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Abstract

DNA nanotechnology is a rapidly developing field that creates nanoscale devices

from DNA, which enables novel interfaces with biological material. Their therapeu-

tic use is envisioned and applications in other areas of basic science have already

been found. These devices function at physiological conditions and, owing to their

molecular scale, are subject to thermal fluctuations during both preparation and

operation of the device. Troubleshooting a failed device is often difficult and we de-

velop models to characterise two separate devices: DNA walkers and DNA origami.

Our framework is that of continuous-time Markov chains, abstracting away much

of the underlying physics. The resulting models are coarse but enable analysis of

system-level performance, such as ‘the molecular computation eventually returns the

correct answer with high probability’. We examine the applicability of probabilistic

model checking to provide guarantees on the behaviour of nanoscale devices, and to

this end we develop novel model checking methodology.

We model a DNA walker that autonomously navigates a series of junctions, and

we derive design principles that increase the probability of correct computational

output. We also develop a novel parameter synthesis method for continuous-time

Markov chains, for which the synthesised models guarantee a predetermined level

of performance. Finally, we develop a novel discrete stochastic assembly model of

DNA origami from first principles. DNA origami is a widespread method for creating

nanoscale structures from DNA. Our model qualitatively reproduces experimentally

observed behaviour and using the model we are able to rationally steer the folding

pathway of a novel polymorphic DNA origami tile, controlling the eventual shape.
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Chapter 1

Introduction

DNA is found in the cell nucleus, where it makes up the genetic material of the cell. Now more

accessible than ever before, DNA strands are sold commercially in a made-to-order fashion. By

designing strands of DNA to interact with each other, complex devices are created by combin-

ing them in a reaction tube. Formidable achievements include tiny artificial motors, nanoscale

structures of virtually any shape and DNA computers that evaluate Boolean formulas. These

artificial devices interact naturally with biological materials and one proposed application is

that of medical diagnostics, where single-use devices interact directly with biological samples to

detect disease. A unifying characteristic of these devices is that of self-assembly: these devices

are created by simply mixing together DNA strands. This is in contrast to, for instance, pho-

tolithography, a top-down process which imprints nanoscale details onto surfaces via macroscopic

photo masks.

Despite its frequent use, we have only just begun to understand DNA as an engineering

material. As the applications of DNA nanotechnology develop further, so does the need for

detailed understanding of their operation. Crucially, to make the transition from prototype

to application, a device must function reliably, in spite of the thermal fluctuations that occur

both during preparation and operation of the device. Troubleshooting a failed device is difficult

because of the limited options to directly observe its operation. Typically, partial execution is

characterised in control experiments, and new insights are then incorporated in the preparation

of the actual device. In addition, the non-covalent binding of DNA is intricate and DNA hy-

bridization reactions are relatively difficult to characterise, especially when taking into account

variations in temperature and mechanical stress.

In this thesis we model two existing DNA devices, predict their operation and identify modes

of error, and enable rational design of their execution. We obtain significant new insights into

the self-assembly of DNA origami, a wide-spread technique to create structures from DNA,

which we validate through experimental observation. Specifically, we create the first-ever dis-
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crete stochastic self-assembly model of DNA origami and demonstrate the existence of folding

pathways. By clever manipulation of the design we steer a polymorphic tile to fold into various

shapes. Reminiscent of the Anfinsen experiment, a breakthrough study on protein folding, we

find that stable long range interactions are highly significant to the folding pathway, and our

modifications primarily concern adjustments to these hyper-stable design elements.

We also examine the applicability of probabilistic model checking to obtain predictions from

our models. Probabilistic model checking is the study of automated verification methods to

compute the probability of a stochastic system to meet a given specification. Specifications

are given in a temporal logic and algorithms enable the automated analysis of the validity

of these properties. Formal verification methods were originally conceived with the purpose

of determining the fault-free operation of software. Given the stochastic nature of molecular

devices, the application of probabilistic verification to DNA nanotechnology seems promising.

We aim for analysis of system-level performance, such as ‘the molecular computation eventually

returns the correct answer with high probability’.

In Chapter 4 we find that exhaustive probabilistic model checking is viable for a limited range

of models, and instead we frequently employ statistical model checking (based on stochastic

simulation) to obtain model predictions. In Chapter 6 and 7, where the self-assembly of DNA

origami is modelled, we do away with properties specified in temporal logic and permit domain-

specific properties that consider event precedence. Despite that, we attempt to increase the

applicability of probabilistic model checking methods to DNA nanotechnology by developing

new methodology in Chapter 4. In specific we develop a parameter synthesis method that

guarantees the correct behaviour for any parameter in the synthesised set, which is a significant

improvement over previous work.

1.1 Contribution

We summarise the novel results of this thesis below, and list the author’s involvement in Sec-

tion 1.2.

• DNA walkers are man-made molecular motors that travel along a nanoscale track of DNA,

mimicking the function of transport proteins found in nature, such as dynein and kinesin.

We show that, for a specific and previously published type of walker, tracks can be used

to encode Boolean formulas. We demonstrate the efficient embedding of any 3-conjunctive

normal formula as a walker circuit. We develop a continuous-time Markov chain (CTMC)

model of the stepping behaviour in PRISM, calibrate it to pre-existing measurements, and

demonstrate the use of probabilistic model checking methods to detect modes of error. The
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model files and scripts created for this study are made public and can be found, including

a detailed description, at [1]. Two of the model scripts are included as Appendix A.

• Standard uniformisation is an often-used numerical technique underlying the model check-

ing of time-bounded properties for CTMC models. We extend the fast adaptive uniformi-

sation method, a generalisation of standard uniformisation intended to increase scalability,

to compute time-bounded cumulative reward properties.

• We develop a method for precise parameter synthesis so that, given a CTMC model

specified over unknown parameters and a property specified in continuous stochastic

logic (CSL), parameters are identified for which the model is guaranteed to satisfy the

property. This is especially useful for biologically inspired reaction networks, where reac-

tion rate constants may depend on temperature or other environmental variables.

• DNA origami is a frequently used technique to create self-assembling nanoscale structures

from plasmid-derived circular DNA and short staple strands. We develop a thermody-

namically consistent CTMC model of origami self-assembly by finding an efficient and

self-consistent way to evaluate the contribution to the free energy of the system that the

geometric constrains induce by staple links. Looping constraints within partially folded

structures are interpreted as simple cycles in an embedded graph. We derive a functional

expression for loop stability that we calibrate to existing models of isolated bulge loop for-

mation. The model predicts folding properties such as melting temperature and hysteresis

well within the expected ranges.

• We demonstrate detailed understanding and control over the folding pathway of a DNA

origami. The folding of a polymorphic origami tile was simulated using the self-assembly

model, and was found to strongly depend on staple design. The folding pathway was

efficiently manipulated through rational design, using minor changes in the staple do-

mains. The code created to simulate the self-assembly, including settings to simulate the

polymorphic tile, is public and can be accessed at [2].

1.2 Publications

Select material from this thesis is derived from joint-authored papers, and here I describe my

involvement beyond writing.

The computational expressiveness and modelling of a DNA walker was considered in [3, 4].

In this work I collaborated with my co-authors to determine abstractions and the reporting

strategy. I developed and analysed the CTMC model of the DNA walker in consultation with
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co-authors. I created a custom tool to generate model and property files for two probabilistic

model checking tools (PRISM and MARCIE) based on textual description of the circuits. The

construction to embed 3CNF formula as walker circuits is due to Dr. Chris Thachuk. Chapter 4

contains the results from this study.

In [5, 6] the derivation of cumulative rewards for the fast adaptive uniformisation method

is presented. I created a prototype implementation of the fast adaptive uniformisation method,

which was applied to simulate the self-assembly model of Chapter 6, and assisted in the subse-

quent re-implementation of the method in the PRISM probabilistic model checking tool. Sec-

tion 5.1 contains results from this study. The proof strategy in Thm. 5.1.4 is due to Dr. Ernst

Moritz Hahn.

In [7, 8] a precise parameter synthesis method for CTMC models was developed. I col-

laborated to develop the problem definition, model-checking algorithms, stability analysis and

heuristics. Section 5.2 contains results from this study.

In [9] a thermodynamically consistent CTMC model of the self-assembly of DNA origami is

developed. The ‘local’ model and its computational methodology presented here was developed

and implemented by me under the supervision of Prof. Andrew J. Turberfield. The subsequent

development of the ‘global’ model, and the calibration to the SantaLucia model of bulge loops,

occurred in collaboration with Dr. Thomas E. Ouldridge, who also provided the thermodynamic

interpretation of both the local and global model. The computational methodology of the global

model was worked out in consultation with Thomas and all simulation code was written by me.

I collaborated in the analysis of the model results. The simulation software is publicly available

at [2]. Chapter 6 contains results from this study.

In [10] the folding pathways of a polymorphic DNA origami tile are described. Based on

the ‘local’ self-assembly model of Chapter 6, minor adjustments to the tile design are found to

result in significant shifts in the distribution of shapes: this was confirmed in experiment. I

contributed to the analysis of the possible strain-free shapes of the polymorphic tile. I designed

and implemented the exclusion algorithm and analysed folding pathways in silico under the

supervision of Prof. Andrew J. Turberfield. I collaborated in describing these folding pathways.

The half-seam and elongated staple modifications were suggested by me. All simulation code

was written by me and all model predictions were obtained from my code. The simulation

software is publicly available at [2]. The design, synthesis and AFM imaging of the origami tile,

and subsequent fitting of shapes, is due to Dr. Katherine E. Dunn. Chapter 6 contains results

from this study.
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1.3 Thesis structure

This thesis is structured as follows. Chapter 2 is an introduction to DNA nanotechnology. Chap-

ter 3 is a background chapter on probabilistic model checking and provides essential definitions

for the remainder of this thesis. Chapter 4 describes a model of a DNA walker, for which we ex-

plore its application as a computational device. We identify modes of error in its execution and

develop design principles to maximise performance. Chapter 5 describes two novel contributions

related to model checking for continuous-time Markov chains. Section 5.1 develops fast adaptive

uniformisation for reward properties, which we apply to the DNA walker model. In Section 5.2

we describe a novel parameter synthesis method which permits the model to contain imprecisely

specified model parameters. Chapter 6 describes a novel method of modelling and analysing the

self-assembly of DNA origami, a frequently used technique to create nanoscale structures from

DNA. Chapter 7 applies the ‘local’ self-assembly model from Chapter 6 to a novel polymorphic

DNA origami tile. Through modifications to the design we demonstrate control over its folding

pathway. Chapter 8 concludes the thesis and we discuss the direction of future research.
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Chapter 2

Introduction to DNA

nanotechnology

A DNA nanodevice is created by combining DNA strands in solution, where each type of strand

has a specific sequence over the alphabet of bases: A, T, C and G. The interaction between

strands is controlled by manipulating the strands sequences, as hybridization is only possible

between strands with complementary sequences. Some devices are intended to operate dynam-

ically, for example a cascade of reactions is triggered after input is added [11, 12]. For other

devices their form is the function, for example, synthetic membrane channels were constructed

from DNA (Fig. 2.1 and [13, 14]).

We now review the main concepts relevant to DNA nanotechnology that feature in the thesis.

Starting in Section 2.6 we discuss literature on DNA nanotechnology.

2.1 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) is a linear polymer composed of nucleotides. Each nucleotide (nt)

consists of a base and a phosphate-deoxyribose backbone group, where the base is one of four

variants: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). A duplex of two strands

is formed when the bases align in a complementary fashion, forming A-T and C-G pairs, as

in Fig. 2.2. Each strand of DNA has an orientation, labelled from the 5′ to the 3′ end, and

pairing is only possible when the strands run in opposite direction. The paired form is called

double-stranded DNA (dsDNA), and involves the two strands coiling around one another in a

helical pattern. The stacking of bases forms a hydrophobic core surrounded by the negatively

charged sugar-phosphate backbone and the structure is stabilized by the presence of cations

that screen electrostatic self-interaction. The precise shape of the helical stacking depends on

environmental conditions, permitting compressed geometries (A-DNA) or stretched (Z-DNA)
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Figure 2.1: Reproduced from [14] with permission. A synthetic membrane channel made
from DNA origami. a) Diagram of the DNA structure, which contains cholesterol-modified
oligonucleotides (orange) around the base. b) The structure is designed to attach and pierce
lipid bilayers. The shaft (in red) then forms an unblocked channel through the membrane. c)
After preparation, purification and treatment with a staining dye, the nanopores are imaged
using Transfer Electron Microscopy (TEM). Class averages of the recorded images are shown
here.
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Figure 2.2: DNA is a polymer of nucleotides. Left: The directionality of DNA is established
by enumerating the carbon chain in the deoxyribose (sugar) group. Right: Two complementary
strands of DNA hybridize through non-covalent interaction. Modified from M.P. Ball (Creative
Commons).
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forms. Under physiological conditions DNA occurs in the right-handed B-conformation, as in

Fig. 2.3, for which the rise per base-pair is approximately 0.34 nm and the width of the helix

is approximately 2 nm. The helical wrapping results in a major and minor groove between the

phosphate linkers, and the periodicity of the helix is approximately 10.5 base-pairs per turn.

Self-complementary DNA can form secondary structures such as a so-called ‘hairpin loop’ or

‘stem-loop’ (Fig. 2.4a).

DNA is traditionally studied for its essential role as a carrier of information within the cell

and its role in reproduction. Expression of traits in organisms were first described as a function

of the organisms’ ancestry by Gregor Mendel circa 1865. DNA itself was first isolated in 1869

by Friedrich Miescher, and in 1928 it was discovered through Frederick Griffith’s experiment

that bacteria can transform through the absorption of genetic material. Later it was found

that DNA, as opposed to protein, was responsible for the transformation, through the Avery-

MacLeod-McCarty experiment. The double helical structure of DNA was discovered by Watson

and Crick in 1953.
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Figure 2.3: Schematic representation of double-stranded DNA in B-conformation. The helix
on the left (blue) splits halfway and the two strands are hybridized by separate green strands.
Also shown are the major and minor grooves. Modified from M.P. Ball (Creative Commons).

2.2 DNA synthesis

DNA strands consisting of up to 200 nucleotides, called oligonucleotides or oligos for short,

are available commercially, where they are produced by chemical synthesis. During production

each nucleotide is incorporated with some probability of error and as a result longer sequences

are harder to produce. Consequently, orders for longer sequences are charged at a premium.
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Figure 2.4: a) Self-complementary DNA in hairpin formation. (Creative Commons, anonymous)
b) A domain-level description is an efficient abstraction of DNA. In this figure the top strand
consists of the domains, A, B and C. The bottom strand consists of domains C* and B*.

Sequences with a strong secondary structure, such as G-quadruplexes, are also harder to syn-

thesise1. Oligos have been commercially available for over 20 years at increasingly lower price

points, a trend that is expected to continue [15]. At current time of writing, the price for

100 nanomole of a 11-nucleotide sequence is quoted at 6.60 USD by IDT, a leading vendor in

synthetic DNA. Longer strands of DNA (> 200nt) are obtained by ligating shorter oligos or

obtained directly from plasmids of live organisms [12]. In the latter case, there is less control

over the nucleotide sequence and length.

2.3 Domain-level abstraction and strand displacement

The interaction between strands of DNA is highly programmable through control of the strand

sequence. In general, two strands do not hybridize unless parts of their sequences are comple-

mentary. An efficient way to reason about strand interaction is by assigning a shorthand for

sequences and their complement. In Fig. 2.4b the top strand consists of three domains A, B

and C. Their complementary domains are simply denoted with an asterisk modifier, so that the

bottom strand of the duplex in the example consists of domains C* and B*. If we assume that

the partial sequence overlap between non-complementary domains is sufficiently small, so that

we can safely ignore the interaction between non-complementary domains, then a description of

the possible hybridization reactions within a set of DNA strands is greatly simplified.

DNA strand displacement occurs when an incoming strand disrupts existing base-pairing

of a duplex, so that one of the strands is replaced by the incoming strand. Toehold-mediated

strand displacement occurs when a short toehold domain is used so that the invading strand

initially docks into the duplex by hybridizing to the toehold, as in Fig. 2.5, and is a highly

1Such sequences suffer from lower yield and purity in the synthesis process. IDT website ‘G Repeats. Structural
Challenges for Oligo Design’, accessed July 2015. https://www.idtdna.com/pages/decoded/decoded-articles/
core-concepts/decoded/2013/01/17/g-repeats-structural-challenges-for-oligo-design

https://www.idtdna.com/pages/decoded/decoded-articles/core-concepts/decoded/2013/01/17/g-repeats-structural-challenges-for-oligo-design
https://www.idtdna.com/pages/decoded/decoded-articles/core-concepts/decoded/2013/01/17/g-repeats-structural-challenges-for-oligo-design
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practical technique to create cascading DNA reaction networks. The toehold-mediated stand

displacement reactions depicted in Fig. 2.5 are based on the operation of a ‘see-saw’ gate, which

can act as a logic gate [16, 11, 17]. Toehold-mediated strand displacement was first used in a

‘DNA-tweezer’ to switch the device from an open to closed position [18].

+

Input

Gate:Output

TS

3

S

4

Gate:Output:Input
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Figure 2.5: Toehold-mediated DNA stand displacement during the (partial) operation of a see-
saw gate [16]. a) The gate-output duplex consists of two strands and one of the blue toehold
domains is exposed. The input strand contains a domain that is complementary to the exposed
toehold (also in blue). b) After binding to the toehold, the input strand displaces the orange
domain of the output strand. c) The blue domain consists of only six nucleotides and the
output strand spontaneously unbinds after the orange domain is displaced. The reverse reaction
occurs at a roughly equal rate (for equal species concentrations) because the gate-input complex
similarly has an exposed toehold domain.

2.4 DNA origami

DNA origami is a robust technique to create structures from DNA, and since its inception it

has been employed to create a wide variety of shapes. Origami structures are created from

a single-stranded ring of DNA, also called the scaffold, and the scaffold is typically several

thousands of bases long. The scaffold is mixed in solution with an excess of shorter, linear

single-stranded DNA, which are called staples. The solution is then cooled down from 95 ◦C to

room temperature. During the cooling, the staples start binding to the scaffold through domain

complementarity, and eventually the scaffold is fixed into an ensemble of tightly connected

helices (see Fig. 2.6). Various shapes are possible by manipulating the nucleotide sequence of the

staples, for example see the hexagon and star shapes in Fig. 2.7. The circular scaffold used in the

original 2006 publication ([19]) was derived from the M13mp18 bacteriophage (virus), while the

shorter staples were synthesized commercially. Many of the subsequent origami designs similarly

use virus-derived scaffolds. DNA origami are regularly produced at nanomolar concentration.
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Figure 2.6: DNA origami is an ensemble of interwoven double-stranded DNA. The structure
consists of one scaffold and many staple strands. In this example the staple strands are comple-
mentary to one or two domains on the scaffold.

At this concentration, a single drop contains in the order of 1010 origami.

The uniformity of origami objects can be assessed in part by agarose gel electrophoresis,

where the sample is loaded into a well on one side and a voltage is applied between the two ends

of the gel. A staining dye is used to reveal the position of the DNA after a fixed time. Because

smaller fragments move through the gel faster, wells with many different bands indicate that the

sample contains objects of varying size. Small defects in an origami, such as a missing staple,

may not significantly impact its electrophoretic mobility.

Finally, we briefly discuss three methods for the imaging of DNA origamis.

• Atomic force microscopy (AFM): Mica is a silicate crystal that, after cleaving, produces

highly flat surfaces. The negatively charged origamis stick to the similarly negatively

charged mica surface in the presence of divalent cations (adsorption) [20]. After depositing

the origami on the mica surface, an oscillating tip is positioned just above the mica surface.

Differences in surface height and material between the surface and the tip are detected as

changes in the amplitude of oscillation.

• Transmission electron microscopy (TEM): The scattering of electrons by DNA is relatively

weak, leading to noisy images, while higher dosages of electron radiation leads to sample

damage. To improve the contrast obtained from electron microscopy, the origami is treated

with a staining dye, such as uranyl formate [21], which binds to the DNA.

• Cryo-electron microscopy (cryo-EM): After flash-freezing, the sample is imaged through
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regular TEM without using staining dyes. Because the samples are fixed in vitreous ice, the

nominally identical objects can be observed at multiple angles, enabling the reconstruction

of a three-dimensional density model [22].

a

b

c

d

e f

Figure 2.7: DNA origami in the shape of a star and a hexagon, reproduced from [19] with
permission. a) The target shape of the scaffold routing resembles a star. b) Rendering of the
target shape: with staple strands in place, the scaffold forms a mesh of double-stranded DNA.
c,d) After preparation and deposition on a mica surface, the DNA origami is imaged using
Atomic Force Microscopy (AFM, scalebar 100nm). e) In this design, designated staple strands
mediate bonds between separate origami, creating a hexagon from six triangular origami. The
surface is decorated with DNA hairpin loops. f) , and imaged using AFM (scalebar 100 nm).
Note that (a,b,e) are renderings of the intended structure, they are results of AFM imaging.

2.5 Duplex formation

Simple two-state models for bimolecular reactions of complementary DNA strands are well es-

tablished in the literature [23, 24, 25]. We recall definitions and results from statistical physics

and their relation to DNA duplex formation. Given a fixed volume of buffer solution, let com-

plementary strands A,B bind reversibly, forming the double-helical complex AB, as

A+B 
 AB. (2.1)

The concentration of each species is denoted as [A], [B] and [AB] which, in this thesis, we express

in molar units M = mol/litre or nM = 10−9 mol/litre. Under the assumption of mass-action

kinetics, the concentration of each species is given as

d[AB]

dt
= k+[A][B]− k−[AB] (2.2)
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Figure 2.8: A simple duplex consisting of a three base-pair duplex (TCG/CGA) and a dangling
strand (ATT). Under the nearest neighbour model, the two pairs of neighbouring base pairs are
TC/GA and CG/CG.

for the binding and unbinding rate constants k+, k−. The equilibrium concentrations {A}, {B}

and {AB} then follow

{AB}
{A}{B}

=
k+

k−
= exp

(
−∆G0 duplex

AB

RT

)
×M−1 (2.3)

where M−1 occurs to balance the units and R denotes the molar gas constant and T temperature.

The sequence-specific Gibbs free energy change of duplex formation at molar concentration (1M)

is given by

∆G0 duplex
AB = ∆H0 duplex

AB − T∆S0 duplex
AB (2.4)

where ∆H0 duplex
AB and ∆S0 duplex

AB are the sequence-specific enthalpy and entropy (also relative

to molar concentration). For a given duplex, these quantities are estimated through the nearest-

neighbour model of SantaLucia [24], in which ∆H0 duplex
AB and ∆S0 duplex

AB are assumed to be

independent of temperature. A reduction of ∆G0 duplex
AB increases the ratio of k+/k− and increases

the concentration {AB} at equilibrium.

The melting temperature of the duplex is defined as the temperature where, assuming equi-

librium, half the strands form a duplex, so that {A} = {B} = {AB}, assuming an equal

initial concentration of A and B. Let the initial strand concentration be so that [AB] = 0 and

[A] = [B] = C/2, where C is the initial concentration of strands, then the melting temperature

is given by

TM (AB) =
∆H0 duplex

AB

∆S0 duplex
AB +R ln(C/4)

. (2.5)

for non-selfcomplementary sequences [24].

Example 2.5.1. Under the nearest-neighbour (NN) model we compute the enthalpy and entropy

terms for a short duplex with a terminal dangle, as in Fig. 2.8, relative to the unhybridized state.
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The NN terms used here are accurate for duplexes ranging between duplexes ranging in length

of four to sixteen basepairs [26], but for simplicity our example uses a duplex consisting of just

three basepairs. The terms that arise in the model are:

∆G0 =∆G0
init + ∆G0

term.AT (2.6)

+ ∆G0
TC + ∆G0

CG + ∆G0
5′AA−dangle (2.7)

where ∆G0
init is the initialisation term, ∆G0

term.AT accounts for A/T base-pairs occurring at the

end of the duplex, ∆G0
5′AA−dangle is the (de)stabilisation term that accounts for the occurrence

of the single stranded dangle at the 5’ end of the duplex, and the other terms account for the

neighbouring basepairs. The enthalpy and entropy terms for these terms, are estimated experi-

mentally ([26], Table 1, [27] Table 2). Ignoring the contribution from salt dependencies, ∆Ssalt,

the enthalpy, entropy and free energy are:

∆H0 = 0.2 + 2.2− 8.2− 10.6− 0.5 (2.8)

= −16.9 kcal / mol (2.9)

∆S0 = −5.7 + 6.9− 22.2− 27.2− 1.1 (2.10)

= −49.3 cal / mol K (2.11)

where K is the SI unit for temperature (Kelvin) and where R = 1.9872 cal mol−1K−1. The free

energy at T = 37 ◦C is given by

∆G0
37 ◦C = ∆H0 − T37 ◦C∆S0 (2.12)

= −1.61 kcal / mol (2.13)

Example 2.5.2. Under the nearest-neighbour model we compute the enthalpy and entropy terms

for a fully complementary 16-nt duplex, averaged over all possible sequences, to be

∆H0 duplex = −121.16 kcal mol−1 (2.14)

∆S0 duplex = −334.29 cal mol−1K−1 (2.15)

where K is the SI unit for temperature (Kelvin) and where R = 1.9872 cal mol−1K−1. The free

energy at T = 37 ◦C and the melting temperature of the hypothetical duplex (using C = 20 nM)
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are given by

∆G0 duplex
T=37 ◦C = −17.48 kcal mol−1 (2.16)

TM = 52.31 ◦C (2.17)

Formation of the double-stranded helix enables hydrogen bonds and hydrophobic stacking

interactions, and the change in enthalpy for the reaction, ∆H0 duplex
AB , is negative. The difference

in entropy is given by the difference in the number of available microstates before (ΩA,B) and

after (ΩAB) the reaction:

∆S0 duplex
AB = R ln

(
ΩAB

ΩA,B

)
(2.18)

The formation of the helix restricts the position and shape of the strands, reducing the number

of possible microstates, that is, ΩAB < ΩA,B. As a result, ∆S0 duplex
AB is negative for the reaction.

Overall, the formation of duplexes is favourable, and the melting temperature of 6− 18-nt long

complementary strands is in the range of 30− 60 ◦C. Generally, longer duplexes are more stable

than shorter ones, and strands with a higher C-G/A-T ratio are typically more stable than those

with a lower C-G/A-T ratio.

2.6 Literature review

We now review literature on DNA nanotechnology.

Self-assembled structures

In 1982 Seeman proposed to use DNA latices to align proteins for the benefit of their structural

analysis through X-ray crystallography [28]. An immobile junction by Seeman et al. was one of

the first artificial nanostructures made out of DNA [29]. Other structures such as cubes, octa-

hedra, tetrahedra and bipiramids have been created since [30, 31, 32, 33]. In 2006 Rothemund

introduced new design paradigms to create nanostructures out of DNA, focused around the use

of a large circular strand [19]. It is called ‘origami’ or folded DNA. Self-assembling structures

of arbitrary shape can be made, for example smilies or stars were demonstrated in the original

publication (also see Fig. 2.7). Hairpin loops positioned at the surface of the tile are useful to

determine the orientation of the structure (see Fig. 2.7e,f), and, in one design, hairpin loops

were used to embed a world map onto an origami tile [19]. Three-dimensional origami were

subsequently developed. In one application containers with lids that open through the use of

a strand-displacement reaction were created [34]. A similar construction was embedded with



32

anti-body fragments: when the box is locked, a cellular response is lacking, but when the box

becomes unlocked, it exposes the fragments and a response occurs [35].

DNA origamis themselves can also self-assemble into larger structures. One obvious way

would be to allow staples bind to two separate scaffolds, joining them. The stacking of origamis

can also be achieved by creating a compatible geometry between objects [36, 37]. Because the

end-to-end stacking of DNA helices is a stabilizing interaction, the geometrically compatible

origamis self-assemble into stacked arrays. Some DNA objects are created without the use of a

large backbone strand. One approach uses two-domain staples exclusively [38], and the staples

are designed to form a solid tile or cube. Shapes are created by simply omitting sets of strands

from the mix. This approach is called ‘brick’ or ‘single-stranded tile’ (SST) origami.

Software tools for self-assembled structures

The CADNANO software is a versatile tool to design origamis, and is developed by Shawn

M. Douglas and co-workers [39]. Various views, including a three-dimensional rendering, helps

the user to visualize and design origami structures. It contains functions to route scaffold in a

predetermined shape and contains functionality to generate, manipulate and export nucleotide

sequences. The software CANDO computes the mechanical stability of DNA structures through

a finite-element method and supports import of CADNANO designs. CANDO is maintained by

Mark Bathe and co-workers [40].

DNA-based molecular walkers

Dynein and Kinesin are families of natural protein that move along microtubials that span across

the cell, hydrolysing ATP as fuel. Their function is to transport larger molecules across the cell

and they perform certain roles during cell division. Synthetic molecular motors inspired by

Dynein and Kinesin have been created. We now discuss the development of synthetic molecular

motors made from DNA, which we call molecular walkers.

One example is that of Seeman et al. [41] who in 2004 report on a bipedal DNA walker.

Each leg of the walker is a strand of DNA, and in the starting position, each leg is bound to a

complementary strand, and three of such complementary strands form a small track. Each leg

of the walker is locked and unlocked by adding input strands: one unlocking and one locking

strand are required to move the first leg, and then two more strands are required to move the

second leg. Another bipedal walker was demonstrated to walk across four of such complementary

strands (‘anchorages’), also using one input strand for each locking and unlocking reaction [42].

To traverse the track, nine sequential inputs are used over a period of 3 hours.

The walker that we consider in Chapter 4 is based on a design published in 2005: the study
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demonstrates a single-legged walker to autonomously traverse a track of three anchorages [43].

This application uses a DNA nicking enzyme, that nicks the walker-anchorage complex and ex-

poses a toehold domain on the walker strand after nicking. The walker then preferentially binds

to the nearest intact anchorage, which is thermodynamically favourable because the number of

hybridized nucleotides increases after stepping onto the next anchorage. Nicked anchorages no

longer contain the domain complementary to the exposed walker toehold, preventing the walker

from stepping onto nicked anchorages, resulting in directionality in the movement of the walker.

The movement of the walker is conditional upon the presence of the nicking enzyme, and step-

ping occurs approximately once per minute. Later studies demonstrate movement across larger

tracks, movement across junctions and detailed imaging of the stepping mechanism [44, 45],

which we further discuss in Chapter 4. Other walker systems include [46, 47, 48, 49, 50].

DNA computation

Given the success of contemporary methods in molecular biology, and the discovery of molec-

ular pathways that control cellular behavior, we might wonder what kind of computation can

be implemented in vitro using biological molecules. It might be possible to create synthetic

molecular computers that interact with biological tissue directly, opening up new possibilities

for diagnostic and therapeutic devices. Or, such molecular computers might help us understand

how computation works within the cell, through the process of reverse engineering. This area of

research is called molecular computation. When we limit the scope of to computers made from

DNA, we call it DNA computation. The limitation to devices made from DNA seems arbitrary,

however, the cost and ease of manipulating biological molecules must also be considered. To

review the advances made within DNA computation, we examine three computational models

and their implementations.

Theoretical models of computation are as diverse as the application of computation. The

decision process of an infantryman might be approximated well by a finite automaton, while

a computer program might be best described using lambda-calculus, and central processing

units are sometimes modelled as finite-memory Turing machines. We now describe computers,

made from DNA, whose computational models are best described as parallel random search, tile

assembly, and logic gates.

In 1994 Adleman [51] spurred synthetic molecular computation into reality by using DNA

as a substrate to compute the solution to a directed Hamiltonian path problem. By using

ligation enzymes to generate random paths over the directed graph, the existence of a solution

is demonstrated if a path of an appropriate form is found. This was exciting for two reasons.

Firstly, the problem is NP-complete, meaning any problem of this class could potentially be
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solved using this approach. Secondly, Adleman created a massive parallel computation executed

at small scale and low energy cost.

Adleman postulated that each ligation is a logical operation, and because a vial can easily

contain 1013 strands of DNA, a high computational throughput is achieved. A similar approach,

though employing hairpin DNA, was used in 2000 to compute a Boolean satisfiability problem

over six variables, and in 2002 a 20-variable satisfiability problem was solved, which identified

a solution from over a million possible combinations [52, 53]. Although a seminal contribution,

the approach of Adleman did not translate to a truly viable method to solve routing problems,

and silicon computers remain the most practical method to solve NP-hard problems.

Wang tiling [54] is a mathematical theory about squares with coloured sides, where squares

can lie adjacent only if the sides match in colour. Any Turing machine can be embedded

as a set of Wang tiles [55], and therefore the model is capable of universal computation. In

1996 Winfree proposed the use of Seeman’s double-crossover (DX) molecules [56] as a substrate

for computation, drawing inspiration from the theory of Wang tiles [57]. Winfree created a

corresponding model of tile computation, the abstract tile assembly model (aTAM), and proved

that this model is capable of Turing-universal computation [58].

DX tiles consist of four DNA strands that keep together through complementary hybridiza-

tion. Each individual DX tile has four single-stranded domains, so that a tile can link with up to

four other DX tiles, provided their domains are complementary. In 1998 Winfree et al. demon-

strated that DX tiles self-assemble into large meshes [59]. In the same year Winfree formulated

the kinetic tile assembly model to simulate the assembly of such meshes [60]. DX tiles were

subsequently used to create a Sierpinski triangle and to implement a binary counter [61, 62].

DNA is an excellent substrate to implement chemical reaction networks [63], and we now

discuss the development of these devices. Tweezers constructed from DNA were demonstrated

in 2000 [18]. The appeal of this device (Fig. 2.9) is its ability to switch state when it interacts

with certain DNA strands, so that the device responds to a signal (the incoming stands). In the

closed state a quencher is in close proximity to a fluorophore, inhibiting fluorescent response of

the fluorophore. In the open state the distance between the quencher and fluorophore increases

and as a result the fluorescent response increases: the change in overall response is measured

using a fluorometer. The initial signal strand is complementary to two separate domains in

the device and after binding the device is in the closed state. In this closed state the signal

strand is only partly hybridized and exposes a toehold domain. When a strand complementary

to the signal strand binds to the toehold, it strips the signal strand from the device, causing

the tweezers to ‘open’. This means that waste, in the form of a DNA duplex, is produced

after switching the device back to the open position. Because the ‘waste’ does not have any
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Figure 2.9: Reproduced from [18] with permission. DNA tweezers. a) Two strands are hy-
bridized to strand A, leaving a short section single stranded between the two double stranded
domains. A fluorophore (TET) and quencher (TAMRA) are attached to double stranded do-
mains. b) Adding strand F to the solution causes the open tweezer to become closed. Strand F
binds to two domains and brings the fluorophore and quencher in close proximity. In the closed
state, the fluorescent response is reduced. A toehold domain of strand F is exposed in the closed
state and enables a complementary strand F, to easily attach and re-open the tweezers.

unhybridized sections, it is considered non-interfering in subsequent operation of the device.

