaction algorithms have only been
implemented in the case of the instances encoding. Absolute compaction is
especially interesting when used in combination with the relative one.

4.2.3 Combination

The heuristic implemented consists in first applying the relative compaction
and then, for those transitions that couldn’t be compacted, change the way
the command updates the value of n from relative to absolute, and apply the
absolute compaction.

5 Verification of the Root Contention Protocol

The IEEE 1394 High Performance serial bus is used to transport digitized
video and audio signals within a network of multimedia systems and devices,
such as TVs, PCs and VCRs. It has a scalable architecture, and it is hot-
pluggable, meaning that devices can be added or removed from the network
at any time, supports both isochronous and asynchronous communication and
allows quick, reliable and inexpensive data transfer. It is currently one of the
standard protocols for interconnecting multimedia equipment. The system
uses a number of different protocols for different tasks, including a leader
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election protocol, called tree identify protocol.

The tree identify protocol is a leader election protocol which takes place
after a bus reset in the network, i.e. when a node (device or peripheral) is
added to, or removed from, the network. After a bus reset, all nodes in the
network have equal status, and know only to which nodes they are directly
connected, so a leader must then be chosen. The aim of this protocol is to
check whether the network topology is a tree and, if so, to construct a spanning
tree over the network whose root is the leader elected by the protocol.

In order to elect a leader, nodes exchange “be my parent” requests with its
neighbours. However, contention may arise when two nodes simultaneously
send “be my parent” requests to each other. The solution adopted by the
standard to overcome this conflict, called root contention, is both probabilistic
and timed: each node will flip a coin in order to decide whether to wait for a
short or for a long time for a request. The property of interest of the protocol is
whether a leader is elected before a certain deadline, with a certain probability
or greater.

5.1 The Model

The probabilistic timed automaton I
p
1 in figure 3 is the abstract model of the

root contention protocol considered in [15]. It is a probabilistic extension of
the timed automaton I1 of [20] where each instance of bifurcating edges corre-
sponds to a coin being flipped. For example, in the initial location start start,
there is a nondeterministic choice corresponding to node 1 (resp. node 2)
starting the root contention protocol and flipping its coin, leading with prob-
ability 0.5 to each of slow start and fast start (resp. start slow and start fast).
For simplicity, probability labels are omitted from the figure and probabilistic
edges are represented by dashed arrows.

The timing constraints in I
p
1 correspond to those specified in the updated

standard IEEE 1394a. For instance, 360 ns corresponds to the transmission
delay in the network if nodes are connected using a long wire. Other types
of wire will have a different transmission delay, and hence can be verified by
changing this value and re-running the experiments. Naturally, a lower delay
results in a greater or equal probability of electing a leader before a deadline.

5.2 Verification

We first generate the reachability graph of the probabilistic timed automaton
I

p
1 until a deadline D is exceeded. To do this, we add an additional clock

y, which measures the time elapsed since the beginning of the execution.
Upon entering the location done, we test in time zero (clock x is reset in
all incoming edges, and an invariant x = 0 forces the system to leave the
location immediately) whether the deadline is exceeded or not, by adding two
outgoing edges from done, one with the guard y > D leading to a location
done after and one with the guard y ≤ D leading to a location done before.
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Fig. 3. Probabilistic timed automaton Ip
1 modelling the root contention protocol.

Then, we specify the property of the root contention protocol we are
interested in, namely, that a leader is elected before the deadline with at
least a given probability. The PCTL formula that specifies this property is
P≥λ(3 (done ∧ y ≤ D)), which cannot be verified with our technique because
the probabilistic quantifier P≥λ is not of the correct form. However, it can be
shown [15] that it is equivalent to the formula P<1−λ(3 done after) which can
actually be verified on the reachability graph.

5.3 Experimental Results

In order to verify the property above, we compute the minimal probability
for electing a leader before the deadline, for deadlines ranging from 4.103ns to
100.103ns. These experiments were performed on a PC running Linux, with
a 1400 MHz processor and 512 MB of RAM. Prism was used with its default
options. Additional information can be found in [19].

Table 1 shows the results concerning the generation with Kronos of the
reachability graph and of its encoding as an MDP. The first two columns give
information about the generation of the reachability graph, its size in terms
of the number of states and the time in seconds needed to generate it. The
remaining columns show the size, in number of lines (i.e. transitions), of
the MDP file generated by Kronos, for the different encodings we considered:
explicit, instances with either absolute or relative compaction, and with both
of them.

Figure 4 shows the evolution of the number of lines of the generated file for
different values of the deadline. It demonstrates that the instances encoding
allows for compactions which reduce drastically the number of lines of the
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Table 1
Generation and encoding of the reachability graph

deadline forw. reach. explicit instances instances instances

(103 ns) states time (s) abs rel abs+rel

10 526 0.03 709 421 126 39

20 1876 0.09 2531 1501 368 72

30 4049 0.20 5466 3240 734 100

40 7034 0.46 9499 5629 1223 126

50 10865 1.23 14674 8694 1842 159

60 15511 2.74 20952 12412 2586 186

80 27296 8.94 36868 21841 4437 243

100 42401 22.29 57274 33926 6797 303
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Fig. 4. Number of lines of the MDP

MDP file, and in the case where both relative and absolute compactions are
considered, the number of lines grows less than linearly on the value of the
deadline.