An early DNA-based molecular network that implements logic gates was motivated by med-

ical application: a simple circuit would sense the presence of mRNA, and release a medicine

only if a set of mRNA are each detected [64]. Work by Seelig et al. (2006) demonstrates the

implementation of logic gates and catalytic loops without the use of enzymes [65]. In 2007 Zhang

et al. construct a catalytic gate using sacrificial fuel strands that amplify an incoming signal

strand [66]. The see-saw gate, an adapted version of the catalytic gate, is proposed by Qian

et al. in 2009 and is activated once the input crosses a threshold [16]. The see-saw gates can

simulate logic gates, and in one instance a cascade was implemented that computes the square

root of a 4-bit number [11]. A different gate architecture was later demonstrated to execute a

consensus algorithm [12].

The detection of mRNA or DNA from a biological sample is a coveted application of DNA

displacement networks. The use of a cascade circuit could potentially replace reverse transcrip-

tion via real-time polymerase chain reaction in some cases, reducing logistical requirements and

enabling cost-savings. For example, the device might detect the presence of mutated genes

that indicate drug resistances in a pathogen. For this application the sensitivity, specificity and

throughput time of DNA displacement cascades must be improved, which remains an active

topic of research [67, 68, 69].
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Modelling and verification for DNA computation

Process algebras and programming languages have been created to formally specify computa-

tional networks made from DNA [70, 71, 72, 73, 74], and their computational expressiveness has

been studied [63, 75]. Because the reaction networks of such applications are complex, they are

ideally designed with the aid of a computer and checked for correctness prior to implementa-

tion. Visual DSD is a software tool based on the DNA strand displacement (DSD) language

by Cardelli and Phillips [71]. In this software tool the user specifies the initial species at the

domain-level abstraction. The software then automatically generates the reaction network. If

initial conditions are specified, the software simulates the execution of the network. Visual

DSD exports to PRISM, enabling probabilistic model checking of DNA strand displacement

networks. In one instance this revealed a bug in the design of a logic gate [76]. Visual DSD was

used during the development of the 4-bit square root circuit created by Qian et al. [11]. A similar

approach to the analysis and verification of DNA reaction networks, although currently without

a publicly available implementation, was subsequently proposed by Winfree et al. [74]. This

approach is more permissive than the original language by Cardelli and Phillips, for example

four-way branch migration reactions and branched structures are allowed. Similar to DSD, a

separation of timescales (first-order reactions versus second order reactions) is used to simplify

the reaction network. A recently published work by Phillips et al. extends the DSD language

to allow similarly branched structures [77].

Modelling for DNA nanotechnology

Statistical descriptions of DNA stability exist in the form of nearest-neighbour models that

account for neighbour pairs, dangling ends, nucleotide mismatches and bulge loop formation [24,

27, 78, 26, 79]. MFOLD and NUPACK are software for secondary structure prediction of DNA

[80, 81], and are based on nearest neighbour models. Secondary structure prediction for DNA is

difficult because of the vast number of combinations, and specialized algorithms are applied to

find the configuration(s) that minimize free energy. The kinetics of domain migration and the

influence of nucleotide sequence, including nucleotide mismatches, has attracted attention from

both theoretical and experimental researchers [82, 83, 84, 85].

OxDNA is a simulation software for DNA and RNA based on a coarse-grained simulation of

molecular dynamics that was proposed by Ouldridge et al. [86]. The ‘coarse’ abstraction makes

OxDNA suitable to simulate nanoscale devices over timescales that are orders of magnitude

larger than those obtainable through atomistic molecular dynamics. Applications of OxDNA

include the simulation of Holiday junctions, DNA tweezers, displacement reactions and a DNA

walker [84, 87, 88, 86, 89]. An atomistic simulation of a full-scale DNA origami was recently
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employed to study the distribution of cations within the structure [90].

Comparison between DNA, RNA and polypeptides

We briefly compare DNA to RNA and protein as an alternative nanoscale engineering material.

Predicting protein structure from peptide sequence alone is notoriously difficult and, although

it is possible to design simple synthetic proteins, this typically requires simulation-based design

software to predict the eventual shape [91, 92]. In contrast, DNA enables robust manufacturing

of structures without the use of pre-production molecular dynamic simulations. In one approach

principles of self-assembly were inferred from DNA-based devices and applied to create a syn-

thetic protein that assembles into a tetrahedron [93], and in another nanoscale sheets of protein

were created [94]. Synthetic structures made from folded RNA were recently demonstrated [95],

where the structure consists of a single nucleotide chain and folds through self-interaction. As

the applications of self-assembled nanoscale engineering develop, it seems likely that these fields

will continue to inspire each other.
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Chapter 3

Introduction to probabilistic

modelling and verification

In this chapter we review the main concepts relevant to probabilistic model checking that feature

in the thesis. From Section 3.3 on we discuss relevant literature.

Probabilistic model checking aims to, given a probabilistic model, automatically verify state-

ments such as:

The system resolves conflict within 1.0 seconds, with a probability of at least 99.999%.

Using a probabilistic model checking software, the user, after constructing the model, only has

to specify the statement in a temporal logic, and a model checking algorithm validates if the

statement holds or not. In this way, the user does not have to make manual adjustments to

their model, in order to compute the desired properties. The property specification in this case

might look like:

P≤99.999%

[
conflict U≤1.0 resolved

]
(3.1)

In other words, when in a state of conflict, the system reaches a resolve within 1.0 second, with

at least 99.999% probability. Probabilistic model checking also attempts to answer the question

of which set of properties can be answered, and with which computational complexity.

In the model checking portion of this thesis, we demonstrate how to synthesize model pa-

rameters such that a given query holds (Section 5.2.3), and we demonstrate how to compute

reward properties for an improved version of the uniformisation method (Section 5.2).
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a0 a1 a2 a31/10
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Figure 3.1: Continuous-time Markov chain model of a molecular walker. In this process, the
initial position (state) of the walker is a0. The delay in movement from a0 to a1 is given by an
exponential distribution, Exp(1/10), so that the average waiting time before the walker moves
is equal to 1

1/10 = 10s. From position a1, the walker moves back to a0 with probability 10
11 and

moves to a2 with probability 1
11 .

3.1 Markov chains

Continuous-time Markov chains are used in this thesis to model a DNA walker and the self-

assembly process of DNA origami, and to enable the probabilistic and statistical model checking

of these models. We now describe these Markov chains and methods to analyse them. The

definitions of continuous-time Markov chains and their generating matrices (Def. 3.1.1, Def. 3.1.3

and Def. 3.1.7) and the definitions of continuous stochastic logic (Def. 3.2.1 and Def. 3.2.4) are

based on [96, 97].

Definition 3.1.1 (Continuous-time Markov chain (CTMC)). A CTMC is a tuple C = (S, π0,R, L)

where S is a countable set of states, π0 : S → [0, 1] is the initial state distribution with∑
s∈S π0(s) = 1, R : S × S → R≥0 is the rate matrix and L : S → 2AP is a labelling func-

tion for a set of atomic propositions AP . A transition between states s, s′ ∈ S can occur only

if R(s, s′) > 0 and in that case the probability of triggering the transition within t time units

equals 1 − e−tR(s,s′). The time spent in state s, before a transition is trigged, is exponentially

distributed with exit rate E(s) =
∑

s′∈S R(s, s′), and when the transition occurs the probability

of moving to state s′ is given by R(s,s′)
E(s) .

A graph-based representation is the preferred method of depicting CTMCs that consist of

a limited number of states, such as in Fig. 3.1. The initial state is marked with an incoming

arrow. Each transition is depicted as a directed edge that is labelled with the transition rate.

In this case a0 is the initial state, and the exit rate for that state is given by E(a0) = 1/10. The

time until the Markov process leaves state a0 is exponentially distributed with parameter λ = 1
10

and the expected time until a transition occurs is given by 1
λ = 10. After the first transition,

the process necessarily ends up in state a1. The expected waiting time in state a1 is given by

100/11. States that have two or more exit rates are affected by the so-called race condition,

where the probability of triggering each transition is directly proportional to the rate of the

transition. The probability of moving to state a2 from state a1 is 1/11, while the probability of

moving to a0 is 10/11.
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Example 3.1.2 (Molecular walker). The Markov chain in Fig. 3.1 models a molecular walker,

which moves randomly due to thermal noise. Starting in location a0, it moves between location

a0 and location a1. From location a1, the walker can bridge a gap and move to location a2,

although movement across the gap occurs at a lower rate. From location a2 the walker can

access the state a3, where the walker becomes trapped. Randomly generated paths (generated by

the algorithm in Def. 3.1.12) over the CTMC are given in Table 3.1.

Definition 3.1.3 (Paths over continuous-time Markov chains). A path ω over a CTMC (S, π0,R, L)

is an alternating sequence of states si and time delays ti for which R(si, si+1) > 0 and ti ∈ R≥0

for i ≥ 0. The value ti represents the amount of time spent in state si. Denote the set of paths

starting in s ∈ S by Path(s). The path ω also defines a path function ω : N → S such that the

i-th state in the path is given by ω(i) = si. The state at time t for path ω is denoted as ω@t,

and is equal to ω(i) for the smallest i such that
∑i

n=0 tn ≥ t. We also define a function time

such that time(ω, i) = ti if it exists.

Definition 3.1.4 (Probability measure over paths in a CTMC). A probability measure over

paths of a Markov process over a CTMC C = (S, π0,R, L) is given by the cylinder construction

and we follow [97]. Given a state s and a fixed number of jumps k, fix k non-empty intervals

Ii of R≥0 and visited states si ∈ S for 0 ≤ i < k where R(s, s0) > 0 and R(si, si+1) > 0 for

0 ≤ i < k − 1 and let the cylinder set C(s, I0, s0, . . . , Ik−1, sk−1) be given as

∀ω ∈ C(s, I0, s0, . . . , Ik−1, si−1)∀j ∈ 0..k − 1 : time(ω, i) ∈ Ij and ω(i) = si (3.2)

Let F be the smallest σ-algebra containing cylinder sets for all s ∈ S and k. The unique

probability measure P over F is inductively defined as

P (C(s)) = π0(s) (3.3)

and

P
(
C(s′, I0, s0, . . . , Ik−1, sk−1, Ik, sk)

)
= (3.4)

P
(
C(s′, I0, s0, . . . , Ik−1, sk−1)

) R(sk−1, sk)

E(sk−1)
(e−E(sk−1) inf I − e−E(sk−1) sup I).

Continuous-time Markov chains are well suited to model real-time discrete stochastic pro-

cesses, for example, the arrival of customers in a queue, or nuclear decay. Crucially, the behaviour

of the model only depends on the current state, and is independent of previously visited states.

Some stochastic processes are best described in discrete time, for example the evolution of a

sports tournament is best expressed in rounds rather than explicit time. In that case a model
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Path States visited Waiting times

ω1 a0, a1, a0, a1, a0, a1, a0, a1, a0, a1 43.1 2.8 1.2 19.3 4.6 0.5 0.6 11.7 1.6
ω2 a0, a1, a0, a1, a2, a3 4.8 5.7 0.7 6.6 2.5
ω3 a0, a1, a0, a1, a0, a1, a0, a1, a2, a3 6.7 2.0 2.2 7.0 7.1 21.1 5.6 10.5 15.1
ω4 a0, a1, a0, a1, a0, a1, a0, a1, a0, a1 3.9 6.9 5.2 6.2 5.0 6.2 4.2 4.7 5.9

a0 a1 a0 a1 a0 a1
43.1 2.8 1.2 19.3 4.6

..

Table 3.1: Random movement by the molecular walker from Fig. 3.1 is simulated using the
stochastic simulation algorithm (Def. 3.1.12). Top: For five independently simulated trajectories,
the order in which the walker visits each location (state) is listed, as are the waiting times in
each location. Bottom: The walker, given the simulated trajectory ω1, bounces back and forth
between location a0 and a1. The arrows between the states indicate the waiting time, in seconds,
at each location.

based on a discrete-time Markov chain (DTMC) is appropriate. The notion of DTMCs arises

naturally in the analysis of CTMCs and many other settings.

Definition 3.1.5 (Discrete-time Markov chain (DTMC)). A DTMC is a tuple D = (S, τ0,P, L)

where S is a countable set of states, τ0 : S → [0, 1] is the initial state distribution where∑
s∈S τ0(s) = 1, P : S × S → [0, 1] is the transition matrix such that

∑
s′∈S P(s, s′) = 1

and L : S → 2AP is a labelling function for a set of atomic propositions AP . During each time

step the process moves from state s to s′ with probability P(s, s′).

3.1.1 Uniformisation

We now derive the method of uniformisation, a frequently used method in probabilistic model

checking. Uniformisation is a method of numerical integration, and other approaches, such as

Runge-Kutta methods, can be used instead. However, uniformisation compares favorably to

Runge-Kutta (RKF45) when a high precision is required [98]. In probabilistic model checking,

a high precision is typically desired, for example, a typical statement resulting from an analysis

would be:

The randomized protocol resolves conflict within 1.0 seconds in at least 99.999% of the cases.

In this case, a low tolerance for error is required. Note that absolute error bounds are straight-

forward to compute for the uniformisation methods. To introduce the method, consider the

following example, where we derive a DTMC model D from a CTMC model C by uniformizing

the transition rates:

Example 3.1.6 (Discrete-time walker). A DTMC model D = (S, τ0,P, L) of the molecular

walker, shown in Fig. 3.3, is derived from the continuous-time version in Fig. 3.1 by copying the
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state space S and initial distribution τ0 = π0 from the CTMC and setting the transition matrix

as

P(s, s′) =


1
qR(s, s′) if s 6= s′

1− 1
q

∑
s′ 6=s R(s, s′) if s = s′

(3.5)

where 1
q = 2. Generating a DTMC in this way is called uniformisation: it is equivalent to

adding a self-loop in each state s of the CTMC such that the exit rate is given as E(s) = q

and constructing the DTMC as P(s, s′) = 1
qR(s, s′). The uniformised DTMC retains the correct

ratio of transition probabilities in each state: the probability of visiting states in a given order is

equal between the DTMC and the CTMC.

We can now describe the vector of state probabilities at time t, which we denote by πt, as

the solution to a linear ordinary differential equation (ODE):

Definition 3.1.7 (Generating matrix, uniformised matrix and the uniformisation rate). For

a CTMC C = (S, π0,R, L), let E be a S × S diagonal matrix such that E(si, si) = E(si) =∑
s′∈S R(si, s

′). The generating matrix Q is given by Q = R−E. Then the vector πt : S → [0, 1]

of the state probabilities at time t is given by dπt
dt = πtQ (linear ODE) and initial condition π0

at t = 0. The uniformised matrix is given as P = I + 1
qQ, where q ≥ maxs{E(s) −R(s, s)} is

called the uniformisation rate.

Given a CTMC C there are many methods of solving the differential equation of Def. 3.1.7

for πt, the vector of state-probabilities at time t. We now describe the uniformisation method,

which derives the transient probabilities πt seemingly straightforwardly by power expansion [99]:

πt = π0e
Qt

= π0Σ∞i=0(Qt)i/i! (3.6)

Matrix Q, however, contains both positive and negative entries. In practice, the transformation

Q = qP− qI is used to rewrite Eq. 3.6:

πt = π0e
(qP−qI)t (3.7)

= π0e
−qteqtP (3.8)

= π0e
−qtΣ∞i=0(qtP)i/i! (3.9)

= π0Σ∞i=0e
−qt (qt)

i

i!
Pi (3.10)

The form of Eq. 3.10 is referred to as standard uniformisation [99, 100, 98]. As matrix P is a
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0 1 2 3 . . .
q0 q1 q2 q3

Figure 3.2: Birth process. The waiting time before the i-th jump (i ≥ 0) is exponentially
distributed with rate qi.

stochastic matrix and contains only non-negative values, this approach is favoured over the form

of Eq. 3.6 for enhanced numerical stability. The full form of standard uniformisation is derived

from Eq. 3.10 by recognizing the term for Poisson probabilities. We now define the Poisson

process, itself a special type of (pure) birth process.

Definition 3.1.8 (Birth process). The birth process is a CTMC where each state S = {0, 1, 2 . . .}

enumerates the number of occurred transitions, as depicted in Fig. 3.2. The process starts from

zero, π0(0) = 1, and the delay between each transition is exponentially distributed with rate

qi ∈ R≥0 for i non-negative integer, that is

R(i, j) =

qi if j = i+ 1

0 otherwise.
(3.11)

Definition 3.1.9 (Poisson process). The Poisson process is a birth process where the delay

between each transition is exponentially distributed with equal rate, so that ∀i : qi = q, q ∈ R≥0.

The probability to be in state i by time t is given by γi,qt = e−qt (qt)i

i! .

Definition 3.1.10 (Standard uniformisation (also: Jensen’s method, randomisation)). The

transient state probabilities by time t are obtained by standard uniformisation as a sum of state

distributions after i discrete-stochastic steps, weighted by the probability of observing i jumps in

a Poisson process. The approximation π̂t and the transient probabilities πt are given as

πt =
∞∑
i=0

γi,qtτi (3.12)

π̂t =

kε∑
i=0

γi,qtτi (3.13)

where the discrete-time probabilities are given as τi = π0P
i, γi,qt = e−qt (qt)i

i! denotes the i-

th Poisson probability for a process with parameter qt, and kε satisfies the convergence bound∑kε
0 γi,qt ≥ 1 − ε for fixed ε > 0. The Poisson terms and summation bound are computed

efficiently using an algorithm due to Fox and Glynn [101].

Example 3.1.11 (Transient probabilities for the molecular walker). We graphically show the
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uniformisation method applied to the example of the molecular walker. We compute π20, the

vector of probabilities for the walker to be in each location at time t = 20 using the uniformisation

rate q = 1
2 . The derived DTMC D = (S, τ0,P, L) and initial discrete distribution τ0 = π0 are

depicted in Fig. 3.3. The discrete time process evolves as τi = τi−1P for i > 0 and π20 is found

according to Definition 3.1.10 (dashed box, Fig. 3.3).

Numerical solvers such as Runge-Kutta schemes are also suitable to integrate the differential

equation dπt
dt = πtQ, although uniformisation is preferred for its increased performance when

a higher accuracy is desired [98]. In either case the computational complexity scales linearly

in the size of S. The state space S itself potentially suffers from the problem of state space

explosion, that is, the combinatorial blow up that occurs when the state space is exhaustive over

many variables. Due to state space explosion, the cost of solving the differential equation can

be prohibitive, and the solution vector πt itself may not fit in main memory, let alone permit

operations.

The stochastic simulation algorithm (SSA) enables the simulation of the Markov process and

does not require each state in S to be stored in memory. The SSA provides an estimate to πt,

rather than an arbitrarily precise solution, and is attributed to Gillespie, who proposed it in the

context of chemical reaction networks [102].

Definition 3.1.12 (Stochastic simulation algorithm). A path ω starting in π0 at time t = 0

in CTMC (S, π0,R, L) is simulated until time T . Assume the current time is t < T and the

current state is si. A single iteration of the algorithm is as follows:

1) Compute the exit rate E(si) =
∑

j R(si, sj) and generate independent standard uniform

random variables U1, U2 ∼ U(0, 1).

If E(si) = 0, terminate the algorithm. Otherwise, the waiting time is given by ti =

−1
E(si)

logU1.

2) If t + ti > T , terminate the algorithm. Otherwise, increment t by ti and select the next

state:

Let k = minn
∑n

j=0 R(si, sj) ≥ U2E(s). Move to state sk.

Some CTMCs can trigger an infinite number of transitions in only finite amount of time

with non-zero probability, which is called Zeno behaviour. A sufficient condition against this

behaviour is the assumption of bounded transition rates, i.e.
∑

s′∈S R(s, s′) is convergent ∀s ∈

S [97]. The CTMCs that we discuss in this thesis do not exhibit Zeno behaviour. Inhomogeneous

CTMCs are CTMCs for which the rate matrix R depends on some parameter, and we discuss

the time-inhomogeneous variant.
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DTMC:

1.0 0.0 0.0 0.0τ0 =

γ0,10 = 4.6× 10−5

0.8 0.2 0.0 0.0τ1 =

γ1,10 = 4.5× 10−4

0.68 0.316 0.004 0.0τ2 =

γ2,10 = 0.0023

0.607 0.383 0.009 0.002τ3 =

γ3,10 = 0.0076

0.485 0.446 0.020 0.049
∑∞

i=0 γi,10τi =

Figure 3.3: Discrete-time Markov chain model of the molecular walker (Fig. 3.1) obtained
through uniformisation (q = 1

2) and the discrete transient probability distribution τi of the
DTMC model at iteration i = 0, 1, 2, 3. Dashed: The transient probabilities πt for the CTMC
at time t = 20 are obtained via uniformisation as π20 =

∑∞
i=0 γi,10τi where γ are Poisson

probabilities.
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Definition 3.1.13 (Inhomogeneous continuous-time Markov chain (ICTMC)). An inhomoge-

neous continuous-time Markov chain (ICTMC) is a tuple (S, π0,Rt, L) where S is a set of states,

Rt : S × S × R≥0 → R≥0 is a transition rate matrix and L : S → 2AP a labelling function that

maps each state s ∈ S to a set of atomic propositions (AP). Although similar to the CTMC of

Def. 3.1.1, Rt is now time dependent. The exit rate is given by Et(s) =
∑

s′∈S Rt(s, s
′). The

probability to remain for at least time t ∈ R≥0 in state s is equal to e−
∫ t
0 Eu(s)du. The probability

of moving to a state s′ ∈ S given a transition at time t is equal to
∫ t
0 Ru(s,s′)du∫ t
0 Eu(s,s′)du

.

Provided the rate matrix is piecewise constant over a finite interval [0, T ] ⊂ R, i.e. Rt = Rtk

for all t ∈ [tk, tk+1) where tk < tk+1 and [0, T ] = ∪nk=0[tk, tk+1], the transient probabilities are

obtained in a piecewise fashion by solving a homogeneous CTMC by standard uniformisation

with rate matrix Rtk on each interval (Lemma 5.1.2, also Theorem 1 in [103]). Any ICTMC

can be made piecewise constant by fixing rates for a set amount of time, thus approximating

the original ICTMC to some degree. It should be noted that other numerical integration tech-

niques, such as Runge-Kutta schemes, allow the direct computation of transient probabilities for

inhomogeneous rates: no piecewise approximation is necessary. Uniformisation can be adapted

to enable the analysis of inhomogeneous CTMCs [104]. In this thesis, stochastic simulation

is the preferred method of analysis for inhomogeneous CTMCs (which we use to model the

self-assembly of DNA origami in Chapter 6 and Chapter 7).

3.2 Continuous stochastic logic

The prevalent logic to describe properties for CTMC models is that of Continuous Stochastic

Logic (CSL), an extension of Computation Tree Logic (CTL) [105]. CSL enables three types of

property model checking, which we summarise as:

• Time-bounded properties that reason about behaviour up until a time T . For example,

P=?[A U[0,T ]B] is equal to the probability of B becoming true before or at time T , while A

is true until B is true. Also see Fig 3.4.

• Time-unbounded properties that reason about unbounded behaviour. For example, P=?[F(A∧

B)], which is equal to the probability of eventually being in a state where A and B are

true.

• Properties that reason about steady-state behaviour. For example, S≤0.2[P≥0.9[F[0,T ]A]]

specifies that in the steady-state, the probability of satisfying the inner property, P≥0.9[F[0,T ]A],

is less than 20%. The inner property specifies that the probability of reaching a state where

A holds true within T time unit is at least 90%.

In this thesis, we only consider time-bounded properties, i.e., we are interested in how quickly
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the walker reaches a final anchorage or how fast the DNA origami assembles. We now recall the

standard definition of CSL (also see [105]):

Definition 3.2.1 (Continuous Stochastic Logic (CSL)). The syntax of time-bounded CSL is as

follows:

Φ := true | a | ¬Φ | Φ ∧ Φ | P∼p[φ] (3.14)

φ := X Φ| Φ UI Φ (3.15)

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, I is a finite interval of R≥0 and p ∈ [0, 1]

is the probability threshold. P∼p is the probabilistic operator and φ is a path formula. Given a

CTMC (S, π0,R, L) and a state s ∈ S, the relation s |= Φ is defined as:

s |= true ∀s ∈ S (3.16)

s |=a ⇔ a ∈ L(s) (3.17)

s |=¬Φ ⇔ s 6|= Φ (3.18)

s |=Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2 (3.19)

s |= P∼p[φ] ⇔ P ( ω |= φ |ω ∈ Path(s) ) ∼ p (3.20)

where the path formula is expanded as

ω |=XΦ ⇔ ω(1) is defined and ω(1) |= Φ (3.21)

ω |= Φ1 UI Φ2 ⇔ ∃t ∈ I s.t. [ω@t |= Φ2 ∧ ∀r ∈ [0, t) : ω(r) |= Φ1)] (3.22)

A distribution π : S → [0, 1] is said to satisfy a CSL state formula π |= P∼p[ψ] by fair weighting

of the satisfaction probability:

π |= P∼p[ψ]⇔

(∑
s∈S

π(s)P ( ω |= φ |ω ∈ Path(s) )

)
∼ p (3.23)

In addition, ∼ p can be replaced by =?, indicating the probability of satisfaction, instead of

satisfiability. Additional abbreviated notation is listed in Table 3.2. We now give examples of

time-bounded CSL properties.

• The time-bounded until property : P=?[A U[0,t] B]. The probability of B becomes true by

time t and A is true until B becomes true.

• A nested property: P≥0.9[A U[0,t] P≥0.8[B U[0,t] C]]. Let Snested be the set of states for which

the probability of satisfying B before eventually satisfying C within t time units is at least
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80%. Then this property describes that the probability of satisfying A before eventually

reaching a state in Snested within t time units is at least 90%.

The problem definition of CSL model checking for CTMCs is as follows.

Definition 3.2.2 (CSL model checking). Given a CSL specification Φ, CTMC C, and state

s ∈ S, decide if the Markov process starting in s satisfies Φ, that is

s |= Φ (3.24)

Model checking a time-bounded CSL formula is in practice reduced to time-bounded reach-

ability of a set of target states [97], and we offer a description for the property P=?[A U[0,t] B],

also illustrated in Fig. 3.4.

Example 3.2.3 (Time-bounded CSL model checking). Given the property

P=?[A U[0,t] B] (3.25)

and CTMC C = (S, π0,R, L), denote the derived CTMC C′ = (S′, π0,R
′, L) by modifying the

state space S and transition matrix R in the original CTMC C. The set of target states T is

given by the states that satisfy B; define T = {s |= B}, and to satisfy the property the process

must reach a state in T by time t. In the modified CTMC, all outgoing transitions are removed

from the set of target states, e.g., ∀s ∈ T : R′(s, s′) = 0. Then in the set of remaining states S\T

the transitions from states satisfying A into states that satisfy ¬A are replaced by a transition

into a new deadlock state, sDEADLOCK. All transitions from states s ∈ S \ T that do not satisfy

A are removed from the model. Summarizing, for states s, s′ ∈ S

R′(s, s′) =

R(s, s′) if s |= A ∧ s′ |= (A ∨B)

0 otherwise
(3.26)

R′(s, sDEADLOCK) =


∑

s′ 6|=(A∨B) R(s, s′) if s ∈ S \ T

0 if s ∈ T
(3.27)

Then the probability of satisfying A U[0,t] B is equal to the probability of reaching the set of target

states T by time t in the modified CTMC C′ for S′ = S ∪ {sDEADLOCK}, that is:

P=?[A U[0,t] B] =
∑
s∈T

πt(s) (3.28)

where πt is the state probability distribution at time t in C′.
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Figure 3.4: Graphical representation of time-bounded probabilistic model checking. a) States
in the CTMC are labelled with atomic propositions A and B. Two paths, each starting in the
initial state s0 (bottom left) eventually reach the state labeled with ‘B’ within T time units.
Paths over the Markov chain that do not leave states labelled with ‘A’ until they reach a state
labelled with ‘B’ within T time units, satisfy the CSL path property A U≤TB. In this case, the
blue path satisfies the property, but the red path does not. b) To compute the probability of a
path satisfying A U≤TB, the model checking algorithm redirects all edges from states satisfying
A into states that do not satisfy A into the sinkstate ‘S’. All states not labelled A and B
are then removed from the model, with the exception of the sink state. c) Integration the
probability density over the ODE specified by the modified CTMC up until time T , given the
initial condition of πt=0(s0) = 1.0, shows that 25% of the paths satisfy the path-property, so
that P=?[A U≤TB] = 0.25.
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Name Shorthand CSL formula

Logical or φ1 ∨ φ2 ¬(¬φ1 ∧ ¬φ2)

Future F≤Tφ true U[0,T ] φ

Instantaneous FTφ true U[T,T ] φ

Until φ1 U≤Tφ2 φ1 U[0,T ] φ2

Table 3.2: Shorthand CSL notation.

Nested formulas, for example when A or B in Ex. 3.2.3 is of the form P∼p[φ], require an

additional analysis step to determine which states satisfy the inner property.

The transient probabilities can be obtained in one of two ways: either via numerical computa-

tion, which we call exhaustive model checking, or stochastic simulation, which we call statistical

model checking. Exhaustive model checking of time-bounded CSL properties relies on uniformi-

sation and using this method precise answers can be computed: for example, we might compute

the probability of deadlock for a DNA walker to a precision that vastly exceeds the uncertainty

in the model parameters. For statistical model checking, which relies on generating a large

number of simulations and checking each against the property, the model size is not a limiting

factor, but precision is decreased. In particular the probability of rare events is hard to estimate

reliably based on stochastic simulation.

Property specification for CTMCs, including the use of sink-states, was a known technique

well before the formulation of CSL [98]. We emphasize the benefits of an automated procedure

of probabilistic model checking, that is, transitions are not manually set each time a property is

analysed but rather the model is stored in a software tool (such as PRISM) that enables CSL

model checking. Automated model checking reduces the chance of operator error and enables

the integration of model checking in other automated systems. It also enables model checking of

probabilistic systems that would be too laborious to perform by hand. PRISM [106] supports

both exhaustive model checking (uniformisation) and statistical model checking for CSL.

A CTMC can be augmented with a reward structure, which is an additional annotation to

its states and transitions. Formally, a reward structure for a CTMC is a pair (ρ, ι) given by

• ρ : S → R≥0 is the state reward function;

• ι : S × S → R≥0 is the transition reward function.

We now extend the CSL definition with reward properties, and give two examples. PRISM

[106] supports CSL reward operators.

Definition 3.2.4 (Continuous Stochastic Logic with rewards). For CTMCs extended with a

reward structure (ρ, ι) the cumulative reward and instantaneous reward operators [107, 96] are
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given as:

R∼r[C
≤t] | R∼r[I

=t] (3.29)

where r ∈ R≥0 is a rewards threshold, t ∈ R≥0 is a time bound and ∼∈ {<,≤,≥, >}. Give a

state s ∈ S the satisfaction relation is defined by:

s |= R∼r[I
=t] ⇔ Es[XI=t ] ∼ r (3.30)

s |= R∼r[C
≤t] ⇔ Es[XC≤t ] ∼ r (3.31)

where the instantaneous and cumulative rewards are given by the random variables XI=t and

XC≤t, and their expectation E are computed as follows

Es[XI=t ] = E[ρ(ω@t)) |ω ∈ Path(s)] (3.32)

Es[XC≤t ] = E

jt−1∑
j=0

(tjρ(sj) + ι(sj , sj+1)) +

t− jt−1∑
j=0

tj

 · ρ(sjt)

∣∣∣∣∣∣ω ∈ Path(s)

 (3.33)

for jt = minj
∑j

i=0 ti ≥ t. Additionally, ∼ r can be replaced by =? (as opposed to the Boolean

valuation of the reward value meeting ∼ r). A state distribution π : S → [0, 1] is defined to

satisfy the reward operator R∼r by fair weighting of each state:

π |= R∼r[φ]⇔

(∑
s∈S

π(s)Es[φ]

)
∼ r (3.34)

for φ ∈ {I=t, C≤t}.

In Fig 3.5 a simple CTMC model is annotated with transition rewards. We now give two

more examples of reward properties.

Example 3.2.5 (Cumulative reward property). Consider the expected cumulative reward by

time t

R=?[C≤t] (3.35)

for any CTMC C with the set of atomic propositions AP = {actionable} and the state reward

function ρ

ρ(s) =

1 if actionable ∈ L(s)

0 if actionable /∈ L(s)
(3.36)
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R=? [C
≤t] = 5

R=? [C
≤t] = 8

Figure 3.5: Graphical representation of a reward property R=?[C≤T]. In this CTMC, some
transitions are labelled with transition rewards. The rewards accumulated by the blue path sum
to 5, the rewards accumulated by the red path sum to 8. The CSL reward property R=?[C≤T]
is equal to the expected reward accumulated within T time units for all paths starting in the
initial state.
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and transition reward ι zero for all transitions. Then R=?[C≤t] is equal to the expected time spent

in actionable states until time t. Through uniformisation the value is given by [108]:

R=?[C≤t] =
∑
s∈S

1

q

∞∑
i=0

ρ(s)τ i(s)

∞∑
n=i+1

γn,qt (3.37)

where q is the uniformisation constant and τi, γn,qt the discrete transient vector and Poisson

probabilities from Def. 3.1.10.

Example 3.2.6 (Instantaneous reward property). Consider the expected instantaneous reward

at time t

R=?[I=t] (3.38)

for the CTMC and reward structure in Ex. 3.2.5. Then R=?[I=t] is equal to the probability to be

in an actionable state at time t. The value is given by

R=?[I=t] =
∑
s∈S

ρ(s)πt(s) (3.39)

where πt is the vector of state probabilities at time t.

3.3 Literature review

We summarise relevant related work in probabilistic model checking.

3.4 Probabilistic and statistical model checking

Formal verification

With the development of computer programming came the desire to verify software to some

degree of correctness. For example, a program is ‘safe’ if no execution of the program causes

failure, and the program displays ‘liveliness’ (now known as liveness) if the program eventually

returns the desired output [109]. Such properties are especially difficult to prove for concurrent

programs, where separate threads operate on memory in an unspecified order. Early on, the

Floyd-Hoare logic was developed to reason about correctness of programs. A manual or mechan-

ically constructed proof of correctness based on that, or derived logics, is a typical form of formal

verification, which encompasses any method to construct proof of correct operation of software

or otherwise. Related are the temporal logics used to express correctness (e.g., safety or liveness)

which come in two variants, linear time (e.g., Linear Time Logic [110]) and branching time (e.g.,

Computational Tree Logic [111]). Formal verification has found application in industry, and we
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give two examples. Intel formally verifies parts of processor microcode and other architecture

prior to prototype production, while Microsoft validates driver programs that interface between

devices and the operating system [112, 113].

Model checking was proposed as an automated alternative to proof construction, and ex-

haustively verifies specifications expressed in temporal logics over the program’s state space, an

approach pioneered in [114]. Work by Clarke et al. shows how concurrent systems are model

checked [115], albeit significant issues with scalability remain. A state space explosion occurs

when the system contains many components or variables. Methods that operate on each state

separately become prohibitive when employed, without further refinement, to complex systems.

Clarke et al. then proposed the use of symbolic representation to combat the state-space explo-

sion [116]. This relies on seminal work by Bryant, who developed the modern notion of Binary

Decision Diagrams (BDD) [117], a data structure that represents Boolean functions efficiently

and facilitates the encoding of sets of states as Boolean functions.

An important concept in formal verification is that of counter-examples: to fix the program,

the method should return a description of how the specification is violated, in other words

proving the violation. Related is the method of counter-example guided abstraction refinement

(CEGAR) [118, 119]. In this approach, an attempt is made to verify correctness for an abstract

representation of the program by successive refinements until a counter-example is found.

Probabilistic model checking

Probabilistic model checking aims to answer if a specification, expressed in temporal logic, holds

for a probabilistic program. Early attempts at the verification of probabilistic programs focussed

on verifying that a temporal property holds almost surely (with probability one) over a discrete-

time Markov chain [120, 121]. When a process operates in continuous time, a continuous-time

Markov chain (CTMC) is well suited to modelling it, and we here focus on the development of

probabilistic model checking for continuous-time Markov chains.

The branching time logic CSL was proposed by Aziz et al. [105] to express time-bounded

properties over CTMCs. The logic was subsequently extended to describe steady-state be-

haviour [122] and expected rewards [107]. The contribution of Aziz et al. was to show that

time-bounded CSL properties are decidable. It was later demonstrated that the evaluation of

time-bounded CSL reachability reduces to transient analysis, that is, computation of the prob-

ability to be in each state of the Markov chain at some point in time, starting from initial

conditions [97].

The derivation of transient probabilities for continuous-time Markov chains was already

studied for the benefit of operations research and performance modelling, where the application
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of Runge-Kutta (numerical integration) was compared to uniformisation [98, 108]. Because the

computation of transient probability is equivalent to solving a matrix exponential, many methods

apply, and for example Krylov subspace methods were also considered [123]. Uniformisation, a

method developed by Grassman [99], is the preferred method for its easily derived error bounds

and relatively stable performance on non-stiff models [108], while stiff models may still benefit

from implicit integration schemes [98].

To combat the problem of state-space explosion various symbolic and explicit approaches

have been suggested. The sliding window method is a non-symbolic method developed by Hen-

zinger et al., which works by only keeping a ‘window’, a subset of states, in main memory.

The main idea is that the vast majority of states are unlikely to be visited by the Markov

process, and a good approximation results when these states are dropped from the model. As

the time evolves, the probability of visiting certain sets of states may increase and decrease for

other sets of states, and the use of a sliding window is proposed to accommodate this. The

fast adaptive uniformisation method (FAU, [124]) is similar but discards/loads states individ-

ually, instead of groups of states, and is based on adaptive uniformisation, a generalisation of

uniformisation that allows an adaptive time step [125]. The symbolic approach (BDD-based)

was applied to probabilistic model checking and works especially well when the state space is

regular to some degree [122]. Using this method, CTMCs with over 33 million states were model

checked [126]. Hybrid methods have been proposed since, combining explicit state and BDD

representation [127].

A second method of probabilistic model checking is statistical probabilistic model checking,

which generates random traces from the Markov chain, and bypasses the state-space explosion

problem. Here the transient probabilities are estimated using Monte Carlo methods, as opposed

to uniformisation. Traces are simulated using the stochastic simulation algorithm described

by Gillespie [102] (also Def. 3.1.12), and each random trace is checked whether it meets the

specification. Afterwards, the estimated satisfaction probability and a confidence interval are

constructed as is usual in statistics ([128, 129], also see preliminaries in [130]). For example,

take a CSL property in the form of P≤c[φ]. After simulating a number of traces, the probability

of satisfying the CSL path formula φ is estimated to lie within a region (a, b) given a pre-

set confidence level α. PRISM also supports methods that continue to simulate traces until

the satisfiability of a CSL property can be decided, in other words, in this mode PRISM will

continue to simulate until the bounds (a, b) are narrow enough to exclude c. This mode is based

on Wald’s sequential probability ratio test [128].
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Probabilistic model checking software

The PRISM probabilistic model checking tool [106] supports automatic verification of discrete-

time Markov chains and continuous-time Markov chains in addition to three other model types,

and accepts models created in the PRISM modelling language as well as the Systems Biology

Markup Language (SBML). Symbolic or explicit data structures can be used to verify CSL or

PCTL properties. PRISM was used to verify part of the Bluetooth and Firewire communication

protocols, which contain probabilistic elements [131, 132], in addition to case studies of cellular

signalling pathways (FGF and MAPK) [133, 134].

PRISM supports four analysis engines in addition to the simulation mode [135]: the purpose

of all these engines is to check satisfiability of CSL formulas over Markov chains. The analysis

engines all employ standard uniformisation and differ only in the internal representation of the

state-space. Two of the engines are based on symbolic methods, and rely on Binary Decision

Diagrams (BDDs) or Multi Terminal Binary Decision Diagrams (MTBDDs), and we list all four

here:

• The sparse engine relies on symbolic representation and uses sparse matrices.

• The MTBDD engine wholly relies on MTBDD and BDD representation.

• The hybrid engine combines elements from the sparse and MTBDD engines.

• The explicit engine represents states and rates in an explicit (non-symbolic) fashion.

Owing to the non-symbolic representation, the explicit engine is easier to extend and modify,

and this is the engine that we use to implement the methods described in Chapter 5. Symbolic

engines perform well when the state space has a repetitive or regular structure.

Other examples of probabilistic model checking software are MRMC [136], MARCIE [137],

the Bio-PEPA project [138], COSMOS [139] and SHAVE [140]: this list is non-exhaustive.

Different tools have different aims: COSMOS accept models in the form of Petri nets and

specifications in the form of (generalized) Deterministic Timed Automata (DTA), where we note

that PRISM also accepts DTAs. MARCIE is a tool for the analysis of Petri nets. SHAVE is a

tool for chemical reaction networks that combines discrete stochastic and continuous stochastic

representations.

In this thesis, all development and prototyping related to probabilistic model checking was

done in PRISM. Because PRISM is developed at the University of Birmingham and the Uni-

versity of Oxford, excellent developer support was available.
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Chapter 4

Computation with DNA walkers

Logic gates based on DNA strand displacement (see Section 2.3) were recently created and

used to implement small logic circuits, such as an artificial neural network, a 4-bit square root

computer and an approximate majority consensus algorithm [11, 12, 16, 17]. In this approach,

each gate is a complex of DNA strands and the gates communicate via, and operate on, signal

strands, which results in a massively parallel execution: billions of copies of each gate consume

and produce similar amounts of signal strands during operation. To create larger circuits,

multiple gates are combined in a single solution. An improvement over this approach is proposed

in the form of localized environments that each contain a single copy of each gate and where

each localized system executes in isolation from others. It might be possible, for example, to

prepare origami tiles with a single copy of each gate tethered to it, so that the gates are in close

vicinity of one another [11, 141, 142]. The advantage of the local approach is twofold:

• Diffusion of signal strands is no longer required when the communicating gates are in the

same location. This leads to faster operation.

• The collection of gates operates in isolation, preventing unintended cross-talk that might

lead to faulty behaviour. In the case of gates tethered to a origami tile, this can be achieved

by fixating the tiles onto a surface.

A drawback to the local approach is the propagation of error: the operation of the entire localized

unit is compromised when a single gate fails.

In this light we investigate artificial molecular walkers, made from DNA, for their applica-

bility as localized computational device. DNA walkers are man-made molecular motors that

mimic the functionality of proteins that traverse microtubules within the cell, such as kinesin

and dynein. Many different systems have been proposed [46, 43, 47, 48, 49, 50] but we study

the DNA walker developed by Wickham et al. [44, 45], which is attractive for its innovative

method to direct the walker along junctions in the track. We develop a stochastic model based
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Figure 4.1: From [4]. (1) The walker strand carries a quencher (Q) that will quench fluorophores
(F) when nearby. After experimental preparation, the walker is attached to the initial anchorage
and blocking strands are present on designated blocking anchorages. Selected anchorages that
are initially blocked can become unblocked by adding complementary unblocking strands. In
this case, unblocking strands are added for the blocked anchorages that are labelled by ¬X. (2)
Once a nicking enzyme (E) is added, it can attach to the walker-anchorage complex and cut the
anchorage. The anchorage top melts away from the walker, exposing 6 nucleotides as a toehold.
(3) The exposed toehold becomes attached to the next anchorage. (4) In a displacement reaction,
the walker migrates to the new anchorage. The stepping is energetically favourable, because it
re-forms the base pairs that were lost after the previous anchorage was cut. (5) Repeating
this process, the walker arrives at a junction. The walker continues down the unblocked track,
eventually reaching the final anchorage and quenching the fluorophore

on existing experimental work and demonstrate the merit of probabilistic model checking to

analyse their reliability, performance and correctness, and propose design principles for walker

circuits that reduce leakage. The developed model and the associated PRISM files appear in a

case study for the PRISM project [1], highlighting both the DNA walker model and the merits

of the fast adaptive uniformisation method that is covered in Section 5.1.

The chapter is organised as follows. In Section 4.1 we describe the walker and discuss its

computational applicability. A probabilistic model of the walker is developed in Section 4.2. In

Section 4.3 we investigate the performance of the walker and identify leakage rates that can lead

to failure. In Section 4.4 we state design principles for DNA walker circuits that optimise its

behaviour. We summarize the chapter in Section 4.5.

This chapter is derived from published work [3, 4].

4.1 A man-made molecular motor

In this design the walker consists of a single strand of DNA that traverses a series of strands

(anchorages) tethered to a DNA origami tile, and as a result the relative positioning of anchorages
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is restricted to triangular lattice. The walker is complementary to the anchorages and steps

from one anchorage to the next via toehold mediated strand displacement (also see Fig. 4.1).

When the walker steps onto a new anchorage, a nicking enzyme eventually attaches to the

walker-anchorage duplex and nicks the anchorage, re-exposing the toehold domain on the walker.

This mechanism prevents the walker from moving onto previously visited anchorages: nicked

anchorages no longer contain the toehold domain that is required to initiate stepping. Some

anchorages include deliberate nucleotide mismatches, which prevents the enzyme from nicking.

Consequently the walker does not step away from these anchorages, and we refer to these as

absorbing or final anchorages.

After experimental preparation, all anchorages are unblocked, that is, they are hybridized

to the origami and no other strand, with the exception of designated blocking anchorages that

are initially occupied by a blocking strand. Blocking strands are addressed by means of distinct

toehold sequences: anchorages are selectively unblocked by adding strands complementary to

blocking strands (also Fig. 4.1). By using programmable anchorages at track junctions, Wickham

et al. [45] demonstrate that a walker can be directed to any leaf in a complete two-level binary

tree using input strands that unblock the intended path.

Computational circuits

We now discuss a method to encode Boolean formulas as walker circuits. In this approach,

a circuit is initially prepared and the computation starts when input and the nicking enzyme

are added. At the end of the computation, the circuit can return a true or false signal.

Computations that do not result in any signal are said to be incomplete. Executions that never

return a signal, no matter how long we wait, are said to be deadlocked.

A track is a set of anchorages along a line, as in Fig. 4.4 (see ’full track’), and a circuit is

a set of tracks that contain initially blocked junctions. Each prepared circuit contains a single

walker-anchorage complex: this anchorage is the initial position of the walker. In this chapter we

discuss, in addition to others, a circuit with double junctions (Fig. 4.2). The last anchorage of a

track that does not lead onto a junction is called a final anchorage, and is made absorbing: once

the walker steps onto an absorbing anchorage, it can no longer move. Each absorbing anchorage

is given a truth assignment, so that the output of the circuit is equal to the truth assignment

of the final position of the walker. If the walker does not reach an absorbing anchorage by

the end of the experiment, then the output for that circuit is undefined. If the walker is in a

position where it can no longer move, but has not reached an absorbing anchorage, then we call

the circuit deadlocked. Our model only allows three-way junctions: these were demonstrated to

work in [44, 45].
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Reporting strategy

In the experimental demonstration, the walker carries a quencher (IabRQ) that quenches the

response of fluorophores attached to the absorbing anchorages (see Fig. 4.1). The distance at

which the energy transfer between the fluorophore and quencher is at 50% efficiency, R0, are in

one study [143] measured as R0 = 3.0± 0.6 nm and R0 = 3.0± 0.7 for the fluorophore-quencher

pairs Cy3-IabRQ and TAMRA-IabRQ. Given that average distance between anchorages is ap-

proximately 6.2 nm, we assume that significant quenching is only observed when the walker is

attached to a final anchorage, regardless of which fluorophore is used.

Our intended computational application, the embedding of Boolean formula as walker circuits

(Thm. 4.1.7), results in many final anchorages to appear within a single circuit. A problem arises

when we perform computation with a circuit that contains many final anchorages, because the

walker can quench only one of them. As a result, the signal-to-noise ration is worse for circuits

with many final anchorages. To avoid this problem, we propose an alternative reporting strategy.

One approach is to attach a flourophore to the walker, and to attach quenchers to each

absorbing anchorage that evaluates to true, as in Fig. 4.2. When the computation evaluates to

true, a decrease in signal is observed, while maintaining a high signal-to-noise ratio. However,

when the computation outputs false, no reduction in fluorescence is observed, and we thus

cannot distinguish between a stalled (deadlocked) execution, and a computation that outputs

false.

We propose to use a dual-rail reporting strategy, so that a computation evaluating to true

reduces the signal measured in one circuit, and computations that evaluate to false reduces

the signal measured in another circuit. If the two circuits are prepared so that the fluorophores,

which are attached to the walkers of each circuit, are spectrally distinguishable, then both

circuits could be mixed in a single solution without problem. Our approach is illustrated in

Fig. 4.2. The two circuits have the same topology and design, and differ only in the location of

quenchers and the type of fluorophore attached to the walker.

In the remainder of this work, we assume that additional final anchorages do not prevent a

practical implementation of our circuits, but we avoid discussing the two variants of each circuit.

Computational expressiveness

It is not difficult to see that any Boolean formula can be simulated by a walker circuit: the

truth-assignment for a formula over n variables can be embedded in the form of a binary tree

of depth at most n. In this construction the worst-case number of end-nodes is exponential in

the number of variables (2n). We now discuss an embedding of Boolean formula that requires

an amount of end-nodes that scales only linear with the number of variables. This requires the
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Figure 4.2: Modified from [4]. DNA walker circuits implementing a XOR logic gate. Two sets of
circuits are prepared, which differ only in the fluorophore (which is attached to the walker) and
the positioning of quenchers on the final anchorages. The two types of fluorophores are spectrally
distinguishable, and for convenience they are labelled red and green in this example. In one
circuit quenchers are attached to the end-nodes that indicate true, while in the other circuit,
quenchers are attached to end-nodes that indicate false. Adding strands indicating X = true,
Y = false opens the tracks labelled with X and ¬Y . After adding the nicking enzyme, the
walker moves left on the first junction and right at the second junction in both circuits. The
fluorescence response from green fluorophores drops proportionally to the number of walkers
that reach the end-node, while the red signal remains constant. If the circuit with the green
fluorophore is executed in isolation, then computations evaluating to false are indistinguishable
from stalled executions.
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formula to be in 3-conjunctive normal form (3CNF):

Definition 4.1.1. A 3CNF formula over m clauses and n variables is a Boolean formula F

F = C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cm (4.1)

Ci = Ki ∨ Li ∨Mi (4.2)

where Ki, Li,Mi are literals over the variables, e.g., Ki is a variable or the negation of a variable.

The embedding of a 3-conjunctive normal form (3CNF) formula with m clauses requires only

O(m) many end-nodes, which we prove at the end of this section (Thm. 4.1.7). To see that the

embedding is possible, observe in Fig. 4.8a an embedding of the following 3CNF formula with

n = 9,m = 3:

(X ∨ Y ∨ Z) ∧ (¬R ∨ S ∨ ¬Y ) ∧ (Q ∨ ¬V ∨ Z). (4.3)

The circuit of Fig. 4.8a is composed of three smaller circuits that are connected in series, and

each clause corresponds to one of the smaller circuits.

This embedding is attractive for two reasons:

• Any Boolean formula can be converted into 3CNF, and

• The embedding re-uses the same topological design for each clause (Fig 4.3), meaning that

the optimization of this single circuit improves the performance of every 3CNF embedding.

Also note that the problem of satisfiability of 3CNF is NP-complete [144], meaning that any NP

problem can be embedded as a DNA walker circuit. If some input exists such that the walker

reaches a final anchorage that is labelled true, then the problem is satisfiable. It is unclear at

this stage if randomized search algorithms could be implemented using a molecular computer.

From Section 4.2 onward, we develop a model of walker behaviour and propose design prin-

ciples (Section 4.4) that increase performance. To demonstrate the second point in the above,

we apply the design principles to the smaller circuit, and obtain improved performance on the

composed circuit (Fig. 4.8b). The improved performance is demonstrated in Table 4.4. We now

demonstrate our main result regarding the computational expressiveness of DNA walker circuits.

Definition 4.1.2 (DNA walker circuit). A DNA walker circuit is a touple (V,E,M,L,O) of a

graph (V,E), set of Boolean variables M , a labeling function from the set of edges to a literals

over M while also permitting the empty label ε for unblocked tracks, L : E → (lit(M) ∪ {ε}) and

an output function O. A vertex v ∈ V is either the initial position of the walker v0 ∈ V , a final
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anchorage v ∈ VF or a junction vertex v ∈ VJ , that is,

v0 /∈ VF (4.4)

v0 /∈ VJ (4.5)

VA ∩ VJ = ∅ (4.6)

V = {v0} ∪ VF ∪ VJ (4.7)

Further, the initial vertex and final vertices have one edge, |v0| = 1 and ∀v ∈ vF : |v| = 1, and

junction vertices have three edges, ∀v ∈ VJ : |v| = 3. The output function O : VF → {T, F}

provides a truth assignment for each of the final vertices.

In order to encode Boolean functions as walker circuits, we require that the output of the

DNA walker circuit is deterministic:

Definition 4.1.3 (Span of a DNA walker circuit under a variable assignment). Given a DNA

walker circuit (V,E,M,L,O) and truth assignment of the input variables f : M → {T, F}, the

span is given by the implied graph (V,E′) of unblocked edges, where

e ∈ E′ ⇐⇒ f(L(e)) = T where

f(ε) = T (4.8)

Definition 4.1.4 (Deterministic walker circuit). A DNA walker circuit (V,E,M,L,O) is deter-

ministic if, under any truth assignment of the input variables, only one path between the initial

vertex and any of the final vertices exists. The output of the circuit is equal to the labeling of the

reachable final vertex under the output function O. That is, given a truth assignment over the

input variables M and resulting span (V,E′), the initial vertex v0 and exactly one v ∈ VF are

connected, and any junction v ∈ VJ reachable from the initial vertex v0 has exactly two edges.

We also assume that walker circuits are always planar: although feasible, crossed tracks were

not part of the experimental demonstration [44, 45], and it is not obvious how the performance

of the walker would be impacted, if implemented. We also require circuits to be composable, so

that any two circuits can be put in series by linking the output of one circuit to the input of a

second circuit.

Definition 4.1.5 (Composable walker circuit). A DNA walker circuit (V,E,M,L,O) is com-

posable if there exists a planar embedding of the graph (V,E) such that the initial vertex v0 and

final vertices v ∈ VF are part of the exterior face.
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Figure 4.3: A deterministic and composable DNA walker circuit with three junction vertices
and two final vertices. This circuit encodes the formula X ∨ Y ∨ Z.

Lemma 4.1.6 (Composition of circuits). Let A and B be deterministic and composable circuits

with at least one junction. Let vA be a junction that shares the edge eA with a final anchorage

of A, and let vB be the junction that shares the edge eB with the initial node of B. Then the

circuit obtained by adding an unblocked edge between vA and vB and removing eA and eB is

deterministic and composable.

Figure 4.3 shows a deterministic and composable walker circuit. We now prove the main

result of this section.

Theorem 4.1.7. Given a 3CNF formula with m clauses, there exists a deterministic and com-

posable walker circuit with O(m) final anchorages, where at most one final anchorage outputs

true, so that the output of the circuit corresponds to the valuation of the formula.

Proof by induction. (m=1). The 3CNF formula is of the form X ∨ Y ∨ Z where X,Y, Z are

literals over the set of variables. There exists a deterministic and composable walker circuit

with one final achorage that outputs true, and implements X ∨ Y ∨ Z, see Fig. 4.3. We now

assume the theorem holds for m, and demonstrate it holds for m+ 1.

Without loss of generality, the formula is of the form F ∧ (X ∨ Y ∨Z) where F is an 3CNF

formula consisting m clauses and X,Y, Z are literals. By the induction hypothesis there exists

a deterministic and composable walker circuit C with at most one final anchorage that outputs

true, that implements F and has O(m) many final vertices. If the circuit does not have an final

vertex that maps to true under output function O, then the formula is trivial. Now assume the

circuit contains a final anchorage that outputs true.

By Fig. 4.3 there exists a deterministic and composable walker circuit D with one final

anchorage that outputs true, and implements (X ∨ Y ∨ Z). Let E be the circuit composed of

C and D, obtained by linking the true output of C with the input of D using the construction
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Full track No anchorage 7 No anchorage 4 No anchorage 4 or 5

Figure 4.4: Adapted from [3, 4]. Top: A small track of 8 anchorages with fluorophores
on both the second and last anchorage. Right: Normalized fluorophore response (reproduced
with permission from the authors [44]). The walker hardly reaches the final anchorage when
anchorage 7 is removed, due to the double penalty of a longer final step and the mismatch in
the final anchorage. Left: The fluorophore luminosity in the model, evaluated at T = 0, 1, 2, ..
using standard uniformisation and default settings for PRISM’s hybrid engine. Dotted lines:
Alternative model where the walker can step onto already-cut anchorages with a reduced rate.

of Lemma 4.1.6, then E is deterministic and composable. Then E has one output evaluating to

true, encodes F ∧ (X ∨ Y ∨ Z), and has O(m) number of final vertices.

4.2 Probabilistic model of walker behaviour

We now take into account various modes of error that affect the walker and develop a CTMC

model of the stepping behaviour of the walker. The model is based on previous DNA walker

experiments and a known estimate for the stepping speed of the walker [43, 44, 45]. The

predictions of the model match control experiments from [44] qualitatively (Fig. 4.4). To model

branched circuits we additionally allow a failure rate for blockades, which we also describe in

this section. The blockade failure rate is fitted to measurements on the single junction circuit

(see Fig. 4.5a), and to test the quality of the model, we compare the model predictions for the

double-junction circuit (see Fig. 4.5c) with the experimental measurements.

In the model, each transition corresponds to the walker changing its location from one
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anchorage to the next, skipping over any intermediate steps (Fig. 4.1). We assume non-zero

rates for the walker to step onto any intact anchorage within 24 nm distance. This range

was chosen by considering the length of an unoccupied anchorage and the length of a walker-

anchorage complex, estimated around 15 nm and 11 nm, respectively. The experiment in Fig. 4.4

demonstrates that the walker is capable of stepping across 19 nm gaps, suggesting the maximum

interaction range should be at least this distance.

Assume the stepping rate k depends on distance d between anchorages and some base step-

ping rate ks. Denote by da = 6.2 nm the average distance between anchorages in the experiment

shown in Fig. 4.4 and let dM = 24 nm be the maximal interaction distance. Based on estimates

in the experimental work [44, 45], we approximate the stepping rate k as

k =



ks = 0.009 s−1 when d ≤ 1.5da

ks/50 when 1.5da < d ≤ 2.5da

ks/100 when 2.5da < d ≤ dM

0 otherwise.

(4.9)

where ks is the stepping rate of the walker between regularly spaced anchorages, and ks/50

and ks/100 are the reduced stepping rates when the anchorages are at double or triple the

normal distance, respectively (see top of Fig. 4.4). These rates define a sphere of reach around

the walker-anchorage complex, allowing the walker to step onto an uncut anchorage when it is

nearby. Because our model assumes a flat surface, this effectively acts as an radius of interaction,

and in Fig. 4.5b this radius is depicted to scale with walker circuits.

We allow two exceptions to the stepping rate, described below.

• Because the complementary domain between the walker and the initial anchorage is two

bases longer than usual, the movement is initially slowed down. The stepping rate is

reported to be 3× as slow: this is incorporated in the model.

• Absorbing anchorages include a mismatched base, preventing enzymatic activity, but this

modification also makes it harder for the walker to attach. Based on the experimental

data of Fig. 4.4, we fit a tenfold reduction for the stepping rate using the measurements

of the ’no S7’ circuit of Fig. 4.4. In that circuit, the jump from the pre-final to the final

anchorage occurs at a rate of ks/500 where we multiplicatively apply the penalty of double

distance and the mismatch (1/50× 1/10).

In addition, we deliberately omit three types of known interactions from the model.

• A rate of ks/5000 is reported for transfer of the walker between tracks on separate origami

tiles [44]. We conjecture that binding the tiles to a surface eliminates this transfer alto-
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Figure 4.5: Adapted from [3, 4]. Circuit layout for single-junction (a) and double-junction (c,d)
decision circuits. Circuit (d) is an improved version of circuit (c). ‘Initial’ indicates the initial
anchorage, ‘Final’ indicates absorbing anchorages, and letters indicate blocked anchorages. b)
Coloured circles indicate the range of interaction of the walker to scale. The red dotted line
indicates a leakage transition.

gether.

• The walker can move between intact anchorages, with a rate of approximately ks/13 [44].

We assume the enzyme nicks the intact anchorage quickly, and as a result the walker spends

relatively little time attached to non-nicked anchorages. In the model, the anchorage

becomes nicked as soon as the walker steps onto it.

• The walker is known to step backward onto cut anchorages. This requires a blunt-end

strand-displacement reaction which is known to be slow relative to toehold-mediated dis-

placement [82]. A variant of the model with a backward rate kb = k/500 is shown in

dotted lines in Fig. 4.4 (Left). In this case the model predicts significant quenching of

fluorophore F2 at late times by walkers whose forward motion is obstructed by omission

of one or more anchorages: this does not match experimental data.

The time-dependent responses of fluorescent probes F2 and F8 shown in Fig. 4.4 are pre-

dicted by the CTMC model using the above rate parameters without any further fitting: the

model qualitatively matches the data. One discrepancy is stands out, in the model the eventual
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Property Formula Description

Finishes P=?[FT finished ] The probability for the walker to quench
any fluorophore.

Finished-
correct

P=?[FT finished-correct ] The probability for the walker to quench
the correct fluorophore.

Finished-
incorrect

P=?[FT finished-incorrect ] The probability for the walker to quench
the incorrect fluorophore.

Correct P=?[FT finished-correct ]

P=?[FT finished
The probability for the walker to return
the correct answer.

Deadlock P=?[FT deadlock ] The probability for the walker to get
stuck prior to quenching.

Steps R=?[C≤T ] The expected number of steps taken until
time T .

Stay-on-
path

P=?[correct-path U≤Tfinished-correct] The probability for the walker to stay on
the intended tracks and reach the correct
final anchorage.

Finish-or-
deadlock

P=?[FT (finished ∨ deadlock)]] The probability for the walker to either
quench a fluorophore or to deadlock.

Table 4.1: CSL specifications for walker behaviour on the single and double-junction circuit.
Properties are evaluated for T = 200 min. The reward structure for the property Steps assigns
a reward of 1 to each transition in the model (ι(s, s′) = 1∀s, s′ ∈ S).

Experiment Model

% R RR LR R RR LR
Finishes 65 56 56 97 96 92
Correct 76 87 50 78 85 50
Deadlock .084 .16 .063
Steps 7.1 7.0 6.6

Table 4.2: Adapted from [3, 4]. Experimental results for the single junction circuit (Fig. 4.5)
compared with the model. Properties and CSL formulas are described Table 4.1. Circuit R has
a single blocked anchorage on the left, circuit RR has double blocked anchorages on the left, and
circuit LR has a single blocked anchorage on both sides. The model significantly overpredicts the
probability of the walker to quench any fluorophore (’Finishes’), as expected from the comparison
of the fluorophore response in Fig. 4.4. The blockade failure rate, 30%, was inferred by hand
by comparing the probability of the walker to quench the correct fluorophore (‘Correct’). The
blockade failure rate strongly influences the probability of the walker to deviate from the opened
up path, but hardly affects the probability of the walker to reach a final anchorage. The model
results are obtained using the fast adaptive uniformisation method (Section 5.1 and [5]), resulting
in a precision of < 10−6.
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Experiment Model Optimised model

% RR RL LR LL RR RL LR LL RR RL LR LL
Finishes 33 40 22 33 90 89 89 90 94 92 94 92
Correct 70 65 55 76 77 74 74 77 78 78 78 78
Deadlock 1.0 1.7 1.7 1.1 0.0 0.0 0.0 0.0
Steps 11.7 11.8 11.8 11.7 5.1 5.1 5.1 5.1

Table 4.3: Adapted from [3, 4]. Experimental results for the double-junction compared with the
model. Properties and CSL formula are described Table 4.1. In the ‘LR’ circuit the anchorages
L and R’ are unblocked, so that the walker moves left on the first junction, and right on the
second, also see Fig. 4.5. The results are generated by checking at least 105 simulated paths
against each property.

quenching of the final fluorophore (F8) to significantly higher (90 %) than measured (40%) for

the full track. Because ks works as an time-scaling factor for the model, as per Eq. 4.9, fitting

this parameter to the data directly will not resolve this problem.

An additional parameter is needed to model branched circuits (Fig. 4.5). We add a possibility

of failure of the blocking mechanism, such that, before the walker starts the computation, each

blocked anchorage may unblock spontaneously. The probability of unblocking is uniform for all

blocked anchorages. The walker can step onto such spontaneously unblocked anchorages, and

may thus divert from the intended path. This may delay the walker, or, worse, it may direct the

walker to reach a different end-node, leading to the computation returning the wrong result. We

infer a failure rate of 30% by fitting to the results (‘Correct’) of the single-junction experiment,

see Table 4.2. The model fails to predict the correct amount of quenching (‘Finishes’ in Table

4.2), but we refrain from making further changes to the model.

Generating PRISM scripts

A custom software tool was developed to automatically generate PRISM model files, PRISM

property files and a circuit graphic based on a scripted description of the circuit. PRISM

was then used to verify the specified properties for the generated models. The model files and

property files for two walker circuits are included in Appendix A, being:

• The control track without any missing anchorages.

• The single-junction track with two blockades on the left.

The PRISM models, property files and circuit graphics generated for all of the circuits used

in the control experiment (Fig. 4.4), and those used to model the single-junction and double-

junction circuits (Fig. 4.5) are available for download at [1].
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Figure 4.6: From [4]. A proposed mechanism for walker deadlock. After stepping back onto an
initially skipped anchorage, there are no intact anchorages left within reach.

4.3 Model results

The straight track and the single junction circuit are used to determine the model and cannot

be used to test its predictive quality. We evaluate the model by comparing against data for

the double-junction circuit, see Table 4.3. The model captures essential features of the walker

behaviour and is reasonably well aligned with the experimental data. In the model, not all

walkers reach an absorbing anchorage by time T = 200 min, although the predicted quenching

is higher than observed, as it was for the single junction circuit.

We investigate walker behaviour by testing against temporal logic queries related to reliability

and performance. Not all the walkers that finish quench the intended fluorophore, and in both

model and experiment a difference between paths that follow the side of the circuit (paths LL

and RR in Fig. 4.5) and paths that enter the interior (paths RL and LR) is observed: the

probability of a correct outcome for the side paths is greater. This is explained by leakage

transitions between neighbouring paths: an example leakage transition is indicated by a red

dotted line in Fig. 4.5(c). Walkers on an interior path can leak to both sides, but a path that

follows the exterior can only leak to one side. This effect can also be shown by inspecting paths.

The property

P=?[ correct-path U≤T finished-correct ] (4.10)

describes the probability for a walker to stay on the intended path until it quenches the correct

fluorophore before time T . For the double-junction circuit in Fig. 4.5(c), we infer that the

probability of staying on the intended path and reaching the absorbing anchorage within 200
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Figure 4.7: Adapted from [4]. Probability of reaching an absorbing anchorage in a double-
junction circuit as a function of blockade length. Larger circuits are allowed more time to
complete the circuit, and properties are evaluated at T = 8 min× (7 + 2× blockade length) for
the input X = true, Y = false. Faint lines are the same properties given at time T ′ = T

2 . Each
property is evaluated by simulating 104 paths.

minutes is 55% for paths LR and RL, and 58% for paths LL and RR. The walkers on interior

paths are indeed more likely to deviate from the intended path than walkers on paths that follow

the exterior of the circuit. The double-junction circuit is improved by reducing the probability

of leakage. By decreasing the proximity of off-path anchorages and reducing the track length,

the proportion of walkers finishing on the correct anchorage is increased (see Table 4.3). The

asymmetry between paths (LL, RR vs. LR, RL) also disappears.

Increasing the number of consecutive blockades that form a track guard also results in better

performance. Fig. 4.7 shows a redesign of the circuit from Fig. 4.5c; the number of consecutive

blockades that constitute a guard is increased from two to six. Guards added beyond the

second blocked anchorage are decreasingly effective at improving the probability that the walker

arrives at the correct end-node, while the probability of deadlock increases with the depth of the

circuit. Deadlock occurs when a walker is isolated on a non-absorbing anchorage with no intact

anchorage in range, which can happen when the walker switches direction after stepping over

an intact anchorage, as in Fig. 4.6. From a computational standpoint deadlock is undesirable,

as it is impossible to differentiate a deadlocked process from a live process. Note that leakage

rates similar to that in the original double-junction circuit (see red arrow in Fig. 4.5c) are still

present in this circuit.