The experimental results concerning the verification with Prism are shown
in Table 2. The left-most column shows the deadline used in the property,
and the right-most column shows the minimum probability with which the
system has reached a state where a leader is elected before the deadline. The
results reflect the obvious fact that increasing the deadline increases the prob-
ability of a leader being elected. Notice that the same probability is computed
for deadlines of more than 40000 ns, meaning that the iterative method has
converged, i.e. that the actual probabilities differ by less than ε = 10−6.

The remaining columns give information on the time performance of Prism

in seconds, to build the model (columns labelled model) and to compute the
probability (columns labelled verif), using the explicit encoding and the in-
stances encoding with relative compaction (inst+rel) and with relative and
absolute compaction (inst+rel+abs) .
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Table 2
Time performances for model building and verification

deadline explicit inst+rel inst+rel+abs probability

(103 ns) model (s) verif (s) model (s) verif (s) model (s) verif (s)

4 0.626 0.009 0.061 0.006 0.054 0.007 0.625

6 1.588 0.013 0.111 0.007 0.073 0.008 0.851562

8 5.654 0.018 0.195 0.008 0.140 0.008 0.939453

10 13.338 0.029 0.301 0.009 0.196 0.010 0.974731

20 190.971 0.098 3.038 0.025 1.303 0.026 0.999629

30 1037.892 0.309 14.672 0.056 4.969 0.058 0.999993

40 – – 344.251 0.134 30.147 0.112 0.999998

50 – – 1119.008 0.349 50.129 0.204 0.999998

60 – – 3468.310 0.442 233.272 0.351 0.999998

80 – – – – 814.035 0.729 0.999998

100 – – – – 2861.889 1.744 0.999998
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Fig. 5. Time to build the model

Compared to the previous attempt of verification [15] of the root contention
protocol using HyTech [10], the generation of the reachability graph is no
longer a problem, since it only took about 20 seconds to generate it for a
deadline of 100000 ns, whilst it took approximately 24 hours to generate it
with HyTech for a deadline of 6,000 ns. Moreover, model checking of the
probabilistic property took less than two seconds in the worst case. It is clear
from this results that the bottleneck of this verification approach is now the
model building phase of Prism, and the practical success of our verification
approach depends on improving either the encoding or the model building
algorithms.

Figure 5 shows the evolution of the time needed to build the model for
different deadlines using different encodings. We can see that, although com-
pactions improve the time needed to build the model, the latter still grows

13
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Table 3
Probability of leader election with a biased coin.

fast slow D = 6000 D = 10000

.01 .99 0.039211 0.076886

.10 .90 0.330534 0.551770

.20 .80 0.554516 0.801000

.30 .70 0.704352 0.910950

.40 .60 0.799150 0.957090

.45 .55 0.830027 0.968230

.50 .50 0.851562 0.974731

.55 .45 0.864616 0.977771

.60 .40 0.869498 0.977795

.65 .35 0.865609 0.974558

.70 .30 0.850898 0.966919

.80 .20 0.768942 0.923030

.90 .10 0.544273 0.746829

.99 .01 0.076872 0.130600

drastically with the value of the deadline, even when the size of the input file
grows linearly, because of the complexity of the guards after compaction.

5.4 RCP with a biased coin

We now study the influence of using a biased coin on the performance of the
protocol. As noted in [21], a curious property of the protocol is that the
probability for electing a leader before a deadline can be slightly increased if
the probability to choose fast timing increases for both nodes. This is because,
although the protocol will require more rounds to elect a leader, the time per
round is lower when both processes select fast timing.

Table 3 gives the probability for electing a leader before 6000ns or 10000
ns, for different values of the probability of choosing fast or slow timing for
both nodes. The results presentend correspond to model checking the same
property as before using the optimized instances encoding. Note that we
don’t need to compute the forward reachability for each case. Instead, since
probabilities for choosing a fast or slow timings can be given as parameters in
Prism description language, the same input file is used to perform probabilistic
model checking, and only the actual values of the probabilities change.

6 Conclusions

We have presented an approach to the automatic verification of soft deadlines
for timed probabilistic systems modelled as probabilistic timed automata. We
use Kronos to generate the probabilistic reachability graph with respect to
the deadline and encode it in the Prism input language. A probabilistic reach-

14
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ability property is then verified with Prism. We have successfully applied this
verification technique to the timed and probabilistic root contention protocol
of the IEEE 1394. We have computed the minimal probability of electing a
leader before different deadlines, and studied the influence of using a biased
coin on this minimal probability.

The main obstacle we had to face was the encoding of the reachability
graph in the Prism input language. The model checking algorithms of Prism

are based on (MT)BDDs, so its input needs to be specified in a compact and
structured manner. An explicit encoding of the reachability graph using a sin-
gle variable to encode a state turned out to be infeasible even for small values
of the deadline. The instances encoding using two variables, one correspond-
ing to the location of the timed automaton, the other to the instance of this
location in the reachability graph, allowed us to apply compaction techniques
that helped overcoming this problem. However, it is not clear how general a
solution this is. Finding a good encoding is then crucial.

Naturally, we need to validate this approach by applying it to other systems
or protocols where timing and probabilistic aspects arise. In order to do this,
a better integration of both tools is needed. A first step in this direction would
be to implement the parallel composition of probabilistic timed automata so
that we are able to model complex systems in a compositional way.
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