The expected waiting time before the walker steps is, given the model, equal to 1
k , where

k is the rate of stepping. This means that, for unblocked anchorages on the origami that are
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Figure 4.8: Adapted from [4]. Disjunction circuits evaluating (X ∨ Y ∨Z) ∧ (¬R ∨ S ∨ ¬Y ) ∧
(Q ∨ ¬V ∨ Z). Left: Regular version. Right: Improved version. Red arrows indicate leakage
transitions.

immediately adjacent to the walker-anchorage complex, the expected waiting time is 1
0.009 ≈ 2

minutes. Fig. 4.7 shows the probability for the walker to finish the computation (correct or

incorrect) and the probability for it to deadlock. If the walker were always able to take a step

with the base stepping rate ks = 0.009, then we would expect nearly all walkers to finish the

computation or deadlock at the given time bound.

In practice, not all of the walkers finish or deadlock, which is due to the walker stepping onto

anchorages that are further away (i.e., not immediately adjacent on the origami). It is therefore

possible to reach a state where all anchorages that are adjacent to the walker on the origami

are cut, but one or more uncut (non-adjacent) anchorages are within range of the walker. In

this case, the walker is not (yet) deadlocked; however, the stepping rate to these non-adjacent

anchorages is either ks/50 or ks/100, depending on their range. The expected waiting time



75

before jump occurs can be as high as 1
ks/100 ≈ 185 minutes. By using the property

P=?[FT (finished ∨ deadlock)] (4.11)

we can compute the probability for the walker to either finish the computation or deadlock at

time T . For the circuit in Fig. 4.7, the probability to finish or deadlock when six consecutive

blockades are present (T = 76 min,Length = 6) is equal to 57%. If we remove from the model

the ability for the walker to step onto an anchorage that is not adjacent on the origami, then

the walker is much more likely to finish or deadlock, as the probability now becomes 90%. This

shows that the ability of the walker to step onto anchorages that are not adjacent on the origami

degrades the performance of the walker. It is unclear at this point whether the actual walker

also suffers from this type of behaviour.

4.4 Design principles for DNA walker circuits

In this section we show how a composable circuit can be optimised, and establish some de-

sign principles that increase the reliability of the circuits. We consider a 3CNF circuit with

three clauses where each clause is a disjunction over three literals. The first circuit layout in

Fig. 4.8 (Left) is a straightforward embedding. However, this layout results in potential leak

reactions, some of which are indicated by red arrows. Such leak transitions should be avoided as

they increase the probability of error. To minimize the probability of triggering a leak reaction,

we apply the following design principles.

• (Principle 1) Increasing the distance between tracks reduces the probability for the walker

to deviate from the intended path. Increasing the distance between tracks is accomplished

by employing equiangular junctions and by elongating connecting tracks.

• (Principle 2) Increasing the length of the tracks increases the probability for the walker to

deadlock. In addition, it increases the expected amount of time until the walker finishes

the computation. Therefore, long tracks should be avoided if possible.

These two principles can conflict as increasing the distance between tracks can require that

at least one be elongated, thus increasing the rate of deadlock. A pragmatic approach was ap-

plied to the design in Fig. 4.8 (Right). The output tracks leading to the false terminals of each

clause were made equiangular to two other tracks incident to the common fork gate (principle 1).

Furthermore, the connecting tracks between clauses were elongated (principle 1), but only mod-

estly in order to avoid an unnecessary increase in the probability of deadlock (principle 2). We

emphasise that the stated design principles are guidelines based on our understanding of the
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Finish-correct Finish-incorrect deadlock

Optimized

Normal

% Normal Optimised Normal Optimised
T/ min 252 288 504 576

Finished-correct 42.8 46.7 49.1 54.3
Finished-incorrect 12.9 11.3 18.2 16.7
Deadlock 9.8 7.8 14.0 11.1

Table 4.4: Adapted from [4]. Performance for the disjunction circuits in Fig. 4.8. The time
at which the property is evaluated is adjusted proportionally to the size of the circuit, and we
evaluate each circuit at two time points. For each of the 128 possible inputs, we simulate 200
paths per property. Top: Barplot of the performance for T = 252 and T = 288 (solid) and
T = 504 and T = 576 (transparent).

model, and that our software tool was used as a computer aided design (CAD) tool that provides

the user with feedback on the performance of circuits. The manually improved circuit is not

necessarily optimal, and it is possible that other designs would perform even better. Optimising

the circuit does improve its performance, as demonstrated in Table 4.4.

4.5 Conclusion

We have analysed a molecular walker for its applicability as a local computational device. We

assert that the molecular walker developed by Wickham et al. [44, 45] is an important demon-

stration in the development of localized molecular computation, for the following two reasons:

1 The walker allows an efficient embedding of a highly expressive and well-understood class

of Boolean formulas, namely the 3-conjunctive normal form, which we demonstrate.

2 The walker enables true localized computation: the walker system operates in an isolated

environment, side-stepping any potentially problematic cross-talk that occurs in massively
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parallel computation.

Further, we created a probabilistic model of the walker behaviour and applied probabilistic and

statistical model checking to identify faulty behaviour. We propose that the reliability and speed

of DNA walker circuits is improved by adding blockades and reducing the distance the walker

travels. Through a case study of a 9-bit Boolean function we demonstrate how these design

rules are applied to optimize performance.

Our analysis benefited from automated model checking methods and the PRISM software.

After loading the model to PRISM, a variety of properties were easy to specify and evaluate,

and each relevant property was expressed in the temporal logic of CSL (Table 4.1). However, not

all results were generated through exhaustive model checking. The 8-anchorage control track

was model checked using standard uniformisation. We used fast adaptive uniformisation, a more

efficient version of uniformisation, to compute properties for the single-junction circuit. All other

results were generated using simulation-based statistical model checking, which is typically less

precise than numerical methods based on uniformisation. Section 5.1 includes a discussion of

efficiency and precision of these methods.
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Chapter 5

Probabilistic model checking for

DNA nanotechnology

In this chapter we consider the applicability of probabilistic model checking to models of DNA

nanotechnology, and then propose two novel methods to benefit their analysis and synthesis.

Both methods are applied to the DNA walker model developed in the previous chapter, which

is a (homogeneous) CTMC. In Chapter 6 we discuss a model of DNA origami, which is an

inhomogeneous CTMC.

Firstly, we discuss two extensions to the method of uniformisation. The first method, fast

adaptive uniformisation (FAU) [124], is a generalisation of standard uniformisation (Def. 3.1.10)

and the original contribution of the thesis is an extension of the method to compute rewards

(Section 5.1). This section is based on [5, 6]. The FAU method employs a truncated repre-

sentation of the state-space, neglecting states with low probability, and thus enables the model

checking of CTMCs with larger state-spaces. We obtain enhanced performance when computing

(reward) properties for the DNA walker model developed in Chapter 4.

Secondly, in Section 5.2 we develop a parameter synthesis method, so that, given a CTMC

model with parameters, we can answer precisely for which parameters the model satisfies a CSL

property. This is useful when the model parameters are not precisely known, but instead are

known to lie within a certain range. The contribution here is the development of parameter

synthesis algorithms and a parametric generalisation of the uniformisation method. Using our

method we synthesise parameters for the DNA walker model such that performance criteria are

met. This section is based on [7, 8].

In Section 5.3 we conclude the chapter.
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5.1 Fast adaptive uniformisation

The fast adaptive uniformisation (FAU) method is a generalisation of the adaptive uniformisation

method [125] and was first described in [124]. The transient probability at time t is obtained

by standard uniformisation as a sum of state distributions after i discrete-stochastic steps,

weighted by the probability of observing i jumps in a Poisson process, as in Fig. 3.3. In

adaptive uniformisation the discrete distributions are weighted by a birth process instead (see

Fig. 3.2) and the discrete process is adjusted accordingly.

After describing the method we discuss how to compute reward properties (Section 5.1.1)

and how interval splitting benefits performance (Section 5.1.2). Finally, we demonstrate the

advantage of the method over standard uniformisation, using the DNA walker model (Section

5.1.3).

Definition 5.1.1 (Adaptive uniformisation [125]). Let C = (S, π0,R, L) be a CTMC and B a

birth process (Def. 3.1.8) with transition rates qi ∈ R subject to qi ≥ maxs∈S E(s) − R(s, s).

Then the transient probabilities πt over C are given as

πt =
∞∑
i=0

Bi,tτ i (5.1)

where Bi,t equals the probability to see i jumps (equivalently, being in the i-th state) by time t

in the birth process, and the discrete-time probabilities τ i at iteration i are given as

τ i = τ i−1(I +
1

qi
Q) (5.2)

τ0 = π0. (5.3)

The birth process probabilities are approximated using standard uniformisation

B̂i,t =

kκ∑
j=0

γj,qtτ
B
j (i) (5.4)

where q is the uniformisation constant of the birth process, γj,qt is the j-th Poisson probability

for a process with parameter qt, τBj (i) is the probability to be in the i-th state of the discretized

birth process at the j-th iteration and kκ satisfies
∑kκ

j=0 γj,qt ≥ 1 − κ for a fixed κ > 0. An

approximation π̃t to the transient probabilities πt is then computed as

π̃t =

kε∑
i=0

B̂i,tτ i (5.5)
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where kε satisfies
∑kε

i=0 B̂i,t ≥ 1− ε for fixed ε > 0.

Adaptive uniformisation permits the uniformisation rate qi to differ between iterations, but as

a result the Fox-Glynn algorithm (which computes Poisson probabilities) is no longer applicable.

Instead the birth-process probabilities are computed through standard uniformisation (Eq. 5.4).

The structure of the birth process is such that τBj (i) = 0 when i > j. It permits an iterative

computation of B̂i,t that requires only the first i + 1 elements q0, . . . , qi to be known at each

step [145]. Fast adaptive uniformisation reduces the computational cost when compared to

adaptive uniformisation by only keeping track of states that have significant probability. The

advantage is a reduced cost for the matrix-vector computation in Eq. 5.2 and reduced memory

usage. In FAU, the approximation to the transient probabilities is given as

π̃′t =

kε∑
i=0

B̂i,tτ̃i (5.6)

for a discrete state probability distribution τ̃i derived from the candidate distribution τCi defined

by

τCi = τ̃i−1(I +
1

qi
Q) (5.7)

τ̃i(s) =

τ
C
i (s) if τCi (s) ≥ δ

0 if τCi (s) < δ
(5.8)

for a fixed probability tolerance δ > 0 and given the initial candidate discrete distribution

τC0 = π0. The jump probabilities qi in the birth process need to satisfy

qi ≥ max
s∈Si

E(s)−R(s, s) (5.9)

Si = {s ∈ S | τ̃i(s) > δ} (5.10)

where Si is the set of significant states at iteration i. Because the right-hand side in Eq. 5.9 de-

pends on Si, fixing a single uniformisation rate q ≥ qi ahead of the computation is difficult. The

FAU discrete process distribution, τ̃i, is typically sparser than that of standard uniformisation,

τi, resulting in a more efficient method. The solution vector π̃t is also sparser when compared

to standard uniformisation. We measure the saving factor FFAU relative to the size of the entire

state space

FFAU = max
i≤kκ

|Si|
|S|

(5.11)
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and the loss of probability due to Eq. 5.8 and finite summation is measured as:

LFAU = 1−
∑
s∈S

π̂′t(s). (5.12)

Typically, the savings factor FFAU and loss of probability LFAU are inversely related, and a

smaller probability threshold δ or reduced convergence bounds ε and κ decrease FFAU and

increase LFAU.

5.1.1 Computing rewards with fast adaptive uniformisation

Recall that, given a reward structure (ρ, ι) of state and transition rewards, the CSL-reward oper-

ators R∼r[I
=t], R∼r[C

≤t] express the instantaneous and cumulative rewards at time t. Historically,

the instantaneous rewards are defined to exclude the contribution from transition rewards [96],

which we follow in Def. 3.2.4. As a result, the time-derivative of the cumulative rewards is not

equal to the instantaneous rewards, that is:

dR=?[C≤t]

dt
6= R=?[I=t]. (5.13)

For a reward structure (ρ, ι) of state and transition rewards, respectively, and transient state

probabilities πt, the instantaneous reward is computed as:

R=?[I=t] =
∑
s∈S

ρ(s)πt(s). (5.14)

To find the cumulative reward, we must account for the state-transition rewards ι, as well as

the expected number of transitions:

R=?[C≤t] =
∑
s∈S

∫ t

0

(
ρ(s)πu(s) +

∑
s′∈S

R(s, s′)ι(s, s′)πu(s)

)
du (5.15)

=
∑
s∈S

∫ t

0

(
ρ(s) +

∑
s′∈S

R(s, s′)ι(s, s′)

)
πu(s)du (5.16)

=
∑
s∈S

(
ρ(s) +

∑
s′∈S

R(s, s′)ι(s, s′)

)∫ t

0
πu(s)du. (5.17)

For this reason we will focus on the derivation of
∫ t

0 πu(s)du, that is, the expected amount of

time the process spends in state s until time t. To demonstrate the correctness of our approach,

we need to extend the notion of continuous-time Markov chains. We cast our method in the

framework of continuous-time linear propagation models [145, Section 2.3.3 therein].

Definition 5.1.2 (Continuous-time propagation model). A continuous-time propagation model
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(CTPM) is a tuple C = (S, π0,R) where S is a countable set of states, π0 : S → R≥0 is an

initialisation vector, and R : S × S → R≥0 is a transition matrix. The propagation vector πt

evolves as equivalently to that of the transient probabilities in CTMCs:

dπt(s)

dt
=
∑
s′∈S

R(s′, s) · πt(s′)−
∑
s′∈S

R(s, s′) · πt(s). (5.18)

The transition matrix R assigns a rate R(s, s′) to each pair of states, as for CTMCs, and the

initialisation vector π0 assigns an initial value π0(s) to each state s ∈ S. A CTPM is a CTMC

if additionally
∑

s∈S π0(s) = 1 holds. Adaptive uniformisation also applies1 to CTPMs [145].

To compute the expected residence time for a CTMC, consider the following construction. We

extend its state space by adding time-accumulating states to record the amount of time spent

in each state.

Definition 5.1.3 (Time-extended CTPM). Given a CTMC C = (S, π0,R), the time-extended

CTPM is defined as

Cext = (Sext, πext,0,Rext) (5.19)

where Sext = S ∪ Sacc, so that for each s ∈ S there is a corresponding time-accumulating state

sacc ∈ Sacc. The initializing vector is defined accordingly, that is, πext,0(s) = π0(s) for s ∈ S

and πext,0(s) = 0 otherwise. The time evolution (also see matrix Q of Def. 3.1.7) is given by

dπt(s)

dt
=


∑

s′∈S R(s′, s) · πt(s′)−
∑

s′∈S R(s, s′) · πt(s) if s ∈ S

πt(s
′) if s ∈ Sext and where s extends s′

(5.20)

The time-extended CTMC is then used to prove the correctness of the following construction.

Theorem 5.1.4 (Residence time). Consider a CTMC C = (S, π0,R, L) and state s ∈ S, then

∫ t

0
πu(s)du =

∞∑
i=0

Ψiτ i(s) (5.21)

for τ i and qi as in the definition of adaptive uniformisation, Def. 5.1.1, and the mixed birth

process probability Ψi = 1
qi

∑∞
n=i+1Bn,t.

Proof. Assume Cext = (Sext, πext,0,Rext) and let sacc be the time-extended state associated

1Note that we did not use the requirement
∑
s∈S π0(s) = 1 when we derived standard unifomisation (Eq. 3.10).



84

with s. By the structure of the time-extended CTPM we find

πt(s) = πext,t(s) (5.22)∫ t

0
πu(s)du = πext,t(sacc). (5.23)

Now applying the adaptive uniformisation (Def. 5.1.1) to the CTPM we find:

πext,t(sacc) =
∞∑
n=0

Bn,tτ ext,n(sacc) (5.24)

where

τ ext,0(sacc) = 0, (5.25)

τ ext,n+1(sacc) =
1

qn
τn(s) + τ ext,n(sacc) (5.26)

and thus

τ ext,n(sacc) =

n−1∑
i=0

1

qi
τ i(s). (5.27)

Now we apply Eq. 5.27 to Eq. 5.26:

τ ext,0(sacc) =
∞∑
n=0

Bn,t

n−1∑
i=0

1

qi
τ i(s) (5.28)

=
∞∑
n=0

n−1∑
i=0

Bn,t
1

qi
τ i(s) (5.29)

=
∞∑
i=0

∞∑
n=i+1

Bn,t
1

qi
τ i(s) (5.30)

=
∞∑
i=0

Ψiτ i(s). (5.31)

The result is interpreted as follows: τ i(s) is the probability to be in state s after i steps in

the discrete-time process, and Ψi is the probability that at least i jumps occurred in the birth

process by time t, multiplied by the expected waiting time before the (i + 1)-th jump. The

time-extended CTPM is only used in the proof and to compute the cumulative rewards, and no

extended CTMC is required during computation. The method computes a linear combination

of the discrete-time process τ i, similarly to how the transient probability vector πt is a weighted

average of τ i. To compute Ψi, only the first i + 1 uniformisation rates q0, q1, . . . , qi need to be
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known, because

qiΨi =
∞∑

n=i+1

Bn,t = 1−
i∑

n=0

Bn,t. (5.32)

The infinite summation of Def. 5.1.4 can be approximated by a finite summation in the usual

sense: the approximation is a weighted sum of the uniformed process (τ i) up to some bound kε

(similar to that in Def. 5.1.1). Therefore, computing the residence time has the same computa-

tional cost as fast adaptive uniformisation.

5.1.2 Interval splitting

So far we considered FAU for a single time horizon. However, it is often advantageous to consider

several smaller time intervals instead, analysing each of them and combining the results, known

as interval splitting [146]. This procedure can improve performance and enhance the ability

of FAU to deal with stiff models. Interval splitting is known to benefit uniformisation-based

methods [146].

Lemma 5.1.5 (Interval splitting). Given a CTMC C = (S, π0,R, L), a state reward structure

r: S → R≥0, a time bound t > 0, and non-negative interval lengths t0, t1 . . . tn so that t =
∑

i ti,

construct CTMCs

Ci = (S, πi0,R, L) (5.33)

where π0
0 = π0 and πi+1

0 = πiti. Then πt = πntn and

∫ t

0
πu(s)du =

∑
i

∫ ti

0
πiu(s)du (5.34)

Proof. Trivially
dπit−ti
dt = πtQ holds on each sub-interval t ∈ [ti, ti+1] by construction of each

CTMC Ci where Q is the generating matrix of C. The lemma also works when Q depends on t

(when C is inhomogeneous, see Def. 3.1.13).

The number of matrix-vector multiplications required, kε, depends on the number of jumps

in the birth process and satisfies 1 −
∑N

i=0Bi,t < ε for some tolerance ε. The total number of

required matrix-vector multiplications can therefore be minimised with respect to a splitting of

the interval [0, t]. For the FAU method specifically, the cost of the matrix-vector multiplication

changes per iteration, and depends on the number of significant states. The cost of solving the

birth process B has to be considered as well. The birth process itself is solved using standard

uniformisation with a uniformisation rate q ≥ sup{q0, q1, . . . , qn}. Sometimes the uniformisation
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Figure 5.1: From [5, 6]. a) A walker circuit implementing an XOR logic gate. Adding the input
¬X,Y unblocks the anchorages labelled ¬X and Y , directing the walker towards the anchorage
labelled True. b) The larger variant of the XOR circuit.

rate for the birth process, q, is significantly larger than the adaptive uniformisation rate at the

present discrete time step, so that q >> qi, which increases the number of iterations required

to compute the birth process probabilities: this occurs after states with large exit rates are

removed from the set of significant states. By splitting the interval we ensure that the standard

uniformisation routine used to compute the birth process is not unnecessarily expensive.

5.1.3 Fast adaptive uniformisation applied to walker circuits

We revisit the model of the DNA walker from Chapter 4, which allows the implementation of logic

circuits on nanoscale surfaces. In Fig. 5.1 a walker circuit implementing XOR logic is depicted.

The walker starts in the Initial position and navigates down each junction [45]. When the walker

steps onto an absorbing anchorage, here labelled with True and False, the computation ends.

The prior input unblocks certain anchorages, which in turn directs the walker at each junction.

Occasionally, the blockade mechanism fails to block an anchorage, which can cause the walker

to output the wrong answer. In addition, the walker sometimes steps over blockades or between

tracks, which is another source of error. We use the parameter set given in Table 5.1.

We analyse three variants of the XOR-circuit using the FAU method and summarise the

results in Table 5.2. The unmodified track, shown in Fig. 5.1a, is “xor”, and the suffix “-S”

indicates that only one blocker is used instead of two consecutive ones, whereas suffix “-large”

indicates the larger track (Fig. 5.1b). (X,Y ) or (X,¬Y ) indicates input to the computation,

which opens up the blocked anchorages that match the labels of the input. Because the track

has a point-symmetry, the results for inputs X,Y and ¬X,Y are identical, as well as for in-
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puts ¬X,¬ Y and X,¬Y , and we omit the results for these inputs. The unmodified track

has 2.9 × 107 states; it can be constructed, but not analysed, with PRISM’s standard engines.

The larger circuit has 1.9 × 109 states. We compute the expected number of steps (column

“Steps”, R=?[C≤T ]) and the probability of walkers reaching the desired anchorage (column “Sig-

nal”, P=?[FT finish-correct ]) by time T = 200 min. The expected number of steps correlates

well with the track layout: when fewer anchorages are blocked (“-S”), the walker takes more

steps on average. A larger track also results in more steps taken on average. Column “Blocked”,

a cumulative reward property, shows how much time the walker spends on anchorages that were

supposed to be blocked, and is in line with expectations. When we decrease the threshold cut-off

δ (option fau-delta), the number of explored states increases and the lost probability decreases.

For δ = 10−14 we find at most FFAU = 9% of the total state space concurrently loaded in

memory, but only LFAU = 1.2 · 10−7 of the probability is lost.

Parameter Command line toggle Value

FAU epsilon -fauepsilon 1e-6
FAU delta -faudelta 1e-8
FAU array threshold -fauarraythreshold 100 (default)
FAU time intervals -fauintervals 1 (default
FAU initial time interval -fauinitival 1.0 (default)

Table 5.1: PRISM settings for the DNA walker case study. The convergence bound for the
infinite summation is set equal in both sums, so that κ = ε in Def. 5.1.1.

Model Time (s) maxi |Si| LFAU Signal Steps Blocked (s)

PRISM fau-delta 1e-8
xor(X,Y ) 20 228,803 1.9736E-02 0.6455 7.7696 606.2731

xor(X,¬Y ) 22 239,680 2.2587E-02 0.5979 7.5610 659.3715
xor-S-(X,Y ) 14 215,544 1.6719E-02 0.5374 8.8363 133.1672

xor-S-(X,¬Y ) 15 233,063 1.8775E-02 0.5473 8.4049 146.7377
xor-large-(X,Y ) 43 443,584 5.1855E-02 0.5661 9.5020 577.2680

xor-large-(X,¬Y ) 45 455,685 5.2995E-02 0.5674 9.4983 567.3420

PRISM fau-delta 1e-14, fau-epsilon 1e-9
xor(X,Y ) 366 2,660,829 1.1838E-07 0.6527 7.8371 627.9572

xor-large-(X,Y ) 6923 62,648,566 6.0992E-06 0.5816 9.7201 623.4739

Table 5.2: Adapted from [5, 6]. Fast adaptive uniformisation applied to walker circuits. ‘Time’
is the amount of time taken for the computation. The maximum of concurrent states is listed
(maxi ‖Si‖). Column ‘LFAU ’ shows the maximum percentage of the total statespace loaded in
memory.
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5.2 Parameter synthesis for parametric Markov chains

Here we describe a novel parameter synthesis method for continuous-time Markov chains. We

start with a motivating example. Assuming a hypothetical probabilistic model that automati-

cally resolves conflicts, re-consider the property

The system resolves conflict within 1.0 seconds, with a probability of at least 99.999%.

However, this time around, assume that the system only detects a conflict with some exponential

delay, that depends on parameter λ. A natural question now arises: for which range of λ does

the property hold?

In Section 5.2.2 we extend the existing method of parametric uniformisation described

in [147]. Our novel extension is to allow a wider range of rate functions to be used, and to

analyse the numerical stability of the method. The parametric uniformisation is then used as

a subroutine to the novel algorithms presented in Section 5.2.3. In Section 5.2.5 we apply the

parameter synthesis to the DNA walker model developed in Chapter 4. This work is derived

from [7, 8].

The notion of continuous-time Markov chain is extended by allowing transition rates to

depend on model parameters [148]. Given a set of variables K = {k0, k1, . . . kn−1} we assume

that the transition rate R(s, s′) between two states s, s′ is now given as a low-degree polynomial

over K. The following questions arise naturally:

• For which parameters is the probability of satisfying a CSL property maximized?

• For which range of parameters is the CSL property satisfied?

and we formalize these questions later as Problem 1 and Problem 2. Approximate answers are

possible, for example, by computing the satisfaction probability for a finite number of points

in the parameter space we can estimate the maximum probability, but there is no guarantee a

value near to the maximum is found [148]. We provide a framework which finds the maximum in

a precise manner, that is, for Problem 1 the method returns under- and over-approximations of

the maximum to within an arbitrarily small precision. For Problem 2, a conservative parameter

region is identified. The method relies on being able to find under- and over-approximations of

∂πt(s)
∂t in each state:

∂πt(s)

∂t
=
∑
s′∈S

R(s, s′)πt(s
′)−

∑
s′∈S

R(s, s′)πt(s) (5.35)

This expression is itself a polynomial over K. Finding safe under- and over-approximations is

a problem in itself, and relevant to determining which CTMCs permit the use of the method.

In this thesis we consider low-degree polynomials, so that approximations to Eq. 5.35 are found

analytically. Algebraic expressions can also be found when the rate functions are given as
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Hill kinetics. In contrast to previous approaches that support only specific properties (e.g.

reachability as in [148]), we consider the time-bounded fragment of CSL, enabling synthesis for

an expressive class of properties. Our approach supports arbitrarily precise solutions, which has

not been demonstrated before.

We now review some definitions that we require for the analysis of the problem, starting

with the definition of the parametric variant of CTMCs and a parametric version of CSL. We

provide the problem definition in Section 5.2.1. In Section 5.2.2 we describe how to solve the

model checking problem for parametric CTMCs, which includes a description of parametric

uniformisation. The iterative algorithms that solve Problem 1 and Problem 2 are described in

Section 5.2.3 and Section 5.2.4. To demonstrate their use, we synthesise parameters for the

DNA walker in Section 5.2.5.

Definition 5.2.1 (Parametric continuous-time Markov chain). Assume a set K = {k0, k1, . . . , kn−1}

of model parameters and a parameter space P ⊆ Rn that is given by bounds k⊥i , k
>
i on each

parameter, that is, P = ×k∈K [k⊥, k>]. A pCTMC over a set K of parameters is a tuple

CK = (S, s0,RK , L) where S is a countable set of states, s0 an initial state, L : S → 2AP is

a labelling function for a set of atomic propositions AP and RK : S × S → R[K] is the para-

metric rate matrix so that the transition rate between two states is given by a polynomial over

the parameters K. Given a pCTMC CK and a parameter space P, we denote with CP the set

{Cp | p ∈ P} where Cp = (S, π0,Rp, L) is the CTMC obtained by evaluating the transition matrix

RK at p and π0 : S → [0, 1] is the initial distribution where π0(s0) = 1.

We introduce the notion of a satisfaction function that is equal to the probability to satisfy

a specific path formula.

Definition 5.2.2 (Satisfaction function). Let φ be a CSL path formula, CP be a pCTMC over

a space P and s ∈ S. We denote with Λφ : P −→ S −→ [0, 1] the satisfaction function such that

Λφ(p)(s) = P (ω ∈ Path(s) | ω |= φ) in Cp.

5.2.1 Problem definition

We consider parametric continuous-time Markov chain (pCTMC) models of reaction networks

that depend on unknown variables in the rate constants and in the initial state. We introduce

two parameter synthesis problems for this class of models: the max synthesis problem that,

given a CSL path formula φ, finds the parameter region where the probability of satisfying φ

attains its maximum, and the threshold synthesis problem which returns the parameter space

where the probability of satisfying φ exceeds a predefined threshold r.
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Figure 5.2: The thresholds syntheses (left) and the max synthesis (right) for a sample satisfac-
tion function. Adapted from [7].

Problem 1 (Max Synthesis). Let CP be a pCTMC over a parameter space P, Φ = P=?[φ] be

a CSL formula and ε > 0 a fixed tolerance. The max synthesis problem is finding a partition

{T ,F} of P and probability bounds Λ⊥, Λ> such that given an initial state s0:

• Λ⊥ − Λ> ≤ ε;

• ∀p ∈ T . Λ⊥ ≤ Λφ(p)(s0) ≤ Λ>; and

• ∃p ∈ T . ∀p′ ∈ F . Λφ(p)(s0) > Λφ(p′)(s0),

where Λφ(p) is the satisfaction function of φ on Cp.

Problem 2 (Threshold Synthesis). Let CP be a pCTMC over a parameter space P, Φ = P≥r[φ]

with r ∈ [0, 1] be a CSL formula and ε > 0 a volume tolerance. The threshold synthesis problem

is finding a partition {T ,U ,F} of P, such that given an initial state s0:

• ∀p ∈ T . Λφ(p)(s0) ≥ r; and

• ∀p ∈ F . Λφ(p)(s0) < r; and

• vol(U)/vol(P) ≤ ε

where Λ is the satisfaction function of φ on CP and vol(A) =
∫
A

1dµ is the volume of A.

Figure 5.2 illustrates the threshold synthesis regions T ,U ,F and the max synthesis regions

T ,F for a simple satisfaction function. For max synthesis, the volume of region T is only

indirectly controlled by the tolerance ε.

5.2.2 Computing lower and upper probability bounds

This section presents a generalization of the parameter exploration procedure originally intro-

duced in [147]. The procedure takes a pCTMC CP and CSL path formula φ, and provides safe

under- and over-approximations for the minimal and maximal probability that CP satisfies φ,
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that is, lower and upper bounds satisfying

Λmin(s) ≤ min
p∈P

Λφ(p)(s) and

Λmax(s) ≥ max
p∈P

Λφ(p)(s). (5.36)

The accuracy of the approximations in Eq. 5.36 is improved by partitioning the parameter space

P into subspaces and re-computing the corresponding bounds, which forms the basis of the

synthesis algorithms that we discuss in Section 5.2.3 and Section 5.2.4.

Unnested CSL formulas

We now derive upper and lower bounds for unnested formulas. Bounds for nested CSL formulas

are not harder to compute, but do require the correct bound (under or over) to be carried over

during the nesting. To this end, we develop an extended version of CSL for pCTMCs in [8].

Our case study, the DNA walker, does not use nested properties, and for the sake of clarity, we

omit the parameter synthesis for nested CSL formula from this thesis altogether.

Similarly, reward properties are omitted from this work but are treated in [8]. Finally we

note that adaptive uniformisation could be combined with the parameter synthesis method that

we present here, but we have not attempted to implement this and this is not featured either

here or in [8].

Given an unnested formula φ, the model-checking problem for any time-bounded CSL for-

mula reduces to the computation of transient probabilities ([97], example 3.2.3), and a similar

reduction is applicable to the computation of lower and upper bounds. We state transient

probabilities as given by standard uniformisation and examine the dependency on the model

parameters. The probabilities at time t are given by

πt =
∞∑
i=0

γi,qtτi (5.37)

where π0, γi,qt and kε are as in Def. 3.10 and τi = π0P
i
p is the probability evolution in the

discretized process and Pp is the uniformised matrix obtained from the rate matrix Rp. We

derive bounds τmin
i and τmax

i such that

τmin
i ≤ min

p∈P
τi and τmax

i ≥ max
p∈P

τi (5.38)
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which allow robust approximations to the transient probabilities πt:

πmin
t (s) =

kε∑
i=0

γi,qtτ
min
i (s) and (5.39)

πmax
t (s) =

kε∑
i=0

γi,qtτ
max
i (s) + ef−g. (5.40)

where the Fox-Glynn error ef−g = 1 −
∑kε

i=0 γi,qt is due to the bounded summation in the

uniformisation. The vector ordering in Eq. 5.38 holds element-wise. The bounds of Eq. 5.36 are

obtained from πmin
t , πmax

t similarly to the computation of P=?[φ] from πt in the non-parametric

case (Ex. 3.2.3). To achieve the bounds in Eq. 5.36 we require

τmin
i+1 (s) ≤ τmin

i (s) +
1

q
·min
p∈P

fluxp(τ
min
i , s) (5.41)

τmax
i+1 (s) ≥ τmax

i (s) +
1

q
·max
p∈P

fluxp(τ
max
i , s) (5.42)

where

fluxp(τ
max
i , s) =

∑
s′∈S

Rp(s
′, s) · τmax

i (s′)︸ ︷︷ ︸
inflow(s)

−
∑
s′∈S

Rp(s, s
′) · τmax

i (s)︸ ︷︷ ︸
outflow(s)

(5.43)

and q is the uniformisation constant. The extrema for fluxp(τ
max
i , s) are found readily when

Rp employs low-degree polynomial expressions. More specifically, when the entries of Rp are

multi-affine polynomials, i.e. multivariate polynomials where each variable has degree at most

1, the maximum in Eq. 5.42 is found by evaluating inflow(s) − outflow(s) in the vertices of P

due to the following lemma.

Lemma 5.2.3 (Extrema of multi-affine functions [149, 150]). Let h be a multi-affine function

over hyper-rectangular R and let VR be the set of vertices of R. Then,

min
p∈R

h(p) = min
p∈VR

h(p) and max
p∈R

h(p) = max
p∈VR

h(p) (5.44)

In the multi-affine case, τmax
i+1 (s) is found as

τmax
i+1 (s) = τmax

i (s) +
1

q
max
p∈VP

fluxp(τ
max
i , s) (5.45)

Provided the rate function Rp is polynomial of degree d, the solution πt(s) itself can be

expressed as a polynomial of degree at most kεd. A direct attempt to bound the polynomial

expression of πt(s) is difficult due to the large number of uniformisation steps, kε, and previous
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approaches in parameter synthesis have provided an approximate solution by sampling the value

of πt over a grid in P [148], rather than bounding the polynomial itself as in our approach. The

computational complexity depends on the rate function but for our settings it has the same

asymptotic complexity as standard uniformisation.

Accuracy and convergence

An approximation error is introduced when we compute πmax
t , or πmin

t , because the proba-

bilities τmax
i , τmax

i+1 , τ
max
i+2 , . . . are locally maximized, allowing different parameter valuations at

each step and for each state. This error accumulates at each stage of computing τmax
i . We

examine the numerical convergence of the parametric uniformisation for the multi-affine case

where Lemma 5.2.3 applies. Let the parameter space over n variables have volume δn, that is,

P =×i=1..n[pi, pi + δ] for δ > 0. Fix an arbitrary state s and let the maximizing argument of

the transient probability in s be (cf. Eq. 5.37):

p̂ = argmax
p∈P

πt(s), (5.46)

and let τ̂i = π0P
k
p̂. The local error introduced during a single discrete time step is given by

ei =|τ̂i(s)− gs(τ̂i−1)| (5.47)

=|τ̂i−1 +
1

q
fluxp̂(τ̂i−1, s)− τ̂i−1 −

1

q
· max
p∈VP

fluxp(τ̂i−1, s)| (5.48)

=
1

q
|fluxp̂(τ̂i−1, s)− max

p∈VP
fluxp(τ̂i−1, s)|. (5.49)

The error ei is of order O(δn), that is, the approximation is first-order in each variable. This

also demonstrates the method is consistent, because ei → 0 as δ → 0.

Backwards computation

To efficiently find Λφ,min,Λφ,max, a backwards integration is employed as is normal for non-

parametric CSL model checking [151]. To illustrate this technique, we give the following sce-

nario. Suppose we have a CTMC C and time-bounded CSL path formula φ and we want to

compute

Λp(s) (5.50)

for each state s ∈ S and a fixed parameter assignment p. Then, using the forwards integration,

we could set the initial condition π0(s) = 1 and π0(s′) = 0 for all s′ 6= s, and solve the

differential equation for πT where T is the time-bound of the CSL property, as is described in
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Example 3.2.3, and repeat this for each state s ∈ S. Backwards CSL computation improves

on this by computing Λp for each state directly. In this method, the distribution πT is fixed

and instead π0 is computed. We further demonstrate this method by extending Example 3.2.3,

which we illustrate in Fig. 5.3

For the property

P=?[A U[0,T ]B] (5.51)

where [0, T ] is a non-empty interval of R, the differential equation

dπt
dt

= Qπt with boundary conditions (5.52)

πt(s) =

1 when s |= B, ∀t

0 when s 6|= B, t = T
(5.53)

is solved for π0 given uniformised matrix Q as in the modified CTMC C′ from Example 3.2.3, and

in that case π0(s) is the probability of s to satisfy A U[0,T ]B. Compared to forwards integration,

only one pass of uniformisation is required to compute these probabilities for all states.

Note that, in Eq. 5.52, πt is no longer a probability mass function, because
∑

s∈S πt(s) = 1

does not hold in general. Although the backwards computation is a highly practical proce-

dure in time-bounded CSL model checking, it does not change the function or description of

parametrised uniformisation (Eq. 5.37 and onwards), where we note that the system of differen-

tial equations only differs in the boundary conditions (Eq. 5.52) and we omit further discussion.

5.2.3 Max synthesis

We now describe Algorithm 1, which is used to solve Problem 1, the max synthesis problem,

and is based on the repeated use of parametric uniformisation.

Algorithm 1 returns a set of parameters T ∈ P that includes the maximizing argument of

the satisfaction function, that is:

argmax
p∈P

Λφ(p)(s0) ∈ T . (5.54)

Each iteration refines the partition (line 4) of the candidate region T and excludes the subspaces

that do not contain the maximum, until the desired precision is reached (line 3). Let ∪iRi be a

partition of T . For each subspace R, the algorithm computes bounds (line 7) on the probability

of satisfying φ, that is, Λmin and Λmax. The algorithm then rules out subspaces by deriving an

under-approximation (M) to the maximum satisfaction probability (line 8). If the bound on the
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P=?[ A U≤T B ]

dπt/dt = πt Q 

P=?[ A U≤T B ]=.25
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∀ t ∈ [0,T] : πt(sB)=1.0 

Figure 5.3: Graphical representation backwards integration for P=?[A U≤TB]. a) As before in
Fig 3.4, states are labeled with A and B, and a path satisfies the CSL path property A U≤TB
if the path reaches B without leaving A before time T . In this case, the blue path satisfies
the property, but the red path does not. b) The probability for a path, starting in any state,
to satisfy A U≤TB, is computed efficiently using by backwards integration. In this case, the
ODE is integrated using a different set of boundary conditions, and we solve for π0 instead of
πT . c) Integrating the probability density backwards from time T , shows that 25% of the paths
starting in the bottom left state satisfy the path-property. The probability of satisfying A U≤TB
for paths starting in other states are obtained simultaneously.
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maximum probability of satisfying φ is lower than the under-approximation M, that is,

Λmin < M (5.55)

then the region R is discarded (line 10). Otherwise, it stays in the set T .

The bound M is derived as follows. In the naive approach, the algorithm uses the maximum

over the least bounds in the partition of T , that is,

M = max{ΛRmin | R ∈ ∪iRi}. (5.56)

Let R be the region with highest lower bound. The sampling-based approach improves upon

the naive approach by sampling a set of parameters {p1, p2, . . .} ⊆ R and taking the highest

value of Λφ(p)(s0), that is,

M = max {Λφ(pi)(s0) | pi ∈ {p1, p2, . . .}} (5.57)

Each valuation Λφ(p)(s0) is computed through regular CSL model checking, and is equally

expensive as computing the bounds on a regular pCTMC. The sampling method results in an

improved under-approximation to the maximum of the satisfaction function. As a result the

bound rules out more regions, and fewer refinements are required in the next iteration (see

Figure 5.4).

5.2.4 Threshold synthesis

We now describe Algorithm 2, which is used to solve Problem 2, the threshold synthesis problem,

and is (again) based on repeated use of parametric uniformisation.

Algorithm 2 describes the method to solve the threshold synthesis problem with input formula

Φ = P≥r[φ]. The idea is to iteratively refine the undecided parameter subspace U (line 5) until

the termination condition is met (line 4). At each step, we obtain a partition ∪iRi of U . For

each subspace Ri, the algorithm computes bounds on the maximal and minimal probability of

satisfying φ (line 8). The algorithm evaluates if Λmin is above the threshold r, in which case the

satisfaction of Φ is guaranteed for the whole region Ri and thus it is added to T . Otherwise,

the algorithm tests whether Ri can be added to the set F by checking if Λmax is below the

threshold r. If Ri is neither in T nor in F , it forms an undecided subspace that retained in the

set U . The algorithm terminates when the volume of the undecided subspace is negligible with

respect to the volume of the entire parameter space, i.e. vol(U)/vol(P) ≤ ε, where ε is the input

tolerance. Otherwise, the algorithm continues to the next iteration where U is further refined.
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Algorithm 1 Max Synthesis

Require: pCTMC CP over parameter space P, CSL
formula Φ = P=?[φ] and probability tolerance ε >
0

Ensure: ∀p ∈ T : Λ⊥ ≤ Λ(p) ≤ Λ>, and Λ>−Λ⊥ ≤
ε

1: F ← ∅
2: T ← P
3: while Λ> − Λ⊥ > ε do
4: ∪iRi ← decompose(T )
5: T ← ∅
6: for all Ri do
7: (ΛRimin, ΛRimax)← computeBounds(CRi , φ)

8: M← getMaximalLowerBound(∪iRi)
9: for all Ri do

10: if ΛRimax < M then
11: F ← F ∪Ri
12: else
13: T ← T ∪Ri
14: Λ⊥ ← min{ΛRmin | R ∈ T }
15: Λ> ← max{ΛRmax | R ∈ T }

Figure 5.4: Adapted from [7]. Left: Refinement algorithm for max synthesis. Right: The
parameter space is divided into several regions, for which the upper and lower bounds of Λ are
determined. Regions for which Λmax is less than the lower bound M are discarded. Sampling of
Λ(p) for random p ∈ R improves this lower bound to M. Without sampling, only the two outer
regions would be excluded.

The algorithm benefits from the iterated refinement of U because the computed bounds ap-

proximate the satisfaction function arbitrarily well for non-nested properties, as per Section 5.2.2.
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Algorithm 2 Threshold Synthesis

Require: pCTMC CP over parameter space P, CSL for-
mula Φ = P≥r[φ] and volume tolerance ε > 0

Ensure: ∀p ∈ T : Λφ(p)(s0) ≥ r, and vol(U)/vol(P) ≤ ε
1: T ← ∅
2: F ← ∅
3: U ← P
4: while vol(U)/vol(P) > ε do
5: ∪iRi ← decompose(U)
6: U ← ∅
7: for all Ri do
8: (Λmin,Λmax)← computeBounds(CRi , φ)
9: if Λmin ≥ r then

10: T ← T ∪Ri
11: else if Λmax < r then
12: F ← F ∪Ri
13: else
14: U ← U ∪Ri

Figure 5.5: Adapted from [7] . Left: Refinement algorithm for threshold synthesis. Right: The
parameter space is divided into several regions, for which the upper and lower bounds of Λ are
determined. The splitting of R yields regions in T and in U .
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5.2.5 Synthesis applied to the walker model

We revisit the model of the DNA walker from Chapter 4. The walker model is modified here

to allow uncertainty in the stepping rate, and we consider its behaviour over the single-junction

circuit of Fig. 4.5(a). Given a distance d between the walker-anchorage complex and an uncut

anchorage, and da being the distance between consecutive anchorages, the stepping rate k is

defined as:

k =



ks when d ≤ 1.5da

c · ks/50 when 1.5da < d ≤ 2.5da

c · ks/100 when 2.5da < d ≤ 24nm

0 otherwise.

(5.58)

where the base stepping rate ks ∈ [0.005, 0.020] is now defined as an interval, as opposed to

the original value of 0.009. We have also added factor c for steps between anchorages that are

not directly adjacent, but we will assume c = 1 for now. The base stepping rate may depend

on buffer conditions and temperature, and we want to verify the robustness of the walker with

respect to the uncertainty in the value of ks.

We compute the minimal probability of the walker making it onto the correct final anchorage

and the maximum probability of the walker making it onto the incorrect anchorage. We list and

plot these probabilities at T = 15, 30, 45, 200 minutes in Table 5.3. For time T = 30, 45, 200, we

note that the walker is robust in the following sense: the least probability for the correct answer

is greater than the maximum probability for the wrong answer. For time T = 15 this is not the

case.

We now consider a property that provides bounds on the ratio between the walker finishing

on the correct versus the incorrect anchorage. The rates c · ks/50 and c · ks/100 correspond to

the walker stepping onto anchorages that are not directly adjacent, which affects the probability

for the walker to end up on the unintended final anchorage. For higher values of c, we expect

the walker to end up in the unintended final anchorage more often. We add uncertainty on the

value of c, that is, c ∈ [0.25, 4] and define the performance related property

P≥0.4[F30 finish-correct] ∧ P≤0.08[F30 finish-incorrect], (5.59)

that is, the probability of the walker to make it onto the correct anchorage is at least 40% by time

T = 30 min, while the probability for it to make it onto the incorrect anchorage is no greater

than 8%. In other words, we require a correct signal of at least 40% and a correct-to-incorrect

ratio of at least 5 by time T = 30 min. We define a similar property at time T = 200 min, this
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=?

Tmin(P [F finish-correct])=?

T

Runtime Subspaces
Time bound Min. correct Max. incorrect ∅ Sampling ∅ Sampling

T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

Table 5.3: Adapted from [7]. Results for max synthesis for P=?[FT finish-incorrect] and (similarly
defined) min synthesis for P=?[FT finish-correct] using ks ∈ [0.005, 0.020], c = 1 and probability
tolerance ε = 1%. The runtime and subspaces are listed for the min-synthesis problem.

time requiring a signal of at least 80%:

P≥0.8[F200 finish-correct] ∧ P≤0.16[F200 finish-incorrect]. (5.60)

The synthesized ranges of ks and c where the properties hold are shown in Figure 5.6. The

results agree with the intuition, as in either case the walker cannot deviate too much from the

track (c < 2). In the case of early measurement (T=30), it is also required that the walker is

not too slow (ks > 9× 10−3).

5.3 Conclusion

We have developed two new methods for the analysis of CTMC models and applied them to

DNA walker model developed in Chapter 4.

We have extended the fast adaptive uniformisation (FAU) method to enable the computa-

tion of cumulative reward properties, and tested the performance of the method on DNA walker

circuits. The FAU method allowed the model checking of a DNA walker model with 1.9 × 109

states to a precision of LFAU = 6.1× 10−6 by concurrently loading approx. 63 million states in
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Φ1 ∧ Φ2, T=30 Φ1 ∧ Φ2, T=200

Figure 5.6: Adapted from [7]. We identify parameter sets for which the DNA walker satisfies a
performance requirement. Here, c represents a relative intensity for the walker to jump between
non-adjacent anchorages, and ks is the rate of stepping for the walker, as in Eq. 5.58. ‘T’ (green)
indicates parameter regions were the property was satisfied, ‘F’ (red) where the property was
not satisfied and ‘U’ (yellow) is undecided. In (a) and (b), the undecided region U (yellow) is
less than 10% of the total area: this was the stopping criteria for the synthesis algorithm.
In (a), we test if the probability for the walker to finish on the correct final anchorage, within
T = 30 minutes, is at least 40% (Φ1 = P≥0.4[F30 finish-correct], runtime 443.5 s, 2692 subspaces).
In (b), we test if the probability for the walker to finish on the incorrect final anchorage, within
T = 30 minutes, is no larger than 8% (Φ2 = P≤0.08[F30 finish-incorrect], runtime 132.3 s, 807
subspaces.) In (c), the overlap of (a) and (b) is plotted, where the green region is the set of
parameters that satisfies both requirements (Φ1∧Φ2). To meet both performance requirements,
the walker cannot deviate too much from the track (c < 2) and cannot be too slow (ks > 9×10−3)
In (d), an overlap of similar properties is given for T = 200 minutes, where the probability of a
correct computation is at least 80%, and the probability for the wrong answer is no larger than
16% (P≥0.8[F200 finish-correct] ∧ P≤0.16[F[200] finish-incorrect], runtime 12.3 h, 47229 subspaces).
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memory, which took two hours to compute on workstation hardware2. This particular walker

circuit embedded an XOR logic gate and had 27 anchorages which, after adding instruction

strands, had six remaining blocking strands (Fig. 5.1). The 63 million states represent approx-

imately 3% of the total number of states in the model. The performance of FAU was beyond

what could be achieved with the other analysis engines in PRISM, symbolic or explicit. For

this particular class of models and our settings, the FAU method typically loads up to 10% of

the available states into memory (Table 5.2), and we conclude that FAU performs roughly one

order of magnitude better than non-symbolic, explicit-state methods, while the precise benefit

strongly depends on the desired accuracy and model.

We also developed a precise method of parameter synthesis for CTMC models, based on a

version of parametric uniformisation that we generalized from existing work [147]. This method

allows the synthesis of parameter ranges such that CSL properties are guaranteed to hold when

the model parameters are within the permitted range. Our method is the first to synthesise pa-

rameters for CTMC models through exhaustive analysis of the entire parameter range, and is an

improvement over a previous attempt that relied on uniform sampling of the parameters [152].

The method works by bounding the discrete-time process obtained via uniformisation and iter-

atively refines the parameter space until an acceptable precision is obtained. The runtime of the

method strongly depends on the size of the state-space, the property, the number of variables

and the width over which the variables are specified. We have applied the synthesis method

to the single-junction circuit of Fig. 4.5(a) for which the state-space consists of 5459 states.

When uncertainty over 1 parameter was specified, the method computed bounds 329 times for

increasingly smaller parameter ranges, which took < 2 minutes (Table 5.3). Another instance

involved two unspecified variables and analysis of 47229 subspaces took < 13 hours (Fig. 5.6).

2Intel i7-3770 processor with 3.40GHz and 32GB of RAM
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Chapter 6

Modelling the self-assembly of DNA

origami

DNA origami is a frequently applied technique to create self-assembled nanostructures, and uses

short staple strands to fold a longer scaffold strand into shape. Although origami is widely

applied, open questions remain. We introduce a model with the aim to gain quantitative insight

into the assembly process, and apply it in the next chapter to predict the assembly pathway

for a polymorphic tile. We first discuss the self-assembly process and literature in Section 6.1.

The remainder of this chapter is devoted to the development of a CTMC model of self-assembly,

and is organised as follows. The state space is defined in Section 6.2, and the transition rates

are defined in Section 6.3. A model of bulge loop stability is derived through a freely-jointed

chain approximation in Section 6.4. The application of the Gillespie algorithm to simulate the

self-assembly is described in Section 6.5. Sample rate calculations are given in Section 6.6.

We discuss parametrisation and model results in Section 6.7. In Section 6.8 we estimate the

minimum required time for the assembly of a DNA origami. Concluding remarks are given in

Section 6.9.

Notation: The word ‘loop’ appears many times in this chapter. Within the context of

graphs, ‘loop’ means a simple cycle, that is, a path that does not visit any vertex or edge more

than once, except for the initial vertex. Within the context of DNA, ‘loop’ refers to a bulge

loop.

This chapter is based on a paper that is under review [9].

6.1 The working of DNA origami self-assembly

A design for DNA origami consists of one circular ‘scaffold’ strand and many shorter ‘staple’

strands. The staple strands are designed to hybridize to designated domains on the scaffold
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Figure 6.1: DNA origami self-assembly of a rectangular tile. a) Schematic of the origami tile.
Staples are complementary to at most two domains on the scaffold and each staple, distinguish-
able by nucleotide sequence, occurs once in the design. Two-domain staples are shown in blue,
black and brown. Single-domain staples are shown in grey. b) AFM imaging of the assembled
origami tile with a 50 nm scalebar (imaging by Dr. K.E. Dunn). c) Staples that join two distant
domains incur a relatively large entropic penalty compared to staples near the edge, and as a
result the latter are earlier to form in the assembly process. d) The incorporation of staples is
a reversible process and many intermediate shapes are adopted during higher temperatures. e)
As temperatures drops, hybridized domains become more stable and segments of well-formed
origami emerge. f) The fully formed origami with a missing staple in the lower right part. The
structure is reminiscent of interwoven fabric and within the actual imaging of (b) the five central
‘seams’ and a diamond-like grid are clearly visible.
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through sequence complementarity, and each domain on the scaffold is intended to interact with

exactly one type of staple. The scaffold used in the tile design of Fig. 6.1 is 2646 nucleotides long

and is a fragment of the pUC19 plasmid. This design features 76 unique two-domain staples

and 14 single-domain staples. The single-domain staples, grey in Fig. 6.1, fill the gaps between

two-domain staples along the edges. Some of the two-domain staples cross between the central

seam of the scaffold routing, and they are called seam staples (brown in Fig. 6.1), while the other

two domains staples are called body staples: their distinction is especially relevant in Chapter 7.

Domains on the scaffold are either 15 or 16 nucleotides long, with the exception of the two longer

domains that are centrally located near the top and bottom of the design, each comprising 32

nucleotides, which are intended to bind with single domain staples. At high temperatures, the

hybridization of DNA is unstable and no staples are attached to the scaffold. As the temperature

slowly drops, staples start binding to the scaffold, folding it into a pre-determined shape, as in

Fig. 6.1. Atomic force microscopy (AFM) is then used to image the tile.

A comparatively non-intrusive method to probe the assembly of DNA origami is by measuring

the UV-absorption in the 260 nm spectrum as the temperature decreases. The annealing protocol

indicates a temperature gradient in the order of |dT/dt| = 1.0 ◦C min−1. Because double-

stranded DNA absorbs less UV light, the amount of absorption goes down as the assembly of the

origami progresses. The annealing temperature, Ta, is defined as the temperature at which half

the scaffold is double-stranded, and is measured as the temperature at which the absorption is

half-way between stable values: a typical experiment requires calibration for drift and the melting

temperature may be computed as an average over several runs. The melting temperature, Tm,

is defined similarly when the protocol is reversed (causing the origami to disassemble/melt).

Assembly was found to exhibit hysteresis [153, 154], that is Tm − Ta is non-zero, indicating

that at least either the annealing or melting process occurs out-of-equilibrium. The annealing

temperature and yield of multi-layered origami was found to be highly sensitive to staple design

[153, 155, 156], and the incorporation of individual staple was found to strongly depend on the

presence of surrounding staples [154]. Incubation of structures at fixed temperature suggests

that it is the annealing process, rather than the melting process, which occurs out-of-equilibrium

and is mainly responsible for the hysteresis [153].

We now discuss two existing models of DNA origami self-assembly [157, 158]. Arbona

et al. [157] postulate that the binding of one staple may promote the binding of another by

shortening the loop which it must enclose. Similarly to our approach, Arbona et al. [157] use

the frequently applied domain-level abstraction (Section 2.3), where hybridization is assumed

to occur only between complementary domains, and interaction due to partial sequence overlap

is ignored. However, Arbona et al. assume the incorporation of staples is strongly correlated to
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increase the tractability of their model: our model does not make such assumptions. The com-

putational model of Arbona et al. results in a deterministic execution, essentially attempting

to describe an averaged assembly process. In contrast, our model simulates the assembly of one

origami as an explicitly stochastic process over a discrete state-space. Arbona et al. assume

nearby base-pairs to directly stabilize other nearby base-pairs, which is suggested to occur due

to lateral electrostatic interaction between densely packed helices: such an interaction is not

included in our model.

Coarse-grained models of DNA [86, 158], which describe the position and orientation of

nucleotides on a continuous scale, are an interesting alternative to our model, because steric

constraints are incorporated naturally (we extend our self-assembly model to include these in

Chapter 7). In one application, Svaneborg et al. [158] simulate the assembly of a nanostructure

consisting of 12 strands of DNA. The model we present here, however, scales better with staple

count and we apply it to simulate an origami with 90 staples in this chapter and one with 180

staples in Chapter 7.

6.2 State space

We model the folding of an isolated scaffold surrounded by a large excess of staples, and approach

the folding of this origami at the level of domains (see Section 2.3). The model we describe is

restricted to designs where staples have at most two domains, such as the origami design in

Fig. 6.1, although this approach can be generalized to include staples with more domains [9]. A

two-domain staple is considered half-bound when only one domain is hybridized to the scaffold,

and fully bound if both domains are bound (Fig. 6.2). We assume that only fully comple-

mentary domains can hybridize, ignoring weaker interactions that result from partial sequence

complementarity between other pairs of domains. Let the design consist of k staples and let pi

denote the bonding configuration of the scaffold domains which interact with the i-th staple.

For single-domain staples we define pi ∈ {0, 1} where

• 0: a staple is not bound to the scaffold domain;

• 1: a staple is bound to the scaffold domain.

For two-domain staples we have pi ∈ {00, 10, 01, 11, 12} where:

• 00: no staple bound to either scaffold domain;

• 10: a single staple is bound to the first domain, the second domain is empty;

• 01: a single staple is bound to the second domain, the first domain is empty;

• 11: a single staple is bound to both domains;

• 12: a distinct staple is bound to each domain.
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Figure 6.2: Transitions in the model. Some possible bonding configurations of two domains of
a scaffold which can bind to a single staple i are shown. From left to right the configurations of
this staple denoted pi = 00, pi = 01 (half-bound) and pi = 11 (fully bound).

The state of the scaffold is given by the bonding configuration of the domains, denote s =

(p0, p1, . . . , pk−1) and let the set of states be S. Then the size of the state space is |S| = 2j × 5l,

where j is the number of single-domain staples and l the number of two-domain staples.

6.3 Kinetic model and free energy

We develop a CTMC model of the self-assembly of origami given the state space of Section 6.2

and the difference in free energies of partially-folded intermediate states (∆Gs,s′). We assume the

out-of-equilibrium process balances according to a Boltzmann distribution and in this approach

∆G0
s,s′ determines the ratio between the rates for the forwards (s → s′) and reverse (s′ → s)

transitions, and this ratio is given as

R(s, s′)

R(s′, s)
= exp

(
−∆G0

s,s′

RT

)
(6.1)

where R is the gas constant and T is temperature.

As a first approximation to ∆G0
s,s′ we might account for only the free energies of hybridized

domains, calculated as if the hybridized duplexes are formed in isolation. This, however, ignores

significant interactions between different sections of the origami which depend on the state of

the folding. Instead define

∆G0
s,s′ = ∆Gduplex

s,s′ + ∆Gstack
s,s′ + ∆Gshape

s,s′ , (6.2)

where ∆Gduplex
s,s′ is the contribution from duplex formation as discussed above, and ∆Gstack

s,s′ is

the contribution from the end-to-end stacking of duplex sections [159], and ∆Gshape
s,s′ is the con-

tribution from the entropic costs of scaffold loop formation.The approximations for the various

contributions to ∆G0
s,s′ are the central topic of this section and the next (Section 6.4). We now

discuss the functional expressions for R(s, s′) based on Eq. 6.1 for each of the possible transitions

in the model.

Consider an isolated origami in a partially folded state s00 with pi = 00, and let staple p
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bind to the scaffold by a single domain, resulting in a state s01 with pi = 01 (Fig. 6.2). This

transition rate is assumed analogous to isolated duplex formation (Section 2.5) and is given by

R(s00, s01) = k+[p] (6.3)

where [p] is the concentration of the staple. Although binding rates are known to be weakly

dependent on duplex stability compared to unbinding rates [23], we assume k+ is independent

of temperature, domain sequence, and folding state, and we fix k+ = 106M−1s−1 as a reason-

able first approximation [82]. The rate R(s01, s00) for the reverse reaction is then given by a

Boltzmann equation as:

R(s01, s00) = k+ exp

(
∆G0

s00,s01

RT

)
×M. (6.4)

were ∆G0
s,s′ is the difference between the free energies of partially-folded intermediate states

s, s′ ∈ S and M is the molar unit. An equivalent approach is used for any transition involving

the binding of the first arm of a staple. The binding and unbinding transitions of the second

domain of staple p to form s11 with pi = 11 are associated with a similar thermodynamic

constraint:

R(s01, s11)

R(s11, s01)
= exp

(
−∆G0

s01,s11

RT

)
. (6.5)

To resolve the ambiguity in the absolute values of R(s01, s11) and R(s11, s01), we make the

assumption that the unbinding rate R(s11, s01) is equal to the temperature- and sequence-

dependent unbinding rate for the corresponding isolated duplex:

R(s11, s01) = k+ exp

(
∆Gduplex

s01,s11 + ∆Gstack
s01,s11

RT

)
×M. (6.6)

Then combining Eq. 6.5 and Eq. 6.6, we find

R(s01, s11) = k+ exp

(
−∆Gshape

s01,s11

RT

)
×M. (6.7)

Higher ∆Gshape
s01,s11 corresponds to more demanding constraints associated with the binding of

the second arm within the origami. In this approach these constraints are manifested as a

slower binding rate for the second domain and an equivalent approach is used for any transition

involving the binding of the second arm of a staple.
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6.3.1 Duplex free energy

∆Gduplex
s,s′ is calculated using the well-established SantaLucia parametrization of the nearest-

neighbour model of DNA thermodynamics [24, 26]. The contribution is computed as

∆Gduplex
s,s′ = ∆Gduplex

s′ −∆Gduplex
s (6.8)

where ∆Gduplex
s is the sum of free energy contributions of each hybridized domain in s, computed

through the SantaLucia parameters for the nearest-neighbour model of duplex stability. We

assume buffer conditions of 40mM [Tris] and 12.5mM [Mg2+] and apply an additional entropic

penalty to duplex formation depending on these ionic conditions [24, 78, 160]:

∆S0,salt = 0.368× N

2
× ln

(
1

2
[Tris] + 3.3[Mg2+]1/2

)
, (6.9)

in which N is the number of phosphates in a duplex.

6.3.2 Stacking free energy at nicks

C

G

A
T

A
T

C
G

A
TC

G
C
G

C

G

a b

Figure 6.3: a) Nicks occur in DNA when a phosphate backbone is missing in otherwise double-
stranded DNA, and result in stacking interaction between the two sections (Creative Commons,
M. P. Ball, modified). b) Stacking at nicks occurs in fully folded origami when domains align,
and are indicated with red angle brackets. Angle brackets in grey: nick-stacking interactions
that are included in the model, although the involved domains cannot physically stack.

The stacking of bases across a nick is a stabilizing interaction [159], and it is reasonable to

assume that a similar effect occurs when staples bind to adjacent domains of the origami, as

depicted in Fig. 6.3. The contribution is computed as

∆Gstack
s,s′ = ∆Gstack

s′ −∆Gstack
s (6.10)

where ∆Gstack
s is the sum of free energy contributions from stacking interactions across nicks in
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a state s.

In the model, stacking across nicks occurs whenever two adjacent domains on the scaffold

are both double-stranded, and using this approach we neglect geometrical circumstances, such

as bends in the scaffold routing, that prevent the stacking of two neighbouring domains in the

physical origami. For convenience, we take

∆Gstack = n〈∆Gbp〉. (6.11)

where 〈∆Gbp〉 is the sequence-averaged free-energy gain per base pair in the nearest-neighbour

model. We treat n as an adjustable parameter of the model, and explore the consequences of

varying n in Section 6.7.

6.3.3 Scaffold shape free energy

In order to establish an expression for

∆Gshape
s,s′ = ∆Gshape

s′ −∆Gshape
s (6.12)

we develop a novel approximation to establish ∆Gshape
s , that is, the entropic cost of restricting

the scaffold to a particular shape. The presence of m fully bound two-domain staples puts

m additional constraints on the conformation of the origami, because each crossover between

two staple domains restricts the orientation and movement of those domains. This reasoning

suggests

∆Gshape
s = Gshape

s −Gshape
null =

∑
j∈L(s)

∆Gloop
j (6.13)

where L(s) is a set of loops present in the partially folded structure s, and Gshape
null is the confor-

mational free energy for an origami with no staples. The idea here is to identify one loop for

each of the m staples, and we discuss the exact form of ∆Gloop
j only in the next section.

We now outline which loops are included in the set L(s). We interpret the partially folded

origami as a graph, such that each fully-bound two-domain staple contributes two vertices and

an edge. We identify loops on this graph, by finding cyclic paths that do not traverse the same

edge twice. The total number of such loops (or simple cycles) grows exponentially with the

number of bound staples.

Intuitively, each additional staple that is added to the origami restricts the conformational

freedom of the scaffold further, and our model aims to take this into account. It is difficult,

however, to create a meaningful map from the exponentially many possible loops, onto a defi-
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nition of entropic cost. Also, keeping track of exponentially many loops is unpractical from a

computational perspective. We now introduce two solutions to this problem, which we name the

local model and global model. In the local model, we only consider the entropic cost of forming

the smallest identifiable loop. In the global model, we keep track of only the loops that make

up the faces of a planar graph (that is, m+ 1 loops at a time).

Local and global model

Given a scaffold with m fully-bound two domain staples, it is not directly clear how to chose m

loops that give the most physical representation ofGshape
s . We offer two solutions to this problem,

namely a local and global approach. The local approach applies to both planar and non-planar

graphs, but is not thermodynamically well-defined. The global approach is thermodynamically

consistent, but currently does not apply to non-planar graphs. The DNA origami considered in

this chapter, the tile of Fig. 6.1, has a state space that consists exclusively of planar graphs,

and for that reason both methods apply. In Chapter 7 we consider the folding pathways of a

polymorphic tile, which does not permit planar embeddings for all states, and in that chapter

we exclusively employ the local model.

The two approaches are compared in Section 6.7.3 to explore whether the local model is

suited to study origami when the global approach is not applicable. Before we discuss the

specifics of computing ∆Gshape
s,s′ , we briefly discuss our assumptions so far and why the global

model is developed.

Justification of the model so far

At this point, we note that both models are coarse approximations to the actual entropic penalty

of scaffold folding, e.g. when in Eq. 6.13 we resolve that

∆Gshape
s =

∑
j∈L(s)

∆Gloop
j (6.14)

then note this is simply an approximation. The description of budge loop formation is fitting for

staple binding occurring at early stages of the folding, but fails to take the increase in rigidity

into account that exists in nearly-completed origami. A major benefit of our approach, however,

is that the free energy cost of bulge loop formation can be understood analytically, and the

expression can be calibrated to experimental estimates [26]. In the future, a more accurate

expression of ∆Gshape
s can be used instead.

Our model fails to fully account for steric constraints, for example, the possibility of a

scaffold entanglement is not present in our approach. Similarly, the model only allows considers
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hybridization of fully complementary domains, and does not take the secondary structure of the

scaffold into account. In light of these assumptions, our form of ∆Gshape
s should be seen as a

practical first approximation.

The local model provides, given a half-bound staple, a direct estimate of the local concentra-

tion of the opposing domain. Later in this section, we will find that the local model compares

favorably to experimental observations (Fig. 6.12) and, in Chapter 7 that it simulates the self-

assembly process to a degree accurate enough to enable the rational design of origami folding

pathways. So why bother with the global model?

As mentioned, the local model is not energy-consistent (Fig. 6.4), and we wish to validate its

results by comparing it against an energy-consistent model. The requirements for this second

model are:

1 Computing the transitions should be computationally inexpensive, and

2 The model should be as similar as possible to the local model, but not suffer from the

behaviour of Fig. 6.4.

To meet these requirements, the global model was developed.

Local model

The local model identifies the cost of the smallest loop that forms or is disrupted during each

transition, and we neglect the effects of the transition on other loops in the graph. Thus, in the

local model,

∆Gshape
s,s′ =


∆Gloop

min if a loop forms under s→ s′,

−∆Gloop
min if a loop forms under s′ → s,

0 otherwise.

(6.15)

The local approach does not lead to a well-defined Gshape
s for each configuration (see Fig. 6.4),

but is computationally less demanding than the global version as it does not require explicit

enumeration of all faces in a graph.

Global model

For a given planar embedding, it is easy to identify faces (and hence loops) within an origami,

as illustrated in Fig. 6.5. However, a given graph has multiple possible planar embeddings, as is

also shown in Fig. 6.5. To resolve this ambiguity, we specify whether the edge associated with

each staple lies on the inside or on the outside of the scaffold based on the intended origami
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sa

sb

sd

sc

sd

Figure 6.4: Two staples (blue) hybridize to an otherwise empty scaffold (green). Thermody-
namic inconsistency occurs in the local model because only the smallest loop (in red) is identified
during each transition. Because the change in free energy depends on the length of the loop, we
find in this case ∆Gshape

sa,sb + ∆Gshape
sb,sd 6= ∆Gshape

sa,sc + ∆Gshape
sc,sd .

structure. Viewing the simple origami design of Fig. 6.1a as a planar structure, we identify that

some body staples connect on the exterior of the scaffold, while others join inside the interior

(blue versus black and brown in Fig. 6.1), and this assignment makes the planar embedding of

the graph unambiguous at any stage of folding. A graph with m two-domain staples has m+ 2

faces, and the empty scaffold is treated as if both the initial inner and outer face contribute a

separate loop constraint: this could be corrected for at a later point: however, given the large

number of loops in the fully folded structure, this is only a minor inaccuracy.

In our global approach, we calculate ∆Gshape
s,s′ as described so far. This approach is ‘global’

because it accounts for the consequences of an incoming (or outgoing) staple for all present

loops, in addition to the contribution of a newly added or removed loop. If the ∆Gloop
j values

were not updated, the resulting dynamics would not form an energy-consistent model. A model

is energy-inconsistent if some states sa, sb, sc, sd exist such that

∆Gsa,sb + ∆Gsb,sd 6= ∆Gsa,sc + ∆Gsc,sd (6.16)

because transitivity applies to the difference in free energy, so both sides of the equation should
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equate to ∆Gsa,sd . The global model is energy-consistent, i.e., it follows from Eq. 6.8, Eq. 6.10

and Eq. 6.13 that

∆G(s, s′) = ∆Gs′ −∆Gs. (6.17)

6.4 Free energy of DNA bulge loops

Both the local and global model require a definition of the free-energy cost ∆Gloop associated

with the formation of a single loop. We consider the simple case of isolated bulge loop formation,

as in Fig 6.6, and derive an estimate for the free energy cost of loop formation as a function of

length and composition of the loop, allowing the loop to contain both single- and double-stranded

domains. Models of loop formation of purely single-stranded chains exist in the literature [24], to

which we fit our model. Then, in the self-assembly model, we assume the cost of loop formation

∆Gloop is equal to that of isolated bulge loop formation for chains of equal composition. The

model permits a free variable in the form of the ‘loop exponent’ that arises naturally in our

derivation. Examples of rate calculation are given in Section 6.6.

Given the bulge loop formation as in Fig. 6.6, we label the two states h and f for the

half-bound and fully bound state. As for the states s01, s11 in the origami model, which also

represent half-bound and fully bound staple bindings (respectively), the balance of rates follows

the Boltzmann equation:

R(h, f)

R(f, h)
= exp

(
−∆Gduplex

h,f −∆Gstack
h,f −∆Gloop

h,f

RT

)
(6.18)

The unbinding rate of the domain is taken as equal to the unbinding rate in ordinary bimolecular

duplex formation, as is the case in the origami model:

R(f, h) = k+ exp

(
∆Gduplex

h,f + ∆Gstack
h,f

RT

)
×M. (6.19)

The combination of Eq. 6.18 and 6.19 results in

R(h, f) = k+ exp

(
−∆Gloop

h,f

RT

)
×M. (6.20)

Our approach is to offer a direct approximation of R(h, f) by treating it as a bimolecular reaction,

where the effective concentration of the opposing domain is approximated using a freely-jointed

chain model. This then results in a functional definition of ∆Gloop that depends on the length
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a

b

i ii

iii iv

Figure 6.5: (a): A scaffold with two fully bound staples. (b): Ambiguity arises when deter-
mining a set of loops that reflects the entropic cost of folding the scaffold. To construct a graph
based on (a), vertices and edges corresponding to staple crossovers are created. Four planar
embeddings of this graph are illustrated in (i)-(iv). In these embeddings, faces are considered
either internal (black arrows) or external (blue arrows) relative to the scaffold. A staple-free
scaffold has two faces (one internal and one external), and adding any number of staples increases
the number of faces by an equal amount. As demonstrated by (i)-(iv), multiple embeddings of
the same graph are possible, each resulting in a different set of faces. In the model, each face
is interpreted as a looping constraint. We wish to determine, given a set of staples, a single
entropic cost, and it is not obvious which set of loops best reflects the change of entropy in the
physical system. This ambiguity is resolved by specifying a priori which staples are external
to the scaffold; if blue staples are internal and grey external, (b.iv) is the appropriate planar
projection.
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Figure 6.6: Bulge loop formation in a DNA duplex: two long duplex sections enclose a single-
stranded loop. Bulge formation is a special case of loop formation within the context of DNA
origami.
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and composition of the loop.

To compute the effective concentration of the opposing domain, denoted as ceff , we allow

a small interaction radius rc such that both domains need to be within distance rc to initiate

duplex formation. Let Prc be the probability that the two complementary domains are within

distance rc, then the effective rate is given by

R(h, f) ≈ k+ceff (6.21)

= k+
Prc
NAvrc

(6.22)

where NA = 6.022 · 1023 ×mol−1 is Avogadro’s number and vrc is the volume of a sphere with

radius rc. The DNA forming the loop is approximated as a freely-jointed chain consisting of two

distinct segment types, being double- and single-stranded DNA. Let the end-to-end distance of

the chain be given by R, denote by P (R) its probability distribution, then P loop
rc =

∫ rc
0 P (R)dR

is the probability that the ends of the loop are within rc, resulting in

R(h, f) ≈ k+

∫ rc
0 P (R)dR

NAvrc
. (6.23)

For a chain with m distinct segment-types, for a large number of segments,

P (R) = 4πR2

(
3

2πE[R2]

)3/2

exp

(
−3R2

2E[R2]

)
, (6.24)

where E[R2] =
∑

i≤mNib
2
i is the mean-squared distance between the two ends. Here, Ni is the

number of segments of type i with Kuhn length bi. For m = 1 the expression is a classic result

of statistical physics [161, 162] that we repeat here.

Freely-jointed chain

Figure 6.7: Freely-jointed chain. (public domain)

The freely-jointed chain is a statistical model of random behaviour of polymers. Let the
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chain consist of N segments of length d and let each segment ~ri ∈ R3 have a uniformly random

orientation, so that the probability distribution is given as

P (~ri) =
1

4πd2
δ(|~ri| − d). (6.25)

The end-to-end distance R, the expected end-to-end distance E[R], and expected squared dis-

tance E[R2] are given as

R =

∣∣∣∣∣
N−1∑
i=0

~ri

∣∣∣∣∣ E[R] = 0 (6.26)

E[R2] =

N−1∑
i=0

|~ri|2 = Nd2 (by independence of ~ri, ~rj when i 6= j) (6.27)

Let the components of R along some axes be Rx,Ry,Rz, then

E[Rx] = E[Ry] = E[Rz] = 0 (6.28)

E[R2] = E[Rx
2 + Ry

2 + Rz
2] = E[Rx

2] + E[Ry
2] + E[Rz

2] (6.29)

E[RxRy] = E[RxRz] = E[RzRy] = 0 (6.30)

and by the arbitrary orientation of the axis we obtain E[Rx
2] = E[Ry

2] = E[Rz
2] = 1

3E[R2].

The probability distribution of the end-to-end distance R, obtained for large N by a normal

approximation of the x, y, z components of R

fx =
1√

2π 1
3E[R2]

exp
−3R2

x

2E[R2]
(6.31)

P (R) =

∫ 2π

0

∫ π

0
fxfyfzR

2 sin θ dθ dφ (6.32)

= 4πR2

(
3

2πE[R2]

)3/2

exp

(
−3R2

2E[R2]

)
, (6.33)

is a basic result in statistical physics [161, 162]. Eq. 6.33 is a good approximation to the exact

distribution when R < d
√
N (see [161]). To see that the result holds for m > 1 observe that

Eq. 6.24 is the probability density for a multivariate Gaussian process. The combined end-to-end

distance of two chains A and B with two distinct segment lengths is therefore given by another

Gaussian with σ2 = E[R2
A] + E[R2

B], when we assume both chains to contain a large number of

segments.
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Substituting Eq. 6.24 into Eq. 6.23 we obtain

R(h, f) ≈ k+ceff (6.34)

= k+

∫ rc
0 P (R)dR

vrcNA
(6.35)

= k+


∫ rc

0 4πR2
(

3
2πE[R2]loop

) 3
2

exp
(

−3R2

2E[R2]loop

)
dR

4
3πr

3
cNA

 (6.36)

≈ k+

(∫ rc
0 4πR2dR
4
3πr

3
cNA

(
3

2πE[R2]loop

)3/2
)

(6.37)

=
k+

NA

(
3

2πE[R2]

)3/2

(6.38)

in which we have assumed rc � E[R2]loop so that exp
(

−3R2

2E[R2]loop

)
≈ 1 to approximate Eq. 6.36.

Using Eq. 6.20 we write

∆Gloop = −RTγ ln
Cγ
E[R2]

(6.39)

with γ = 3/2 and C3/2 =
(

1×M−1

NA

)2/3
3

2π . We express ∆Gloop in this way as it allows parameters

that generalize our description. γ = 3/2 is the well-known loop-exponent of a freely-jointed

chain [163]. It gives the scaling of the typical volume accessible to the end of a polymer with

the polymer’s contour length. Allowing an excluded volume around the chain tends to swell

a polymer chain, so that an effective γ > 3/2 is obtained [163]. Theoretical estimates predict

γ ∼ 1.75 for a three-dimensional self-avoiding walk [163]. The widely-used SantaLucia model

uses a value as high as γ = 2.44 in an equivalent calculation for a purely single-stranded bulge

loop, and is fitted to measurements on DNA loop formation [26, 164].

The parameters γ and C affect ∆Gloop in different ways. Increasing γ at fixed C exaggerates

the differences in ∆Gloop between longer and shorter loops, whilst also making all loops less

stable. Increasing C at fixed γ makes all loops more stable by a uniform amount. We explore the

properties of our model as γ and C are modulated. In particular, we consider the consequences

of varying γ while modulating C so that ∆Gloop for an 18-base single-stranded ‘bulge’ loop is

fixed at the value obtained in the freely-jointed case. γ and C are modulated together because

changing γ at fixed C might not result in reasonable values of ∆Gloop. As an illustration, we

plot ∆Gloop for a purely single-stranded loop as a function of length for γ = 1.5, 2.5 and 3.5 in

Fig. 6.8. The values of C2.5, C3.5 are fitted to obtain the same value ∆Gloop as the freely-jointed

chain model at length 18 nt, resulting in the values of Table 6.1. For comparison, we also show

the equivalent quantity as estimated by the SantaLucia model, which uses γ = 2.44 for longer



120

SantaLucia

γ=3.5

γ=2.5

γ=1.5

Δ
G

 k
ca

l-1
m

o
l-1

Bases in bulge

6.00

6.50

7.00

7.50

8.00

8.50

9.00

0 10 20 30 40 50 60

Figure 6.8: Comparison between the free energy costs of forming a single-stranded bulge loop for
different values of the parameter γ at T = 60 ◦C. The comparable quantity from SantaLucia’s
nearest-neighbor model [26] is also plotted for comparison.

γ Cγ
1.5 6.7× 10−19 m2

2.5 2.8× 10−18 m2

3.5 5.2× 10−18 m2

Table 6.1: Model parameters: volume exclusion exponent γ and corresponding Cγ for ∆Gloop.
C2.5, C3.5 are fitted to obtain ∆Gloop equal to that of γ = 1.5 for a loop of length 18 nt.

loops [26].

Given a loop with a certain content of duplex, single-stranded and staple crossovers, E[R2] =∑
i≤mNib

2
i is estimated as follows. A double-stranded domain is treated as a single segment of

length λx,ds, equal to the length of the helix, calculated using a contour length of 0.34 nm per

base for dual-stranded DNA, so that λx,ds = 0.34× x nm for a domain with x base-pairs [165].

We treat a single-stranded domain as consisting of L/λss segments of length λss, where λss = 1.8

nm is approximately the Kuhn length of single-stranded DNA [166], and L is the contour length

of the single-stranded section. In our model we use a contour length of 0.6 nm per base for

single stranded DNA, so that L = 0.6× x nm for a domain with x number of bases [166]. Thus

each single-stranded domain of x bases contributes x/3 Kuhn lengths of ssDNA to the loop.

Where two scaffold domains are held together by a staple, we represent the link by a segment

of length λss. For a chain of Nx segments of length λx,ds and M segments of length λss, we find

E[R2] =
∑

xNxλ
2
x,ds +Mλ2

ss.
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6.5 Simulation method

The state space S, rate matrix RT (t) and initial condition form an inhomogeneous continuous-

time Markov chain (S,RT (t), π0) (Def. 3.1.13), where s0 is the state indicating the empty scaffold

and T (t) is the externally imposed function relating time and temperature that cycles between

the initial temperature Tstart, the ending temperature Tend and then back to the initial tem-

perature with constant |dT/dt|. Instead of simulating the inhomogeneous CTMC directly, we

approximate T (t) and hence the rate matrix RT (t) as piecewise constant across 1 second inter-

vals, which is a reasonable approximation for typical cooling rates in experiments. Individual

traces are then generated by applying the standard Gillespie simulation algorithm at each in-

terval, as in Def. 3.1.12. To implement the Gillespie algorithm, it is necessary to calculate all

rates R(s, s′) from the current state s to alternative states s′. R(s, s′) will be non-zero in the

following cases (see Fig. 6.9):

1 All unbound domains can hybridize to complementary domains on staples, with a rate

given by Eq. 6.3.

2 Domains of half-bound staples can unbind, with a rate given by Eq. 6.4.

3 Domains of fully-bound staples can unbind, with a rate given by Eq. 6.6.

4 Half-bound staples can become fully-bound if the opposing domain is free, with a rate

given by Eq. 6.7.

1 4

3 2

Figure 6.9: A simulation of a DNA origami self-assembly, where each transition is labelled with
the corresponding transition type. In the simulation the red staple binds to the scaffold (1),
the half-bound blue staple becomes fully bound (4) and then again half-bound (3), and finally
releases from the scaffold (2). Approximately 400,000 transitions occur in single simulation of
annealing and subsequent melting of the tile in Fig. 6.1, when using dT/dt = 1.0 ◦C min−1.

The term ∆Gduplex, required in transition types 2 and 3, is computed straightforwardly using
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the model of SantaLucia et al. [26] and depends on the nucleotide sequence of the domain. The

term ∆Gstack is also needed in transition types 2 and 3, and is computed using a simple lookup

of the status of neighbouring domains. Finally, the term ∆Gshape occurs in transition types 2

and 4, and this is where the global and local model differ. In both the global and local model,

graphs representing state s and s′ are needed to calculate ∆Gshape. As the simulation moves

from state to state, the graph is updated. In the global model, a specific planar embedding of

the graph representing state s, as depicted in Fig. 6.5, is used. This specific embedding is not

required in the local model.

The graph H(s) = (V,E(s)) itself is defined as follows: each join between domains on the

scaffold is a vertex v ∈ V and each domain is an edge e ∈ E(s) between the appropriate vertices.

Fully-bound staples also define an additional edge between the two vertices that are linked by

the staple, and an example of such a graph is given in Fig 6.10. A labelling function

L : E→ {single-stranded, double-stranded, crossover} (6.40)

assigns the status of each edge, which also has a fixed length (number of nucleotides) if it is a

scaffold domain rather than a crossover. Each edge e ∈ E(s) is weighted as follows:

W(e) =


λ2
x,ds if L(e) = double-stranded of length x,

x

3
λ2
ss if L(e) = single-stranded of length x,

λ2
ss if L(e) = crossover.

(6.41)

The total weight of any loop (simple cycle) within the graph is then E[R2], the key quantity in

estimating the loop cost (Eq. 6.39). In the global model the graph H(s) is assumed to have an

unique planar embedding, identified by a set of faces. Faces are defined in the regular sense, i.e.,

they are subgraphs of H(s)

F (s) = {(Vi,Ei)|Vi ⊆ V,Ei ⊆ E(s)} (6.42)

where each set of edges Ei forms a cycle around a region in the embedding. The weight of each

face Fi ∈ F (s) is given by the weight of the edges.

W(Fi) =
∑
e∈Ei

W(e). (6.43)

As the simulation progresses, the faces of the graph are merged (transition type 3) or split

(transition type 4), and we use a custom data structure to dynamically update the faces of the

graph. Each face represents a looping constraint, and E[R2] for the loop is given by summing
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the weights of the edges that surround the face. The shape term in the model is found as (cf.

Eq. 6.13)

∆Gshape
s =

∑
∆Gloop (6.44)

= −
∑

Fi∈F (s)

RTγ ln
Cγ

W(Fi)
(6.45)

During a transition, it is only necessary to recalculate E[R2] and ∆Gloop for the affected loops.

The local model does not require an embedded graph representation, but uses the same

weighted graph H(s) representing s. Estimating the change of ∆Gshape is only necessary for

transitions where half-bound staples become fully bound (transition type 4), and in that case

we approximate

∆Gshape = ∆Gloop
min , (6.46)

where ∆Gloop
min is the minimal ∆Gloop for a loop incorporating the newly formed staple crossover

in the new state s′. This corresponds to finding a simple cycle, which has to include the to-

be-formed crossover, that minimizes E[R2]. We employ Dijkstra’s shortest path algorithm [167]

to identify this loop by searching for the shortest path in s′ between the two vertices that are

to be connected by the staple crossover. Given a state s and a half-bound staple p, let v1, v2

be the vertices that are joined by a new edge once p becomes fully bound by hybridization to

domain e. Let the new graph H′ be equal to H(s) except that L(e) = double-stranded, and let

DIJKSTRA(v1, v2) be the weight of the shortest path between v1, v2 in H′ under W. Then

∆Gshape
min = −RTγ ln

C

E[R2]min
(6.47)

E[R2]min = λ2
ss + DIJKSTRA(v1, v2). (6.48)

In the next section we give examples of rate calculations for each move type.

6.6 Example rate calculations

In Fig. 6.10 a partially folded origami is shown in states a − d, and we discuss how the term

∆Gshape is computed for the transitions R(a, b),R(a, c),R(b, a),R(c, a) and R(d, a), which form

an illustrative set of rate calculations. Firstly, in both the global and local models, initial binding

from solution and unbinding of a second staple domain do not require estimation of ∆Gshape.
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Transitions R(b, a) and R(c, a) fall into these categories. Following Eq. 6.3 and Eq. 6.6, we find

R(c, a) = k+[p] and (6.49)

R(b, a) = k+ exp
(

∆Gduplex
a,b /RT

)
×M, (6.50)

in which ∆Gduplex
a,b is the estimated standard free-energy change of formation of the duplex in

question and [p] is the staple concentration. Note that there are no domain stacking terms in

this example.

e1 e2 e3 e4
e5

e6e7e8e9
e10

c1
c2

Figure 6.10: Graph-representation with labelled edges of a partially folded origami in four (a−b)
states. Top: The internal graph representation with named edges. Edges named ‘e’ represent
single or double-stranded domains and ‘c’ edges represent crossover connections mediated by
fully-bound staples. a) The origami with one fully bound and one half-bound staple. b) The
origami with two fully bound staples. c) The origami with one fully bound staple. d) The
origami with one fully bound and two half-bound staples.

The other transitions require estimates of ∆Gshape, at least for the global model. In Table 6.2,

we identify the faces and associated loop costs which will be of relevance in the global model

(a subset of loop costs are also relevant to the local model). We remind the reader that loop

costs are determined by E[R2], which is in turn given by summing over the weights of individual
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State Face Edges Weight E[R2] /nm2

sa F1 e1, e2, c1, e9, e10 2× λ2
x,ds + (2x/3 + 1)× λ2

ss 97.0

F2 e3, e4, e5, e6, e7, e8, c1 1× λ2
x,ds + (5x/3 + 1)× λ2

ss 119.2

F3 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10 3× λ2
x,ds + (7x/3 + 0)× λ2

ss 209.7

sb F1 e1, e2, c1, e9, e10 2× λ2
x,ds + (2x/3 + 1)× λ2

ss 97.0

F2 e3, e4, c2, e7, e8, c1 2× λ2
x,ds + (2x/3 + 2)× λ2

ss 100.2

F3 e5, e6, c2 0× λ2
x,ds + (2x/3 + 1)× λ2

ss 37.8

F4 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10 4× λ2
x,ds + (6x/3 + 0)× λ2

ss 222.0

sc F1 e1, e2, c1, e9, e10 2× λ2
x,ds + (2x/3 + 1)× λ2

ss 97.0

F2 e3, e4, e5, e6, e7, e8, c1 0× λ2
x,ds + (6x/3 + 1)× λ2

ss 106.9

F3 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10 2× λ2
x,ds + (8x/3 + 0)× λ2

ss 197.3

sd F1 e1, e2, c1, e9, e10 2× λ2
x,ds + (2x/3 + 1)× λ2

ss 97.0

F2 e3, e4, e5, e6, e7, e8, c1 2× λ2
x,ds + (4x/3 + 1)× λ2

ss 131.5

F3 e1, e2, e3, e4, e5, e6, e7, e8, e9, e10 4× λ2
x,ds + (6x/3 + 0)× λ2

ss 222.0

Table 6.2: Weights for the faces in the global model. For simplicity, all scaffold domains have
an intrinsic length of x = 16 nt. Underline indicates the edge is double-stranded.

edges in a loop. These edges contribute (Eq. 6.41):

W(ci) = λss = (1.8 nm)2 for a crossover; (6.51)

W(ei) =

λ
2
x,ds = (0.34 nm× x)2 for double-stranded DNA with x nt

x

3
λ2
ss = (1.8 nm)2 × x

3
for single-stranded DNA with x nt

(6.52)

where in our example x = 16 nt for all domains. The above expressions are used in Table 6.2 to

calculate E[R2] and ∆Gloop for the various faces in the global model.

Global model

In the global model the shape term is computed as

∆Gshape
s,s′ =

∑
Fi∈F (s′)

∆Gloop(W(Fi))−
∑

Fi∈F (s)

∆Gloop(W(Fi)) (6.53)

where W(Fi) is the weight of a face in the embedded graph of state s. For γ = 2.5 we find at

T = 37.0 ◦C

∆Gshape
a,b = −3.828 kcal/mol, (6.54)

∆Gshape
a,c = 0.261 kcal/mol, and (6.55)

∆Gshape
d,a = 0.239 kcal/mol. (6.56)
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using Eq. 6.39. Combining these specific values with Eq. 6.4 and Eq. 6.7. we find

R(a, c) = 0.6546 · k+ exp
(

∆Gduplex
c,a /RT

)
×M, (6.57)

R(d, a) = 0.6782 · k+ exp
(

∆Gduplex
a,d /RT

)
×M, (6.58)

R(a, b) = 1.998 · 10−3 × k+ ×M. (6.59)

Local model

For transitions R(a, c) and R(d, a), the local model uses ∆Gshape = 0, as no loops are actually

formed during these transitions. Thus

R(a, c) = k+ exp
(

∆Gduplex
c,a /RT

)
×M, (6.60)

R(d, a) = k+ exp
(

∆Gduplex
a,d /RT

)
×M. (6.61)

In case of the transition Ra,b, a new loop is formed. We must find the cycle in b containing c2

that minimizes E[R2] – this is the loop consisting of edges

e5, e6, c2 (6.62)

E[R2] for this loop has already been calculated in Table 6.2 for the purposes of the global model.

Using this result along with Eq. 6.7, Eq. 6.15 and Eq. 6.39, we find

R(a, b) = 1.494 · 10−3 × k+ ×M (6.63)

6.7 Results and discussion

To simulate the assembly process we apply the model to a prototypical origami tile, depicted in

Fig. 6.1. The tile of Fig. 6.1 is one half of a special polymorphic tile that we discuss in Chapter 7.

We compare the model at various settings, taking into account the following measures:

• Annealing temperature (Ta), the first point during the annealing stage at which a moving

average of the fraction of hybridized domains surpasses 50%.

• Hysteresis, equal to Tm−Ta, where the melting temperature Tm is the first point at which a

moving average of the fraction of hybridized domains is lower than 50% during the melting

stage.

• Transition width ∆Ta, the difference in temperature between when 20% of the domains

are hybridized to when 80% of domains are hybridized.
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Each property is averaged over 160 independent simulations, which are generated using the

Monte Carlo algorithm outlined in Section 6.5. The moving average is taken over 12 seconds.

Unless stated otherwise the temperature drops by 1 ◦C min−1 starting at 85 ◦C until 25 ◦C,

at which point the temperature is cycled back to 85 ◦C at the same rate. We assume each

staple to be present at a concentration of 20 nM and we assume the scaffold strands are dilute

enough that reduction of staple concentration during folding can be neglected. Plots of average

anneal/melting curves of the origami correspond to the average occupancy of all domains. These

plots also include the anneal/melting curve for a single individual staple, which serves as contrast

between the average and individual staple behaviour.

In addition to the model described thus far, we also consider the following modifications:

• The volume-exclusion parameter γ is varied between 1.5, 2.5 and 3.5, for which we apply

the corresponding Cγ of Table 6.1.

• The stacking parameter is set to ∆Gstack = n〈∆Gbp(T )〉), where 〈∆Gbp(T )〉 is the average

contribution of a base-pair and n = 0, 1, 2, 3.

• The domain-specific (sequence-specific) stabilities are modified to be equal to the average

stability of a 16 base pair domain.

• The temperature gradient is varied between 0.1, 1.0 and 10.0 ◦C min−1.

In addition we present experimentally observed melting and annealing curves for the origami

tile in Fig. 6.12, where 20 nM staple concentration, 10 nM scaffold concentrations and equal

buffer conditions were used. Because our model assumes a constant staple concentration, in

comparison to the experiment we expect our model to over-estimate the annealing temperature

Ta and hence underestimate the hysteresis (∆Ta = Tm − Ta) (typically, a higher ratio of staple

excess is used, in which case the assumption of constant staple concentration is more reasonable).

6.7.1 Basic behaviour

We first display the behaviour of the global model using γ = 1.5 and without stacking stabi-

lization at nicks, that is, n = 0 in ∆Gstack(T ) = n〈∆Gbp(T )〉. The average fraction of domains

that are bound as a function of temperature during both annealing and melting is shown in

Fig. 6.11a. In addition, we show the degree of incorporation of a single typical staple (staple

X – highlighted in Fig. 6.11a). The first observation from Fig. 6.11a is that origami assembly

occurs at Ta ≈ 65 ◦C. This midpoint of the melting transition is consistent with that observed

in the equivalent experimental system (Fig. 6.12).

A second observation is that the formation transition in the model shows little hysteresis;

annealing and melting curves nearly overlap, despite the rapid rate of cooling. Hysteresis is a

generic feature of origami systems [153, 154], and significant hysteresis is also observed in our
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Figure 6.11: Staple binding as a function of temperature during cooling and heating for a simple
origami using the global model. ai) average number of scaffold domains that are occupied as
a function of temperature. Smoothed curves are plotted using γ = 1.5 and no contribution
from stacking at nicks. Also shown is the probability of two-domain binding for a specific staple
X, the highlighted staple. aii) indicates the annealing temperature of each staple separately.
Staples with an incorporation temperature < 56 ◦C are plotted dark blue. b) shows identical
data for a system in which each domain stability is set to equal the average for a 16 base-pair
domain. c) shows equivalent data to ai and aii, but obtained using stacking strength n = 2 and
γ = 2.5.

experimental measurements (Fig. 6.12). It is clear that the basic model with γ = 1.5, and no

stabilizing contribution of the stacking at nicks, fails to capture this effect.

Thirdly, the melting transition is fairly broad; the transition from 20% of domains bound

to 80% of domains bound during annealing occurs over a temperature range of approximately

∆Ta ≈ 9◦C. Transition widths observed in experimental data in Fig. 6.12a are sharper than
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Ta/
◦C

Global model - γ Local model - γ
Stacking n 1.5 2.5 3.5 1.5 2.5 3.5

0 64.6 63.4 61.9 64.6 63.2 61.7
1.0 66.6 65.2 63.8 66.4 65.1 63.8
2.0 68.0 66.7 65.5 67.9 66.6 65.5
3.0 69.1 67.9 66.7 69.0 67.8 66.7

Hysteresis/ ◦C

0 0.1 0.4 0.8 0.2 0.4 0.6
1.0 0.6 1.0 1.3 0.7 0.8 1.0
2.0 1.5 1.8 1.9 1.4 1.7 1.7
3.0 2.2 2.5 2.7 2.3 2.5 2.4

∆Ta/
◦C

0 8.7 8.6 8.6 8.8 8.8 9.1
1.0 6.6 6.5 6.5 6.7 6.7 6.8
2.0 5.2 5.1 5.0 5.4 5.3 5.2
3.0 4.4 4.2 4.3 4.4 4.3 4.3

Table 6.3: Model properties as a function of exponent γ and stacking strength n (base pair
equivalents, ∆Gstack(T ) = n〈∆Gbp(T )〉). Data reported for annealing temperature Ta hysteresis
and transition width ∆Ta. Data is presented for heating/cooling rates of 1 ◦C min−1 for the
origami shown in Fig. 6.1. Standard errors of the mean, estimated from 160 independent cycles,
are smaller than 0.1 ◦C for all data reported here. Results are reported for both global and local
models.

those predicted by the model (Fig. 6.11a). The wide annealing transition in the model is not

due to the individual staples having broad transitions. For example, staple X goes from 20%

to 80% bound over a temperature range of ∆TXa ≈ 2.5 ◦C. This width is representative of the

annealing behaviour of other staples; variation in staple-specific Tm occurs as some sequences

are more stable and due to differences in enclosed loops. In Fig. 6.11b, we consider a system

in which all domains, except the two longer domains of 32 base pairs, are assigned a domain

stability ∆G0 duplex equal to that of a 16-bp domain, averaged over all possible sequences. The

transition width ∆Ta is drastically reduced, and is nearly equal to that of the individual staple X.

6.7.2 Exploring the parameter space

We now explore the dependence of behaviour on model parameters. The key variable quantities

in the model are loop parameters γ and C (see Eq. 6.39), and the stabilizing contribution of

stacking at nicks ∆Gstack(T ) = n〈∆Gbp(T )〉. Table 6.3 shows the variation in the annealing

temperature hysteresis, and annealing width with γ and n. Cγ is varied with γ to ensure a
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constant cost for an 18-base bulge, as discussed in Section 6.4.

The following trends are clear.

1. An increased contribution from stacking at nicks results in a higher melting annealing

temperature, sharper transitions and increased hysteresis.

2. Increased γ leads to lower annealing temperatures and increased hysteresis, but has a weak

effect on transition widths.

Fig. 6.11c illustrates these effects for γ = 2.5 and n = 2. The consequences of increased sta-

bilization from nicks are explained as follows. Firstly, stacking at nicks is a net stabilizing

effect, and it is therefore unsurprising that increases this contribution results in a higher an-

nealing temperature Ta. Secondly, it is a cooperative interaction, meaning that the binding of

one staple favours the subsequent binding of another. Cooperativity results in narrower folding

transitions, because the binding of isolated staples is suppressed relative to the formation of

well-formed regions, which exaggerates hysteresis.

The influence of γ is more subtle. The net effect of increasing γ, with Cγ adjusted to maintain

the penalty for an 18-base single-stranded loop, is to increase ∆Gloop for longer loops. For the

origami studied here, the majority of loops are longer than 18 nucleotides. As larger γ results in

a larger penalty, we expect stronger cooperative effects for large γ, when the presence of other

staples can substantially reduce loop costs for incoming staples. Consistent with this hypothesis,

we see that increased γ leads to larger hysteresis (Table 6.3). Transition width ∆Ta, however,

shows only a weak dependence on γ.

We investigate the phenomenon of hysteresis using the model. We employ a temperature

ramp of |dTdt | = 10.0 ◦C min−1 and |dTdt | = 0.1 ◦C min−1 and plot the results in Fig. 6.13ab. Com-

paring the two protocols, we see that, on rapid heating, the melting temperature Tm increases

by around 1.3 ◦C, whereas the annealing temperature Ta decreases by 5.3 ◦C. Similar behaviour

was observed experimentally by Sobczak et al. [153], leading those authors to conclude that

“folding rather than unfolding was not in equilibrium”.

Variations of the model that were not explored

So far, we observed the effects of modifying the loop-exponent, the stabilizing contribution of

nick stacking, and the temperature ramp. There are many other ways in which the model can

be changed. For example:

• The annealing protocol could be adjusted to include an incubation period at constant

temperature.
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• The concentration of staples could be adjusted, which affects the expected time between

binding events of the first type (see Fig. 6.9).

• The stiffness of single-stranded DNA, given by Kuhn length λss, could be adjusted.

• The staples could be made to have more than two domains.

• k+, the bi-molecular rate constant, set equal to 106 mol−1 s−1, could be varied. Because

k+ acts as an effective scaling of time in the model, this is equivalent to changing the

temperature ramp dT
dt .

• The secondary structure of the scaffold could be included in the model.

• The nucleotide sequence of the domains could be shifted.

• Partial hybridization of domain sequences, including nucleotide mismatches, could be in-

cluded.

• Other origami designs could be simulated.

6.7.3 Global and local models

We now compare the local model with the global model that was used so far. The local model is a

simpler but less rigorous alternative, and will prove useful in simulating the polymorphic origami

tile in Chapter 7. To use the local model with confidence, however, it is important to establish

how it differs from the global approach. Table 6.3 directly compares the local and global models

in terms of annealing temperature, hysteresis and transition width. The predictions of the local

and global models are largely similar, although the local model predicts a weaker dependence of

hysteresis on γ. Because the (un)binding of one staple does not immediately (de)stabilize the

staples that are already bound to the scaffold, the reduced dependency on γ is not surprising.

We set γ = 2.5 and n = 2 as parameter values which provide a reasonable match with the

experimental data of Fig. 6.12, and compare the two approaches. In Fig. 6.14 a comparison

between the two models is given. The averaged response is largely equal between model and

experiment, and are consistent with the predictions of Table 6.3.
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Figure 6.12: Fluorescence measurements obtained during the annealing of origami are compared
to the model. SYBRr Green, a staining dye, preferentially binds to double stranded DNA and
an increase in fluorescent response indicates an increase in the amount of double stranded DNA.
Measurements are due to Dr. Jonathan Bath. a) dFluorescence/dt in arbitrary units is reported
against temperature during cooling (blue) and heating (red) at a rate of 1 ◦C min−1, for a system
of 10 nM scaffold, 20 nM of each staple and 1× SYBRr Green. b) Derivative of the probability
for a domain to be double stranded, as reported in the simulation using γ = 1.5 and n = 0 and
scaled arbitrarily in the y-axis and smoothed over a 23s interval. c) as (b) but using γ = 2.5
and n = 2 and equal scaling.
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Figure 6.13: Melting and annealing curves for n = 2 and γ = 2.5 and a cooling rate of
|dTdt | = 10.0 ◦C min−1 (a) or |dTdt | = 0.1 ◦C min−1 (b) plotted as in Fig. 6.11.
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Figure 6.14: Comparison between the local and global model for n = 2, γ = 2.5. Solid lines
correspond to predictions from the global model, while dashed lines are predicted by the local
model. In blue and red: respectively annealing and melting predicted under the global model.
In grey and black: smoothed annealing/melting curves for staple X.
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6.8 Computing the required assembly time

Taking the model at face value, we compute the minimum required time to assemble a population

of origami by considering the inter-arrival time for each staple. It is clear, intuitively, that a

lower staple concentration leads to fewer encounters between staples and the scaffold. A well-

formed origami requires exactly one of each staple to bind to the scaffold, and we want to

compute the time required for 99% of the scaffold population to reach completion. It suffices

to estimate the required time until the scaffold has encountered each staple, if we assume that

the encounter between a staple and scaffold always leads to a successful binding and staples

cannot unbind. We assume staples immediately bind with both domains, so internal bind rates

are not considered here. This approach also discounts the possibility of two half-bound staples

to occupy one domain each on the scaffold.

Staple binding is a bimolecular reaction for which we assume a well-mixed reaction vessel.

The interarrival time A(p) of a staple p at the scaffold is exponentially distributed as

A(p) ∼ Exp(k+[p]) (6.64)

where [p] is the concentration of the staple and k+ = 106M−1s−1 is the bimolecular reaction

rate constant. So, on average, the delay between the start of the folding and a staple of type p

binding to the scaffold, is given as

E[A(p)] =
1

k+[p]
. (6.65)

Given a single-domain staple p and its associated concentration [p] = 20nM, we find A(p) ∼

Exp(0.020) and the expected inter-arrival time is 50 s. For an origami design with 76 two-domain

staples and 14 single-domain staples, the time-to-completion Tc is a random variable given by

Tc = max

(
max
i∈1:76

B(pi), max
i∈1:14

A(pi)

)
(6.66)

where the distribution of B(pi) compensates for the double occurrence of binding sites on the

scaffold so that B(pi) ∼ Exp(0.040). The 90%, 95% and 99% percentile of the distribution of

Tc is ≈ 4 min, ≈ 41
2 min and ≈ 6 min respectively. We conclude that a homogeneous and

complete assembly of DNA origami requires in the order of 6 minutes, assuming a constant

staple concentration of 20nM. Reducing the staple concentrations increases the required time.
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6.9 Conclusion

We developed a model of origami assembly that enumerates internal loops in partially folded

origami and estimates the cost of loop formation through a freely-jointed chain approximation.

Two constants in the model are left as tuneable parameters, one being the scaling of the loop

cost as a function of loop size and the other being the stabilizing contribution due to helical

stacking. We identified a reasonable range of values of each parameter, and most combinations

result in plausible model predictions. A variant of the model that is not energetically consistent

was developed and found to closely approximate the behaviour of the original model.

Although the model is basic and void of steric constraints, it provides qualitative predictions

of hysteresis and annealing temperature, indicating the time-scales in the model are reasonably

well calibrated. The model provides support for reasoning about folding pathways; specifically,

it provides a handle on the relation between staple incorporation and loop- and domain-stability,

as well as the stochastic nature of DNA origami self-assembly. In the next chapter we utilize

our model to control the pathway of a polymorphic origami tile.
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Chapter 7

Folding pathways for a polymorphic

tile

In this chapter we report on a novel type of DNA origami which, by design, does not fold

into a single eventual shape. This polymorphic tile permits 74 separate configurations that

each are fully-formed, and where each configuration corresponds to one of seven distinguishable

shapes. Imaging the assembled tiles using AFM reveals that some well-formed tile shapes occur

frequently, separate from a larger variety of ‘broken’ or ‘incomplete’ tiles. At this point we form

two alternative hypotheses regarding the assembly process. The first hypothesis states that the

distribution of shapes results from an assembly process that reaches an equilibrium, so that

the distribution of shapes is a function of the thermodynamic stability of each fully assembled

shape. In the second hypothesis, we assume each of the final folds are approximately equally

stable, but the deciding factor in the final shape is the folding pathway. That is, the early

interaction between staples and scaffold restrict the subsequently available shapes, and recovery

from previous behaviour is hard.

In this chapter we apply the self-assembly model from Chapter 6 to the polymorphic tile,

and find qualitative agreement between model prediction and experiment. The model suggests

folding behaviour according to the second hypothesis, and to test this we modify the tile design

to drastically alter the predicted folding pathway. The modifications to the original tile are

small enough to avoid disturbing the relative differences in thermodynamic stability between

folds. Imaging of the modified tile reveals a similar strong response in the experimentally

observed shapes, which confirms the second hypothesis. This demonstrates control over the

folding pathway of DNA origami in a way that was not demonstrated before, and validates

the principles of origami self-assembly as given by the model of Chapter 6. It also provides

intuitive understanding of self-assembly and complements existing studies into the nature of

DNA self-assembly [22, 155, 154, 157]. More specifically, we characterise the folding pathway as
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a cooperative assembly.

This chapter is organized as follows. First, we discuss the design of the polymorphic tile

and provide a description of the state space of the model in Section 7.1. In Section 7.1.2 we

define what constitutes a well-formed tile and classify the well-formed tiles according to shape.

The simulation method is based on the self-assembly model of the previous chapter, which we

discuss in Section 7.2. In Section 7.3 we describe the folding pathway for the polymorphic

tiles and discuss modifications to the design that lead to a different distribution of shapes. The

simulation code used to simulate the regular and the polymorphic tile is available at [2]. This

chapter contains results from [10].

a

cb

k+ ceff
k+c

k-

dimer

Figure 7.1: Adapted from [10]. The polymorphic tile. a) Joining two monomer scaffolds head-
to-tail results in a tile that can adopt one of seven shapes. b) The polymorphic tile consists of
two rectangular bodies joined along the side. Left: AFM imaging. Right: Scaffold routing. c)
Same as (b) but the join occurs on the short side of the tiles. Scalebar: 50 nm.

7.1 Description of the polymorphic tile

We present a polymorphic version of the tile used in the previous chapter (Fig. 6.1), and in

the remainder we call the tile from the previous chapter the ‘monomer’ tile. To create the

polymorphic version, two copies of the monomer scaffold are merged head-to-tail into a single

dimer scaffold. This design allows the scaffold and staples to self-assemble into several shapes,

as in Fig. 7.1bc, and for this reason it is called a polymorphic tile.

Both the monomer and the polymorphic tile are designed and synthesized by Dr. Kather-
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a) b)

Figure 7.2: The dimer scaffold pictured with one red staple and two identical blue staples. Two
identical and fully bound staples can be incorporated in exactly two ways: compare a and b. The
scaffold domains complementary to the blue staples are highlighted in light green and orange.

ine E. Dunn from pUC19 plasmid, who also performed AFM imaging of the tiles. The thesis by

Dunn is an excellent reference on the polymorphic tile [168], and we highlight relevant details of

the assembly protocol. Prepared dimer scaffold, at 4− 10 nM concentration, was assembled in

the presence of staples at 10x excess concentration by cooling from 95 ◦C to room temperature at

a rate of 1 ◦C min−1 in a buffer containing 12.5mM magnesium acetate and 40mM Tris-acetate

(pH 8.3). By comparison, all our simulations assume a constant staple concentration of 20 nM

and equal buffer conditions, and are run at a temperature gradient of 0.4 ◦C min−1. The scaffold

concentration is assumed to be negligible.

A fully-assembled polymorphic tile consists of one dimer scaffold and two copies of each

staple: there are 76 types of two-domain staples and 14 types of single-domain staples. A dimer

scaffold is a single circular scaffold that repeats the monomer sequence twice, and as a result

has repeated domains that are exactly the length of a monomer scaffold apart. Examples of the

dimer scaffold routing are given in Fig. 7.3 and Fig. 7.4. Two identical two-domain staples,

each hybridized to the dimer scaffold with both domains, can occur in one of two configurations

(states), where we discount the possibility of scaffold entanglement. In Fig. 7.2 two dimer

scaffolds are depicted, each incorporating a single red staple and two identical blue staples. The

two configurations are not isomorphic, because the scaffold nucleotide sequences (if not length)

of the formed loops are different in each configuration. As a result, there are 276 combinations

in which two of each of the 76 staples could be hybridized to the scaffold. Many of these

configurations are inaccessible due to steric constraints, and we discuss an approximation to the

steric constraints for use with the self-assembly model in Section 7.2.1.

Some folds are flexible, so that a range of closely related shapes would be observed by AFM

imaging, rather than a single shape, and this must be considered when comparing the model

predictions with AFM imaging. Specifically, the scaffold routing of Fig. 7.3c allows the two



140

halves to rearrange somewhat freely: this is less true for the scaffold routings in Fig. 7.3abd.

7.1.1 State space

For each type of two-domain staple there are 34 distinct patterns of domain binding (states),

with between zero and four copies of the staple bound to the dimer scaffold. We enumerate

the possible states by conditioning on the number of staples attached to the dimer scaffold as

follows:

• The first possibility is an empty scaffold without any attached staples.

• Given one attached staple, there are four states in which the staple is half-bound and four

states in which the staple is fully bound.

• Given two attached staples, there are six states in which both staples are half-bound, eight

states with one half-bound and one fully bound staple, and two states with two fully bound

staples.

• Given three attached staples, there are four states with three half-bound staples and

another four states with one fully bound and two half-bound staples.

• Finally, there is the possibility that four half-bound staples are attached to the scaffold.

For a single-domain staple and the associated pair of scaffold domains there are four states, as

each domain is hybridized independently of the other.

The above enumeration ignores rotational symmetry, which reflects the approach used in

the simulation code, but this bears no consequence on the correctness of the simulation. We

therefore distinguish between 3476 × 414 states during the assembly of the polymorphic tile.

There exist 276 states for which each two-domain staple is fully bound. Formally, the state

space is given as S = p1 × p2 × . . .× p90, where pi denotes the set of possible states for the i-th

staple.

7.1.2 Definition of well-formed tiles

The eventual fold of the tile is classified in the model as either well-formed or misfolded. A

well-folded tile consists of two monomer tiles joined via the scaffold, for example see Fig. 7.1bc,

and we define:

Definition 7.1.1. An dimer tile is well-formed if

1 No part of the scaffold is left unhybridized, and

2 Each staple occurs exactly twice in the structure.
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Note that each requirement can be satisfied independently of the other. Because well-formed

tiles have the maximum number of possible base-pairs, and contain no unhybridized sections, we

hypothesize that well-formed tiles are very close to the thermodynamic optimum, and assume

that the thermodynamic stability of each well-formed dimer tile is approximately equal, despite

variations in shape.

Various events may prevent the scaffold from reaching a well-formed fold. Importantly, the

polymorphic tile has modes of failure that are not found in regular origami. For example, certain

combinations of staple joins can entangle the scaffold. Another mode of failure are incompatible

partially folded segments of the tile (see Fig. 7.4e). In this light the observation of seemingly

well-formed tiles is remarkable in itself (see Fig. 7.1bc).

An interesting question now is: given an arbitrary dimer scaffold, how many well-formed

structures exists, given the steric constrains of the molecular geometry? What if we allow more

general scaffolds? In this thesis, no satisfying answer to this question is found. Instead, we

merely demonstrate that 74 different scaffold routings of the dimer tile exists that result in

well-formed tiles, while respecting the natural constraints arising from the molecular geometry.

We now classify the well-formed tiles according to shape. To start, we assign each staple a

type according to their position in the tile. The first group are the single-domain staples, grey in

Fig. 7.3, which occupy the sides of the tile. The other staples exclusively consist of two domains,

and are classified as either body staples or seam staples. The seam staples are centrally located

in the design, shown as dark orange, and come in five pairs. The other two-domain staples are

not centrally located and are called body staples, shown in blue.

To classify each shape, we describe the state of seam staples. The fold m:n has m pairs of

seam staples that connect domains within the same half of the scaffold, and n pairs of seam

staples that form connections between domains on opposite halves. The folds m:n and n:m

are of equal shape and cannot be distinguished in the experiment, so we end up with three

types: 3:2, 4:1 and 5:0, respectively a, b and c in Fig. 7.3. The type 5:0 comes in four variants;

i, ii, iii, iv, that indicate varying levels of offset between the two halves (respectively ci, cii, ciii,

civ in Fig. 7.4). In addition, there is the possibility that the scaffold routing is not planar,

but has crossovers, and such folds are called N.P. for ‘not planar’ (Fig. 7.3d). Folds that are

not well-formed, as in Fig. 7.4e, are referred to as ‘N.T.’ for ‘no type’. At the time of writing

there is no construction available to demonstrate that only the just mentioned shapes satisfy

both requirements to be ‘well-formed’, but based on experimental evidence we believe the list is

exhaustive.

We now explain how many states correspond to each of the well-formed shapes, which we call

the multiplicity of the shape. Considering the 5:0i shape, each long (32-nt) single domain staple
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can occur either on the central join between the halves or on the outer edge (see Fig. 7.3c),

and the multiplicity of the shape 5:0i is two. For the shapes 5:0ii, 5:0iii, 5:0iv (Fig. 7.4c)

the join of the two tiles occurs near one of the corners of each half of the structure. Since

the corners are distinguishable from one another by scaffold sequence, the multiplicity of these

shapes is four. The non-planar folds are unique in having multiple crossings of the scaffold, and

for this reason no planar embedding of the associated graph is possible. These folds have either

three (Fig. 7.4di) or five (Fig. 7.4dii) crossovers of the scaffold, where a similar corner-specific

symmetry applies. We list the multiplicity of each shape in Table 7.1.

Shape Multiplicity Details H(s) planar?

5:0i 2 top/bottom variants Yes
3:2, 4:1, 5:0ii, 5:0iii, 5:0iv 4 corner variants Yes

N.P. 52 2×
((

6
3

)
+
(

6
5

))
,

left/right × position of crossover
No

Sum 74

Table 7.1: Each well-formed shape corresponds to not just one, but several different scaffold
routings (states), which we call the multiplicity of the shape.

7.2 Model

To simulate the self-assembly of the polymorphic tile we employ the self-assembly model of

Chapter 6, which we augment with the exclusion algorithm of Section 7.2.1. We first discuss

the model parameterisation.

We employ the ‘local’ self-assembly model with basic parameterisation, this being the volume-

exponent γ = 1.5 and no energetic contribution from end-to-end stacking of helices (∆Gstack =

0). Distinct from the model description in Chapter 6, we set the domain stability to be inde-

pendent from the domain nucleotide sequence. For regular domains ∆Gduplex is equal to the

predicted stability averaged over all possible sequences of 16 base-pairs, and for double-length

domains it is averaged over all possible sequences of 32 base-pairs.

A large number of intermediate states admit no planar embedding of the associated graph,

and these states cannot be ruled out based on steric requirements. In addition the well-formed

shapes of type N.P. also do not permit planar graph embedding. Therefore, we use the local

variant of the self-assembly model, rather than the global variant which currently does not allow

states with non-planar embedding.

Parameterisation

To obtain a simulated distribution of shapes, we generate 1600 trajectories in the model, using

an annealing rate of 0.4 ◦C min−1. For each trajectory, we check if the final state is equal to one
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b

a

c

d

Figure 7.3: Four possible folds of the polymorphic tile, each having an unique scaffold routing
and staple orientations. In blue: body staples. In orange: seam staples. In grey: single-domain
staples. The scaffold is in green/pink. These shapes are classified as 3:2 (a), 4:1 (b), 5:0i (c)
and non-planar (N.P.) (d).
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a b

d

i ii iii ivc

5:0

N.P.

i ii

e

N.T.

Figure 7.4: Adapted from [10]. Different folds for the polymorphic origami tile and the corre-
sponding seam schematic. a-c) These folds are distinguished by considering the folding pattern
of the seam staples, leading to classifications 5:0, 4:1 and 3:2 respectively. Shape 5:0 is sub-
divided into four shapes depending on offset, 5:0i, 5:0ii, 5:0iii, 5:0iv, depicted respectively as
ci, cii, ciii and civ. d) A fold where the two halves are joined with zero offset is possible when
multiple crossovers occur in the scaffold routing. Folds with three (di) or five (dii) crossings are
possible. e) This polymorphic tile consists of three well-formed components, but as a whole, the
tile is not well-formed because single stranded sections between the components remain.
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of the 74 well-formed states (cf. Table 7.1), and if so, label it with the appropriate shape. If

it is not a well-formed tile we report it as N.T. (no type). The resulting distribution of shapes

is sensitive in the temperature ramp dT/dt, but uncertainty in the experimentally observed

distribution prevents meaningful fitting to data. The cooling rate of 0.4 ◦C min−1 was chosen

from one of three rates, 0.1 ◦C min−1, 0.4 ◦C min−1 and 1.0 ◦C min−1, by way of comparison to

the empirical distribution found in the unmodified experiment. This procedure puts the model at

risk of overfitting dT/dt, which we justify as follows. Firstly, each rate in the model scales in the

bimolecular rate constant k+, so that k+ is an effective time-scale in the model, alongside dT/dt.

As a result the sensitivity in dT/dt is equivalent to the sensitivity in k+. Because the value of

k+ = 106M−1s−1 is applicable within an order of magnitude, a conservative fitting procedure

of dT/dt is in order. Secondly, further uncertainty in the rates is due to staple concentration:

the setting for the simulation (all staples at 20 nM) is lower than that in experiment (4-10

nM scaffold in presence of 10x staple excess). Thirdly, we have chosen a value from a highly

restricted set of options. No further fitting was performed.

7.2.1 Exclusion algorithm

In the model, each state describes a particular set of staple binding behaviour. A specific type of

staple is, for example, present twice on the scaffold in a given orientation, or perhaps not at all.

Given a fully-bound two domain staple, the two hybridized scaffold domains are held together

within a few tenths of a nanometre of each other. The steric requirements imposed by each staple,

however, cannot be satisfied in many states. This problem does not occur for the monomer tile.

We develop an algorithm to prevent the model from accessing these infeasible states. This

method yields an approximation to the real steric constraints: it does not guarantee that each

legal state satisfies the constraints or that all states that satisfy the steric constraints are legal.

The simulation method from Section 6.5 still applies, but a non-zero transition R(s, s′) > 0 is

removed from the model if the target state s′ is illegal. We now describe the set of legal states.

Define a connected component of an origami as a set of hybridized scaffold domains such

that each domain can be reached from each other domain without leaving the set. Two scaffold

domains hybridized to the same staple are defined to be connected, as are two adjacent scaffold

domains hybridized to different staples. We now define the set of connected components in an

origami in terms of the graph embedding. As in Section 6.5, each state has a graph-representation

H(s) = (V,E(s)) (7.1)

so that the vertices are the joins between domains on the scaffold and edges represent domains

between the appropriate vertices and staple-induced links between non-adjacent vertices. A
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labelling function

L : E→ {single-stranded, double-stranded, crossover} (7.2)

assigns the status of each edge, and we define a derived graph H′(s) = (V,E′(s)) by dropping

the edges that represent unhybridized scaffold domains

E′(s) =
{
e ∈ E(s)

∣∣∣L(e) ∈ {double-stranded, crossover}
}
. (7.3)

H′(s) is a non-directed graph where edges induce an equivalence relation ∼R on the vertices

that indicates if a path exists between any two vertices. Then the set of connected components

C(s) = {(Vi,Ei)}i is equal to the set of equivalence classes of vertices (and their associated edges)

under this relationship,

{Vi}i = V/∼R (7.4)

Ei =
{

(v1, v2) ∈ E′(s)
∣∣∣v1, v2 ∈ Vi,

}
. (7.5)

A segment of origami is considered stress-free if it occurs as subset of a well-formed two-

dimensional shape (see Fig. 7.4). Let Sw be the set of 74 states that correspond to a well-

formed shape (see Table 7.1). These pre-defined folds satisfy the constraints imposed by finite

staple length and steric exclusion. A partially folded origami s is legal if and only if each of the

components are stress-free, that is

∀ (V,E) ∈ C(s) ∃sw ∈ Sw : E ⊆ E(sw). (7.6)

As the simulation moves from state to state, a representation of the connected components is

updated with each transition.

Misfolds are said to occur in the model when at least two connected components would be

incapable of satisfying the constraints if they were to become connected to one another. At

that point, folding cannot advance unless one of the components unfolds, allowing another to

expand. Figure 7.4e shows a misfolded dimer that has three connected components that can

join to form a stress-free state. When simulating the unmodified polymorphic tile, about half

of the simulations end in a misfolded (N.T.) state.

7.2.2 Example rate calculations

Following the model, the rate of a half-bound staple binding to the scaffold via its unbound

domain is given by k+ceff where ceff is the effective concentration of the opposing domain and
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given as (Eq. 6.38):

ceff =
1

NA

(
3

2πE[R2]

)3/2

(7.7)

where E[R2] is the weight of the newly formed loop between appropriate vertices, found by

Dijkstra’s shortest path algorithm, plus a segment of length λss representing the newly formed

link that closes the loop (Eq. 6.47). We now give rate computation examples for the dimer

scaffold, where a half-bound staple can bind to a nearer and further available complementary

scaffold domain.

Consider the half-bound staple shown in Fig. 7.5a that is hybridized to an otherwise empty

scaffold. A seam staple, labelled A, is used as an example here. Its second domain hy-

bridizes to either of two sites: a closer site is connected by a 448-nt single-stranded DNA

chain (E[R2] = 480 nm2) and the more distant site is connected by a composite chain com-

prising a 2208-nt single-stranded chain and one rigid 16-bp double-stranded segment (E[R2] =

2400 nm2). Following the computation we find the effective transition rate between s0 and s1

to be R(s0, s1) = 51 s−1, and for the alternative the option of forming the longer loop the rate

is 4.5 s−1. In this case the staple is 11 times more likely to bind to the closer domain.

Binding of one staple affects the binding of others by changing the characteristics of the

sections of partly-formed origami that link their two binding domains. We now compute the

loop cost and hybridization rate for a second seam staple, staple B, in the presence or absence

of staple A. In the absence of staple A, the shorter of the two loops that connect two binding

domains of the second staple consists of a 864-nt single-stranded DNA chain: E[R2] = 990 nm2,

and the effective transition rate is 18 s−1. In the presence of staple A, the loop passes through the

link formed by staple A and comprises 384 nt single-stranded DNA, 3 rigid 16-bp double-stranded

DNA segments and a staple crossover modelled as a single segment of length λss (Fig. 7.5b):

for this shortened loop, E[R2] = 530 nm2 and effective rate R(s2, s3) = 44 s−1. Inserting staple

A increases the rate of hybridization of the second domain of staple B by a factor of 2.5 by

shortening the distance between its binding sites. Further details on the computation are found

in Table 7.2.

7.2.3 Treatment of paired seam staples

The paired seam staples (orange, Fig. 7.3) represent a somewhat special case in the model.

When one of the pair of staples is fully bound to the scaffold, it brings the hybridization sites

for the other staple in very close proximity. The situation where both seam staples are fully

bound results in a particularly small loop consisting of exactly two segments of length λss, so
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Figure 7.5: Adapted from [10]. Example rate calculations for the polymorphic tile. The presence
of staple A increases the stability of staple B.

Loop Weight E[R2]
/nm2

ceff

/µM
∆G
/kcal mol−1

loop-1 0× λ2
16,ds + (28× 16/3 + 1)× λ2

ss 487.1 50.9 6.54

alternative to loop-1 2× λ2
16,ds + (138× 16/3 + 1)× λ2

ss 2447 4.52 8.14

loop-2 4× λ2
16,ds + (24× 16/3 + 2)× λ2

ss 539.6 43.7 6.64

loop-2, without A 2× λ2
16,ds + (54× 16/3 + 1)× λ2

ss 995.5 17.7 7.25

Table 7.2: Adapted from [10]. Composition, weights, effective concentration and energetic cost
for the loops of Fig. 7.5. ∆G is given for T = 60 ◦C.

that E[R2] = 2λ2
ss for this loop. The predictions of the model remain physically sensible: a

second staple binding to a seam has an overall ∆G which is ≈ 4.4 kcal mol−1 less favourable

(at T = 60 ◦C) than a continuous duplex. This destabilization is equal to that expected from a

5-nt bulge within a duplex.

This cooperative effect is destroyed when one of the seam staples is removed from the input

set of staples. In this case the model predicts incorporation temperatures for the unbroken

staple that are lower than the regular case by 2.0 ◦C, compared to 2.2 ◦C observed in experiment

through application of FRET measurements [10]. It is therefore clear that we do not overestimate

the cooperative stabilisation of seam staples.

7.3 Folding pathway

The predictions of the model are compared to experimental observation of the tiles and we

validate our understanding of the pathway through modifications to the experiment. Initially,

we discuss the folding pathway for the unmodified polymorphic tile.

Given detailed AFM imaging, such as in Fig. 7.1bc, we are able to unambiguously classify

the assembled tile as one of the pre-determined shapes. To estimate the distribution of shapes,

however, many observations are required. For this reason the field of view is adjusted to contain

not just one tile, but many of them, and subsequently the resolution per tile diminishes, making
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Design N.P. 3:2 4:1 5:0i 5:0ii 5:0iii 5:0iv N.T.

Original 65 268 207 162 32 33 4 829
Broken seam 2 70 60 955 238 222 38 15
Elongated staples 8 602 106 216 89 16 4 559
Alternative seam 1 1517 2 10 1 3 0 66
Lower-right 113 187 190 119 30 23 182 756

Table 7.3: Predicted shape distribution for the polymorphic tile. Each design is simulated at
|dT/dt = 0.4| ◦C min−1 for a total of 1600 paths.

an unambiguous classification more difficult. To resolve this, a fitted value for the relative offset

of the two halves of the tile is reported [168]. The shapes predicted by the model are equally

classified by relative offset to allow a direct comparison (Fig. 7.6). Only objects with a surface

area close to what is expected for a well-formed tile are considered for offset fitting [10]. Of

the considered objects, 44% obtained a successful fit. This is not to say 66% of the tiles were

misfolded. Because the tile is flexible, well-formed tiles can twist prior to fixating to the mica

surface. In the following we discuss the simulation results, experimental results and folding

pathway of five variants of the polymorphic tile:

• The unmodified tile

• Broken seam modification

• Elongated staple modification

• Alternative seam modification

• Lower-right modification

The simulation output for all five variants of the experiment is found in Table. 7.3.

7.3.1 Seam-mediated assembly

The folding pathway is expected to be dominated by the behaviour of the body staples. In

isolation, the loops closed by these staples are smaller than those closed by the seam staples,

meaning body staples are generally more stable than seam staples early in the assembly. In

addition, the body staples outnumber the seam staples roughly seven-to-one. If we assume

each body staple binds to the nearest location along the scaffold (ignoring the presence of other

staples), the fold necessarily ends up as 5:0i, as in Fig. 7.3c, because every other fold requires

at least some body staples to bind to the further rather than the nearer location.

Contrary to that intuition, the model predicts, and the experiment confirms, that each of

the 5:0, 4:1 and 3:2 shapes occur approximately with equal ratio (Fig. 7.6a). This is explained

by the pairing of the seam staples. The cooperative effect between the pair of seam staples is

significant, because the presence of one seam staple brings the binding sites of the paired staple

in close proximity, which we also discuss in Section 7.2.3. The presence of one body staple, in
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contrast, also promotes the binding of other body staples, though to a lesser extent. Because of

the increase in stability once both seam staples are in place, the connections mediated by the

paired seam are less likely to unbind, when compared to the scaffold joins mediated by body

staples.

The stabilizing effect of the seam staple pairing is observed in the simulation by counting the

number of re-orientation events for each staple type. In the polymorphic tile, each two-domain

staple binds to the scaffold in one of two possible orientations, as depicted for the blue staples

in Fig. 7.2. A reorientation event is counted each time the orientation changes, and is counted

separately for each type of staple. In the example of Fig. 7.2, the simulation counts one re-

orientation event if the state changes from a to b or vice versa. In Fig. 7.7a the average number

of reorientation events during assembly is depicted for each staple type, and shows that seam

staples are less likely to reorientate during the folding.

The early incorporation of seam staples, and their increased stability when compared to the

body staples, disfavours the formation of the 5:0 shape. Staples are more likely to stay hybridized

to nearer domains (Section 7.2.2), because binding to nearer domains results in shorter loops

and hence in reduced thermodynamic cost. The 5:0 shape requires the seam staples to join

between domains that are spaced far apart along the scaffold, and assuming an otherwise empty

scaffold, these connections are less likely to form. The relatively low rate of reorientation by

the seam staples further suggests that body staples, although vastly outnumbered by the seam

staples, are effectively steering the folding away from reaching the 5:0 shape. We illustrate the

folding pathway in Fig. 7.8.

To further demonstrate the importance of seam behaviour in the model, we show that the

early seam staple behaviour is highly indicative of the eventual shape. On average, the seam-

staples are incorporated slightly earlier than body staples. The annealing temperature for a

two-domain staple is given by the first temperature at which, on average, at least one staple is

bound to the scaffold with both domains (so that the average occupancy for that type of staple

is ≥ 50%). For one set of 1600 paths, the following temperatures were found:

• The average for seam-staples was 64.21 ◦C

• The average for body-staples was 63.91 ◦C

• The average over all two-domain staples was 63.95 ◦C.

Given the temperature gradient of 0.4 ◦C min−1, we find that seam staples attain 50% occu-

pancy about 3/4-ths of a minute earlier than body staples. Some body staples are, however,

incorporated earlier on average, and some later, as depicted in Fig. 7.9. The order depends

on the position in the origami, because the loops closed by each staple are of different lengths,

meaning some staples are destabilized more than others. To demonstrate the influence of staple
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behaviour on the eventual fold, we test for three properties at T = 64.21 ◦C, the average an-

nealing temperature of seam staples. Each property is typical to one of the 5:0, 4:1, or 3:2 folds.

The properties that we test for are:

1 A 140-domain seam link with no cross-link to the other half of the scaffold, characteristic

of fold 5:0.

2 A 112-domain link with a shorter cross-link, characteristic of fold 4:1.

3 Two 56-domain links, including one internal link and one cross-link between halves of the

scaffold, characteristic of fold 3:2.

The properties are mutually exclusive, so that any dimer tests positive for at most one property.

Satisfying one of the properties is highly indicative of eventually reaching the associated fold, as

we see in Fig. 7.10. Additionally, the correlation between seam pairs shows a distinct pattern

at early stages of the folding, which is further evidence of the influence of seam staple behaviour

on the final shape (Fig. 7.11).

We now describe two adaptations to the original design, dubbed ‘broken seam’ and ‘extended

staples’. Both are designed to alter the folding pathway without changing the relative stability

of the well-formed shapes.
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Figure 7.6: Adapted from [10]. Imaging obtained from AFM was processed to identify objects
of approximately the predicted size of a well-formed tile. An automated fit determines the
fractional offset that occurs either on the long edge or the short edge of the tile. The number of
fitted tiles (N) and an estimate of the fraction of well-formed tiles in the experiment is displayed
on the top right Lower half: matching predictions from the model by simulating 1600 paths at
0.4 ◦C min−1. a) Original polymorphic tile design. b) Broken seam modification. c) Elongated
staple modification. d) Alternative seam modification. e) Lower-right modification.
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Figure 7.7: Adapted from [10]. The number of reorientations for each staple type during
annealing, averaged over 1600 runs. A reorientation occurs when a fully-bound, two-domain
staple unbinds from the scaffold at one domain, and then binds at the alternative binding
site. Bar: Reorientation counts between 5.0 - 20.0 are coded by colour. Staples with less
than 5.0 reorientation events on average plotted dark-blue and staples with more than 20.0
reorientation events on average are plotted dark-red. a) The original staple set. b) The broken
seam modification. c) The elongated staple modification. d) The alternative seam modification.
e) The lower-right modification.
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4:1 3:2(1:1)5:0

Figure 7.8: Adapted from [10]. Idealized folding pathway for the polymorphic tile. Seam
staples mediate relatively stable long distance scaffold connections. Seam connections are more
likely to form between nearer domains, ultimately suppressing the formation of 5:0. In the
figure, the intermediate fold 1:1 is formed by inserting four pairs of seam staples in such a way
that minimizes the length of the newly formed loops. This intermediate state can still fold into
shapes 3:2 and 4:1, but cannot form 5:0 without breaking previously formed seam connections.
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Figure 7.9: The average (smoothed) incorporation of each staple as a function of temperature,
where 100% completion indicates two staples of the corresponding type are bound to the scaffold.
Staples are colour-coded by their position in the tile. Double length (32-nt) single-domain staples
are incorporated before the 68 ◦C mark (top grey line), while shorter (16-nt) single-domain staple
hybridize to the scaffold at temperatures typically lower than 59 ◦C (bottom grey line).



156

3:24:15:0 N.P. misfold all

58117 5 82 217

2810016 12 142 298

1551920  11 176 381

268207231  65 829 1600Count:

not

and

and

Figure 7.10: Adapted from [10]. The frequency of observing one of three properties (top to
bottom) at T = 64.21 ◦C for a run of 1600 paths, subdivided by eventual fold. Approximately
half the runs misfold (829), while the folds 5:0, 4:1 and 3:2 are observed roughly equally (231, 207
and 268 respectively). The N.P. folds are predicted less frequently (65×). The early behaviour
of seam staples is highly indicative of the eventual fold. The occurrence of a seam connection
that joins domains that are spaced 140 domains apart along the scaffold and no other seam con-
nections joining in the opposite orientation is most likely to result in a 5:0 fold. The occurrence
of a seam connection that joins domains that are spaced 112 domains apart along the scaffold
and one seam connection occurring together with a seam connection in opposite orientation,
while joining domains spaced 14 domains apart along the scaffold, is indicative of an eventual
4:1 fold. The occurrence of two seam connections in opposite orientation, each joining domains
that are spaced 56-domains apart along the scaffold, is indicative of an eventual 3:2 fold.
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B

4.02.00.0 6.0 8.0

Figure 7.11: Adapted from [10]. Correlations between seam staples during annealing. Average
data from 1600 simulations are presented (’all’) together with subsets sorted by final fold (5:0, 4:1,
3:2 and misfold). Simulations resulting in well-folded, non-planar structures (NP) are included in
‘all’ but not presented separately: such structures occurred 65 times. Circular icons with internal
connections of different lengths represent links across the seam (‘seam links’) connecting points
on the scaffold spanning (i.e., that are separated by) 28, 56, 84, 112 and 140 scaffold domains.
A ‘seam link’ represents a connection across the seam mediated by at least one seam staple.
The rectangle on the right of the figure, labelled ‘B’, represents the average occupancy for each
body-staple domain (range 0-2). Correlations between seam links are represented by three 5× 5
blocks. Each pixel is labelled by two icons whose orientation has the same significance as in the
‘circle’ diagrams of Fig. 3: two icons related by 180◦ rotation represent one internal link in each
of the two halves of the scaffold; a 90◦ rotation represents one internal link and one cross link.
Each pixel represents the average number of pairs of links with the specified spans and relative
orientations (range 0-8).
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7.3.2 Broken seam staples

The cooperative pairing of seam staples is destroyed in the broken seam modification. One of

each pair of seam staples is removed from the design, and replaced by two single domain staples,

as in Fig. 7.13. The 50% incorporation mark of the remaining seam staples occurs 2.0 ◦C later

on average due to the modification, and is lower than the average 50% incorporation mark of

each body staple (see Fig. 7.13). The number of re-orientation events is drastically increased

compared to the original design (Fig. 7.7ab). This modification results in the formation of 5:0

near exclusively, both in prediction and experiment (cf. Fig. 7.6b).

We provide an idealized description of the folding pathway. The relatively early incorporation

of body staples results in an intermediate shape that can only result in the formation of 5:0 when

the remaining seam staples are incorporated, see Fig. 7.12. The intermediate shape is attained

frequently because it minimizes the loop distance for each of the body staples.

0:0

i ii iii

5:0

or

Figure 7.12: Idealized folding pathway for the broken seam modification. i) At high temperature,
the scaffold is completely unhybridized. ii) Without the presence of seam staples, body staples
bind in configurations that minimize the loop cost. iii) Adding the remaining seam staples
results in the 5:0 fold.
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Figure 7.13: Top: The broken seam modification replaces every second seam staple with two
16-nt single-domain staples. Bottom: The average (smoothed) incorporation of each staple as
a function of temperature for the broken seam modification. The remaining seam staples are
significantly destabilized when compared to the original design (shown in Fig. 7.9).
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7.3.3 Elongated staples

In the elongated staple modification, sixteen body staple domains are doubled in length, from 16

to 32 nucleotides as in Fig. 7.14, ensuring that these body staples hybridize to the scaffold well in

advance of the remaining two-domain staples. In addition, the cooperativity within the middle

pair of seam staples is destroyed, by replacing one of staples with two single-domain staples,

similar to the broken seam modification. This modification typically leads to 5:0 or 3:2 folds both

in prediction and experiment (cf. Fig. 7.6c). The annealing curves of the staples are affected as

expected: the seam staple from the broken pair is incorporated later and the elongated staples

are incorporated at higher temperatures than in the unmodified design (Fig. 7.14).

An idealized description of the pathway is as follows and we provide an illustration in

Fig. 7.15. The elongated staples hybridize to the scaffold ahead of the other staples, and dras-

tically reduce the distance between domains that are complementary to seam staples. The

elongated staples and the remaining paired seam staples are equally unlikely to re-orientate dur-

ing the folding, while the other staples exhibit increased re-orientation behaviour (Fig. 7.7ac).

Incorporation of the remaining seam pairs is subsequently directed into the intermediate folds

2:2 or 4:0, necessarily suppressing the formation of the 4:1 shape.
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Figure 7.14: Top: The elongated staple modification doubles the length of the domains of eight
body staples (in grey). To make room, necessarily eight staples are removed from the design
(red, cf. Fig. 7.9) replaced with four 16-nt single-domain staples (in grey). The cooperativity of
the middle-most seam pair is destroyed by replacing one of the pair with single-domain staples,
similarly to the broken seam modification. Bottom: The average (smoothed) incorporation of
each staple as function of temperature for the modification. The elongated staples have 32-nt
domains and are incorporated fully by the 68 ◦C mark, and typically prevent the origami from
reaching 4:1 folds.
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Figure 7.15: Idealized folding pathway for the elongated staples modification leading to shape
3:2 (a) or shape 5:0 (b). i) At high temperature, the scaffold is completely unhybridized. ii)
The body staples with elongated (32-nt) domains bind to the scaffold well ahead of the other
two-domain staples. The seam staples bind to the scaffold in one of two configurations (aii or
bii). iii) The behaviour of the seam staples typically prevents the formation of the 4:1 shape.
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7.3.4 Further modifications

The broken seam and the elongated staple modification did not drastically change the relative

stability of the well-formed states, but did have a significant effect on the folding pathway.

We discuss two further modifications, the alternative seam modification and the lower-right

modification, which change both the folding pathway and the relative stability of the well-formed

folds.

Alternative seam

The alternative seam is a further modification of the broken seam design, obtained by introducing

one pair of staples on the edge of the tile. In Fig. 7.16a the modified tile is depicted in a 3:2

shape, where staples modified from the original design are depicted in black rather than grey.

The steric constraints of the newly added pair of staples are not met by any well-formed states

except that depicted in Fig. 7.16a. For example, observe the scaffold routing that results in a

4:1 shape in Fig. 7.16bi, where the newly added seam staples are depicted in red. In this fold the

domains for the added staples do not align, and this state is excluded from the model. Without

the newly added paired staples, the state would be legal, as in Fig. 7.16bii, and would count as

a 4:1 tile in the model.

The added pair of staples are highly cooperative, and effective in shifting the pathway. The

modification results in an increase of 3:2 shape (model) or shapes that are close to the expected

offset of a 3:2 tile (experiment), as shown in Fig. 7.6d.

Lower-right

The lower-right modification places a 64-nt staple in the corner of the design. In Fig. 7.16c

and 7.16d the modified tile is depicted in the 5:0iv and 4:1 shape. In all states other than the

depicted 5:0iv shape, the long staple necessarily bends along with the scaffold, as in Fig. 7.16d.

Double-stranded DNA is known to bend sharply in a ‘kink’, somewhat similar to a drinking

straw that kinks when bent. The energy associated with kinking double-stranded DNA remains

a topic of debate amongst researchers [169, 170]. In our model, we allow the kinked states

without any additional penalty for the kinking itself, although loops that include the extra long

domain are now destabilized additionally when compared to the unmodified design. In both the

model and experiment the 5:0iv shape occurs at increased frequency (Fig. 7.6e).
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Figure 7.16: Further modifications to the polymorphic tile design. In black: the staples that
differ from the original design. a) The alternative seam, depicted in the 3:2 fold. bi) The
alternative seam, depicted in a 4:1 fold, excluded from the model. bii) The scaffold routing
of (bi) is allowed when the crossover joins from the added seam (in red) are removed. c) The
lower-right modification in a 5:0iv fold. d) The lower-right modification in the 4:1 shape.
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7.4 Conclusion

In this chapter we applied the self-assembly model of Chapter 6 to a novel polymorphic tile. The

polymorphic tile has multiple well-folded states that are distinguishable by shape. We have found

the tile to assemble with high yield and the distribution of shapes to be highly programmable:

this demonstrates that the assembly follows a well-defined pathway and we infer that a similar

process occurs for regular origami. The model and experiment confirm that assembly is highly

cooperative [153, 154] and highly sensitive to staple domain and crossover design [153, 155, 156].

The model predicts that, at early stages of folding, the reversible nature of domain hybridization

is helpful to recover from kinetic traps.

In particular, the folding pathway of our polymorphic tile was found to be dominated by

paired staple interactions, which the model predicts to be strongly cooperative. The preference

to bind to the nearest binding site is a defining aspect of the model and was exploited effectively

to steer the assembly pathway.
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Chapter 8

Conclusions

Summary

The aim of this work was to develop models and model checking methods to increase the re-

liability of molecular devices made from DNA, specifically to benefit future application. Two

applications were selected, that of DNA origami, a widely used technique to create molecular

structures from DNA, and that of the molecular walker created by Wickham et al., a computa-

tional device that is embedded on an origami tile.

For the DNA walker we developed a model to describe the stepping of the walker and

fitted a failure rate for the blocking mechanism. Our model identified modes of failure for the

walker in the form of deadlock and unintended movement between tracks. We characterized the

computational expressiveness of walker circuits of Wickham et al. and found the performance

of the walker to be competitive compared to the performance of non-local strand displacement

systems. We demonstrated, based on model predictions, how a DNA walker circuit can be

optimized for performance ahead of implementation.

In the case of DNA origami we developed a thermodynamic assembly model by interpreting

the partially folded structures as graphs. The model identifies looping constraints within the

partially folded structure, and takes into account the thermodynamic cost of loop formation.

The model is tunable over two parameters and reproduces the correct melting temperature and

hysteresis observed in experiment. Further, it indicates that domain sequence, placement of

crossovers and temperature gradient during assembly all affect the assembly pathway of DNA

origami. Based on our model we control the folding pathway of a polymorphic DNA origami

via seemingly minor modifications in the design.

We also developed a method for computing cumulative rewards of CTMC models based

on fast adaptive uniformisation and applied it to DNA walker models, resulting in improved

performance over standard uniformisation. We further developed a parameter synthesis method
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for continuous-time Markov chains that is applicable when model parameters are uncertain.

The method determines for which parameters the model satisfies a specified performance and/or

reliability property and finds the rate that optimises the satisfaction of the property. We have

also applied it to DNA walkers, synthesising rates that guarantee a given level of reliability.

Evaluation and future work

Probabilistic model checking We have attempted to apply probabilistic model checking to

the rapidly evolving field of DNA nanotechnology, which encompasses many devices and tech-

niques. The studies of the DNA walker indicate that exhaustive model checking of continuous-

time models that simulate mechanistic processes is troublesome both for explicit and symbolic

methods. The fast adaptive uniformisation method performs an order of magnitude better

than standard uniformisation, but because of the exponential blow-up this does not translate

into meaningful gains and future endeavours should rely on the use of simulation, perhaps in

conjunction with numerical methods. The application of parameter synthesis to DNA nanotech-

nology seems similarly premature: a prediction of which parameters are required to meet a

predetermined performance does not tell us how the device should be modified to achieve such

performance. Within this context an interesting question is: is it possible to algorithmically syn-

thesize walker circuit layouts with optimal performance, or perhaps to synthesize walker circuit

layouts that meet a pre-determined performance level? The application of automated design

algorithms in microprocessor manufacturing could be relevant here.

On the upside, statistical model checking was demonstrated to be a highly practical method

to analyse system-wide performance of the walker circuits, an approach that was subsequently

investigated in [171]. Formal verification may still be useful to verify the correct design and logic

of reaction networks or localized DNA computers, but improvements in scalability are needed.

Robust DNA computers and devices We have also attempted to provide high-level

models of the DNA walker. To create better models of the walker, more calibration data would

be highly beneficial. Unfortunately, also fundamental understanding of certain DNA processes

is currently lacking. Crucially, DNA strand displacement (Section 2.3) is widely used, but

we only generally know the dependence of reaction kinetics on buffer conditions, temperature

and nucleotide sequence. More knowledge of this process is required if we were to reliably

predict the performance of the current generation of DNA computers in real-world circumstances.

Furthermore, detailed knowledge of the mechanics of strand displacement might directly inspire

new applications. Recent work on this topic includes [82, 83, 84, 85].

Secondly, the domain-level abstraction is leaky within the context of DNA strand displace-

ment networks, where partial domain overlap is believed to cause leakage reactions [11], but
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their workings is not well known. To improve DNA strand displacement networks, a better

understanding of these leakage rates is required. The mechanics and speed of blunt-end strand

displacement are similarly not well characterized (that is, kinetics are known to about an order

of magnitude, independent from sequence) at time of writing.

DNA self-assembly The discrete stochastic model developed in Chapter 6 was highly

successful in predicting the eventual shape of the polymorphic tile of Chapter 7. However, to

simulate the polymorphic tile we assumed that every domain was equally stable, which may not

be justified. We also employed the self-assembly model at model parameters that in Chapter

6 were demonstrated to show too little hysteresis (γ = 1.5, n = 0). Better calibration of the

model is required to resolve these discrepancies. Additional terms to take into account the

thermodynamic cost of duplex bending may be added in future.

The lack of support for steric constraints is perhaps the largest inaccuracy in our simulation

and it remains to be seen if a representation different from molecular dynamics could mitigate

this drawback: to find one might pose a challenge. The problem is as follows: given a set of

interconnected cylinders (DNA helices) and their volume, is there a fast, possibly approximate,

method to decide if a non-overlapping configuration exists? The exclusion algorithm worked

well for the simulation of the polymorphic tile, but is a relatively coarse approximation to the

steric constraints that, in the current form, does not apply to regular origami. An efficient

description of the steric constraints may enable models to reproduce the poor yield of multi-

layered origami [153] or accurately simulate the influence of staple design [155]. To better

understand the assembly of DNA origami, and to enable prediction of yield and more accurate

assembly kinetics, it is likely that (scalable) coarse grained models are required.

We demonstrated a DNA origami structure that intentionally incorporates multiple copies

of the same staple during the assembly process. Further research, aimed to design functional

DNA nano-structures while re-using strands at multiple points in the design, may decrease the

direct materials cost and simplify the logistics of nanostructure manufacturing. Direct design

of the folding pathways may then be employed to increase yield of the intended structure, and

to identify pathways that lead to misfolds. Detailed simulation of folding pathways may help to

create complex devices that assemble at constant temperature.

In the future, complex and functional nanostructures will be constructed by other nanode-

vices, that chaperone the device through various stages of production. Chaperoning devices may

shield parts of the structure from alteration, or organize the reactants through spatial separa-

tion, or catalyse the assembly between components directly. Similarly, the activation and control

of artificial nano-machinery will occur through recognition domains, where the docking of one

molecule activates the device, enabling interaction between physically separated nanodevices.
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Appendix A

DNA walker PRISM code

control.pm

ctmc

const double failureRate=0.3;

module walker

stator1 : [0 .. 1] init 1;

stator2 : [0 .. 1] init 0;

stator3 : [0 .. 1] init 0;

stator4 : [0 .. 1] init 0;

stator5 : [0 .. 1] init 0;

stator6 : [0 .. 1] init 0;

stator7 : [0 .. 1] init 0;

stator8 : [0 .. 1] init 0;

w1 : [0 .. 8] init 1; // w1=0 is sinkstate for deadlocks

[step] w1=1 & stator2=0 -> 0.0029999999999999996 : (w1’=2) & (stator2’=1);

[step] w1=1 & stator3=0 -> 5.9999999999999995E-5 : (w1’=3) & (stator3’=1);

[step] w1=1 & stator4=0 -> 2.9999999999999997E-5 : (w1’=4) & (stator4’=1);

[step] w1=2 & stator1=0 -> 0.009 : (w1’=1) & (stator1’=1);

[step] w1=2 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=2 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=2 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=3 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=3 & stator2=0 -> 0.009 : (w1’=2) & (stator2’=1);

[step] w1=3 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=3 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=3 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=4 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=4 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=4 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=4 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);

[step] w1=4 & stator6=0 -> 1.7999999999999998E-4 : (w1’=6) & (stator6’=1);

[step] w1=4 & stator7=0 -> 8.999999999999999E-5 : (w1’=7) & (stator7’=1);

[step] w1=5 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);
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[step] w1=5 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=5 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=5 & stator6=0 -> 0.009 : (w1’=6) & (stator6’=1);

[step] w1=5 & stator7=0 -> 1.7999999999999998E-4 : (w1’=7) & (stator7’=1);

[step] w1=5 & stator8=0 -> 8.999999999999999E-6 : (w1’=8) & (stator8’=1);

[step] w1=6 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=6 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=6 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);

[step] w1=6 & stator7=0 -> 0.009 : (w1’=7) & (stator7’=1);

[step] w1=6 & stator8=0 -> 1.7999999999999997E-5 : (w1’=8) & (stator8’=1);

[step] w1=7 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=7 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=7 & stator6=0 -> 0.009 : (w1’=6) & (stator6’=1);

[step] w1=7 & stator8=0 -> 9.0E-4 : (w1’=8) & (stator8’=1);

[] w1 = 1 ->.000000001 : (w1’=1);

[] w1 = 2 ->.000000001 : (w1’=2);

[] w1 = 3 ->.000000001 : (w1’=3);

[] w1 = 4 ->.000000001 : (w1’=4);

[] w1 = 5 ->.000000001 : (w1’=5);

[] w1 = 6 ->.000000001 : (w1’=6);

[] w1 = 7 ->.000000001 : (w1’=7);

[] w1 = 8 ->.000000001 : (w1’=8);

endmodule

rewards "steps"

[step] true : 1;

endrewards

rewards "time"

true : 1;

endrewards

label "deadlockUser" =

( w1=1 & stator2=1 & stator3=1 & stator4=1)

| ( w1=2 & stator1=1 & stator3=1 & stator4=1 & stator5=1)

| ( w1=3 & stator1=1 & stator2=1 & stator4=1 & stator5=1 & stator6=1)

| ( w1=4 & stator1=1 & stator2=1 & stator3=1 & stator5=1 & stator6=1 & stator7=1)

| ( w1=5 & stator2=1 & stator3=1 & stator4=1 & stator6=1 & stator7=1 & stator8=1)

| ( w1=6 & stator3=1 & stator4=1 & stator5=1 & stator7=1 & stator8=1)

| ( w1=7 & stator4=1 & stator5=1 & stator6=1 & stator8=1);

control.pctl

P = ? [F[12000,12000] (w1=2) ]

P = ? [F[12000,12000] (w1=8) ]

P = ? [F[12000,12000] "deadlockUser" ]

R{"steps"}=? [ C<=200*60 ]

track12Block2.pm

ctmc
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const double failureRate=0.3;

module walker

stator1 : [0 .. 1] init 1;

stator2 : [0 .. 1] init 0;

stator3 : [0 .. 1] init 0;

stator4 : [0 .. 1] init 0;

stator5 : [0 .. 1] init 1;

stator6 : [0 .. 1] init 1;

stator7 : [0 .. 1] init 0;

stator8 : [0 .. 1] init 0;

stator9 : [0 .. 1] init 0;

stator10 : [0 .. 1] init 0;

stator11 : [0 .. 1] init 0;

stator12 : [0 .. 1] init 0;

w1 : [0 .. 12] init 1; // w1=0 is sinkstate for deadlocks

blockade5 : [0 .. 1] init 0;

blockade6 : [0 .. 1] init 0;

[block5] blockade5=0 ->1000000.0 * failureRate : (blockade5’=1) & (stator5’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade5’=1);

[block6] blockade6=0 ->1000000.0 * failureRate : (blockade6’=1) & (stator6’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade6’=1);

[step] w1=1 & stator2=0 -> 0.0029999999999999996 : (w1’=2) & (stator2’=1);

[step] w1=1 & stator3=0 -> 5.9999999999999995E-5 : (w1’=3) & (stator3’=1);

[step] w1=1 & stator4=0 -> 2.9999999999999997E-5 : (w1’=4) & (stator4’=1);

[step] w1=1 & stator5=0 -> 2.9999999999999997E-5 : (w1’=5) & (stator5’=1);

[step] w1=1 & stator9=0 -> 2.9999999999999997E-5 : (w1’=9) & (stator9’=1);

[step] w1=2 & stator1=0 -> 0.009 : (w1’=1) & (stator1’=1);

[step] w1=2 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=2 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=2 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=2 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=2 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);

[step] w1=2 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=3 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=3 & stator2=0 -> 0.009 : (w1’=2) & (stator2’=1);

[step] w1=3 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=3 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=3 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=3 & stator7=0 -> 8.999999999999999E-5 : (w1’=7) & (stator7’=1);

[step] w1=3 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);

[step] w1=3 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=3 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=4 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=4 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=4 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=4 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);
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[step] w1=4 & stator6=0 -> 1.7999999999999998E-4 : (w1’=6) & (stator6’=1);

[step] w1=4 & stator7=0 -> 8.999999999999999E-5 : (w1’=7) & (stator7’=1);

[step] w1=4 & stator9=0 -> 0.009 : (w1’=9) & (stator9’=1);

[step] w1=4 & stator10=0 -> 1.7999999999999998E-4 : (w1’=10) & (stator10’=1);

[step] w1=4 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=5 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=5 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=5 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=5 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=5 & stator6=0 -> 0.009 : (w1’=6) & (stator6’=1);

[step] w1=5 & stator7=0 -> 1.7999999999999998E-4 : (w1’=7) & (stator7’=1);

[step] w1=5 & stator8=0 -> 8.999999999999999E-6 : (w1’=8) & (stator8’=1);

[step] w1=5 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);

[step] w1=5 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=5 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=6 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=6 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=6 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=6 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);

[step] w1=6 & stator7=0 -> 0.009 : (w1’=7) & (stator7’=1);

[step] w1=6 & stator8=0 -> 1.7999999999999997E-5 : (w1’=8) & (stator8’=1);

[step] w1=6 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=6 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=7 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=7 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=7 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=7 & stator6=0 -> 0.009 : (w1’=6) & (stator6’=1);

[step] w1=7 & stator8=0 -> 9.0E-4 : (w1’=8) & (stator8’=1);

[step] w1=7 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=9 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=9 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=9 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=9 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=9 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=9 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=9 & stator7=0 -> 8.999999999999999E-5 : (w1’=7) & (stator7’=1);

[step] w1=9 & stator10=0 -> 0.009 : (w1’=10) & (stator10’=1);

[step] w1=9 & stator11=0 -> 1.7999999999999998E-4 : (w1’=11) & (stator11’=1);

[step] w1=9 & stator12=0 -> 8.999999999999999E-6 : (w1’=12) & (stator12’=1);

[step] w1=10 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=10 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=10 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=10 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=10 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=10 & stator9=0 -> 0.009 : (w1’=9) & (stator9’=1);

[step] w1=10 & stator11=0 -> 0.009 : (w1’=11) & (stator11’=1);

[step] w1=10 & stator12=0 -> 1.7999999999999997E-5 : (w1’=12) & (stator12’=1);

[step] w1=11 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=11 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=11 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=11 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);
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[step] w1=11 & stator10=0 -> 0.009 : (w1’=10) & (stator10’=1);

[step] w1=11 & stator12=0 -> 9.0E-4 : (w1’=12) & (stator12’=1);

[] w1 = 1 ->.000000001 : (w1’=1);

[] w1 = 2 ->.000000001 : (w1’=2);

[] w1 = 3 ->.000000001 : (w1’=3);

[] w1 = 4 ->.000000001 : (w1’=4);

[] w1 = 5 ->.000000001 : (w1’=5);

[] w1 = 6 ->.000000001 : (w1’=6);

[] w1 = 7 ->.000000001 : (w1’=7);

[] w1 = 8 ->.000000001 : (w1’=8);

[] w1 = 9 ->.000000001 : (w1’=9);

[] w1 = 10 ->.000000001 : (w1’=10);

[] w1 = 11 ->.000000001 : (w1’=11);

[] w1 = 12 ->.000000001 : (w1’=12);

endmodule

rewards "steps"

[step] true : 1;

endrewards

rewards "time"

true : 1;

endrewards

rewards "blocked" // time spend in blocked anchorages

w1 =5 | w1 =6 : 1;

endrewards

label "deadlockUser" =

( w1=1 & stator2=1 & stator3=1 & stator4=1 & stator5=1 & stator9=1)

| ( w1=2 & stator1=1 & stator3=1 & stator4=1 & stator5=1 & stator6=1 & stator9=1 & stator10=1)

| ( w1=3 & stator1=1 & stator2=1 & stator4=1 & stator5=1 & stator6=1 & stator7=1 & stator9=1

& stator10=1 & stator11=1)

| ( w1=4 & stator1=1 & stator2=1 & stator3=1 & stator5=1 & stator6=1 & stator7=1 & stator9=1

& stator10=1 & stator11=1)

| ( w1=5 & stator1=1 & stator2=1 & stator3=1 & stator4=1 & stator6=1 & stator7=1 & stator8=1

& stator9=1 & stator10=1 & stator11=1)

| ( w1=6 & stator2=1 & stator3=1 & stator4=1 & stator5=1 & stator7=1 & stator8=1 & stator9=1

& stator10=1)

| ( w1=7 & stator3=1 & stator4=1 & stator5=1 & stator6=1 & stator8=1 & stator9=1)

| ( w1=9 & stator1=1 & stator2=1 & stator3=1 & stator4=1 & stator5=1 & stator6=1 & stator7=1

& stator10=1 & stator11=1 & stator12=1)

| ( w1=10 & stator2=1 & stator3=1 & stator4=1 & stator5=1 & stator6=1 & stator9=1 & stator11=1

& stator12=1)

| ( w1=11 & stator3=1 & stator4=1 & stator5=1 & stator9=1 & stator10=1 & stator12=1)

;

track12Block2.pctl

P = ? [F[12000,12000] (w1=8)|(w1=12) ]

P = ? [F[12000,12000] (w1=8) ]

P = ? [F[12000,12000] (w1=12) ]

P = ? [F[12000,12000] "deadlockUser" ]

R{"steps"}=? [ C<=200*60 ]
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ringLL.pm

ctmc

const double failureRate;

module walker

stator1 : [0 .. 1] init 1;

stator2 : [0 .. 1] init 1;

stator3 : [0 .. 1] init 1;

stator4 : [0 .. 1] init 1;

stator5 : [0 .. 1] init 1;

stator6 : [0 .. 1] init 0;

stator7 : [0 .. 1] init 0;

stator8 : [0 .. 1] init 0;

stator9 : [0 .. 1] init 0;

stator10 : [0 .. 1] init 0;

stator11 : [0 .. 1] init 0;

stator12 : [0 .. 1] init 0;

stator13 : [0 .. 1] init 0;

stator14 : [0 .. 1] init 1;

stator15 : [0 .. 1] init 1;

stator16 : [0 .. 1] init 0;

stator17 : [0 .. 1] init 0;

stator18 : [0 .. 1] init 0;

stator19 : [0 .. 1] init 0;

stator20 : [0 .. 1] init 0;

stator21 : [0 .. 1] init 0;

w1 : [0 .. 21] init 1; // w1=0 is sinkstate for deadlocks

blockade2 : [0 .. 1] init 0;

blockade3 : [0 .. 1] init 0;

blockade4 : [0 .. 1] init 0;

blockade5 : [0 .. 1] init 0;

blockade14 : [0 .. 1] init 0;

blockade15 : [0 .. 1] init 0;

[block2] blockade2=0 ->1000000.0 * failureRate : (blockade2’=1) & (stator2’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade2’=1);

[block3] blockade3=0 ->1000000.0 * failureRate : (blockade3’=1) & (stator3’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade3’=1);

[block4] blockade4=0 ->1000000.0 * failureRate : (blockade4’=1) & (stator4’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade4’=1);

[block5] blockade5=0 ->1000000.0 * failureRate : (blockade5’=1) & (stator5’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade5’=1);

[block14] blockade14=0 ->1000000.0 * failureRate : (blockade14’=1) & (stator14’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade14’=1);

[block15] blockade15=0 ->1000000.0 * failureRate : (blockade15’=1) & (stator15’=0)

+ 1000000.0 * (1.0 - failureRate ) : (blockade15’=1);

[step] w1=1 & stator2=0 -> 0.0029999999999999996 : (w1’=2) & (stator2’=1);

[step] w1=1 & stator3=0 -> 5.9999999999999995E-5 : (w1’=3) & (stator3’=1);

[step] w1=1 & stator4=0 -> 2.9999999999999997E-5 : (w1’=4) & (stator4’=1);

[step] w1=1 & stator5=0 -> 5.9999999999999995E-5 : (w1’=5) & (stator5’=1);

[step] w1=1 & stator6=0 -> 2.9999999999999997E-5 : (w1’=6) & (stator6’=1);

[step] w1=1 & stator7=0 -> 5.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=1 & stator8=0 -> 2.9999999999999997E-5 : (w1’=8) & (stator8’=1);
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[step] w1=1 & stator9=0 -> 2.9999999999999997E-5 : (w1’=9) & (stator9’=1);

[step] w1=1 & stator10=0 -> 2.9999999999999997E-5 : (w1’=10) & (stator10’=1);

[step] w1=1 & stator11=0 -> 2.9999999999999997E-5 : (w1’=11) & (stator11’=1);

[step] w1=1 & stator12=0 -> 5.9999999999999995E-5 : (w1’=12) & (stator12’=1);

[step] w1=1 & stator13=0 -> 0.0029999999999999996 : (w1’=13) & (stator13’=1);

[step] w1=1 & stator14=0 -> 2.9999999999999997E-5 : (w1’=14) & (stator14’=1);

[step] w1=1 & stator15=0 -> 5.9999999999999995E-5 : (w1’=15) & (stator15’=1);

[step] w1=1 & stator16=0 -> 2.9999999999999997E-5 : (w1’=16) & (stator16’=1);

[step] w1=1 & stator17=0 -> 5.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=1 & stator18=0 -> 2.9999999999999997E-5 : (w1’=18) & (stator18’=1);

[step] w1=1 & stator19=0 -> 2.9999999999999997E-5 : (w1’=19) & (stator19’=1);

[step] w1=1 & stator20=0 -> 2.9999999999999997E-5 : (w1’=20) & (stator20’=1);

[step] w1=1 & stator21=0 -> 2.9999999999999997E-5 : (w1’=21) & (stator21’=1);

[step] w1=2 & stator1=0 -> 0.009 : (w1’=1) & (stator1’=1);

[step] w1=2 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=2 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=2 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=2 & stator6=0 -> 1.7999999999999998E-4 : (w1’=6) & (stator6’=1);

[step] w1=2 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=2 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=2 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=2 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=2 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=2 & stator12=0 -> 8.999999999999999E-5 : (w1’=12) & (stator12’=1);

[step] w1=2 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=2 & stator14=0 -> 8.999999999999999E-5 : (w1’=14) & (stator14’=1);

[step] w1=2 & stator15=0 -> 8.999999999999999E-5 : (w1’=15) & (stator15’=1);

[step] w1=2 & stator16=0 -> 8.999999999999999E-5 : (w1’=16) & (stator16’=1);

[step] w1=2 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=2 & stator18=0 -> 1.7999999999999998E-4 : (w1’=18) & (stator18’=1);

[step] w1=2 & stator19=0 -> 8.999999999999999E-5 : (w1’=19) & (stator19’=1);

[step] w1=2 & stator20=0 -> 1.7999999999999998E-4 : (w1’=20) & (stator20’=1);

[step] w1=2 & stator21=0 -> 1.7999999999999998E-4 : (w1’=21) & (stator21’=1);

[step] w1=3 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=3 & stator2=0 -> 0.009 : (w1’=2) & (stator2’=1);

[step] w1=3 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=3 & stator5=0 -> 1.7999999999999998E-4 : (w1’=5) & (stator5’=1);

[step] w1=3 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=3 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=3 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=3 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=3 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=3 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=3 & stator19=0 -> 1.7999999999999998E-4 : (w1’=19) & (stator19’=1);

[step] w1=3 & stator20=0 -> 1.7999999999999998E-4 : (w1’=20) & (stator20’=1);

[step] w1=3 & stator21=0 -> 0.009 : (w1’=21) & (stator21’=1);

[step] w1=4 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=4 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=4 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=4 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);

[step] w1=4 & stator6=0 -> 1.7999999999999998E-4 : (w1’=6) & (stator6’=1);

[step] w1=4 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=4 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=4 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);
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[step] w1=4 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=4 & stator19=0 -> 8.999999999999999E-5 : (w1’=19) & (stator19’=1);

[step] w1=4 & stator20=0 -> 1.7999999999999998E-4 : (w1’=20) & (stator20’=1);

[step] w1=4 & stator21=0 -> 1.7999999999999998E-4 : (w1’=21) & (stator21’=1);

[step] w1=5 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=5 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=5 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=5 & stator4=0 -> 0.009 : (w1’=4) & (stator4’=1);

[step] w1=5 & stator6=0 -> 0.009 : (w1’=6) & (stator6’=1);

[step] w1=5 & stator7=0 -> 1.7999999999999997E-5 : (w1’=7) & (stator7’=1);

[step] w1=5 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=5 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=5 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=5 & stator20=0 -> 8.999999999999999E-5 : (w1’=20) & (stator20’=1);

[step] w1=5 & stator21=0 -> 8.999999999999999E-5 : (w1’=21) & (stator21’=1);

[step] w1=6 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=6 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=6 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=6 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=6 & stator5=0 -> 0.009 : (w1’=5) & (stator5’=1);

[step] w1=6 & stator7=0 -> 9.0E-4 : (w1’=7) & (stator7’=1);

[step] w1=6 & stator8=0 -> 1.7999999999999998E-4 : (w1’=8) & (stator8’=1);

[step] w1=6 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=6 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=6 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=6 & stator21=0 -> 8.999999999999999E-5 : (w1’=21) & (stator21’=1);

[step] w1=8 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=8 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=8 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=8 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=8 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=8 & stator6=0 -> 1.7999999999999998E-4 : (w1’=6) & (stator6’=1);

[step] w1=8 & stator7=0 -> 9.0E-4 : (w1’=7) & (stator7’=1);

[step] w1=8 & stator9=0 -> 0.009 : (w1’=9) & (stator9’=1);

[step] w1=8 & stator10=0 -> 1.7999999999999998E-4 : (w1’=10) & (stator10’=1);

[step] w1=8 & stator11=0 -> 1.7999999999999998E-4 : (w1’=11) & (stator11’=1);

[step] w1=8 & stator12=0 -> 8.999999999999999E-5 : (w1’=12) & (stator12’=1);

[step] w1=8 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=8 & stator14=0 -> 8.999999999999999E-5 : (w1’=14) & (stator14’=1);

[step] w1=9 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=9 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=9 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=9 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=9 & stator7=0 -> 1.7999999999999997E-5 : (w1’=7) & (stator7’=1);

[step] w1=9 & stator8=0 -> 0.009 : (w1’=8) & (stator8’=1);

[step] w1=9 & stator10=0 -> 0.009 : (w1’=10) & (stator10’=1);

[step] w1=9 & stator11=0 -> 1.7999999999999998E-4 : (w1’=11) & (stator11’=1);

[step] w1=9 & stator12=0 -> 1.7999999999999998E-4 : (w1’=12) & (stator12’=1);

[step] w1=9 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=9 & stator14=0 -> 8.999999999999999E-5 : (w1’=14) & (stator14’=1);

[step] w1=10 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=10 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);
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[step] w1=10 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=10 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=10 & stator8=0 -> 1.7999999999999998E-4 : (w1’=8) & (stator8’=1);

[step] w1=10 & stator9=0 -> 0.009 : (w1’=9) & (stator9’=1);

[step] w1=10 & stator11=0 -> 0.009 : (w1’=11) & (stator11’=1);

[step] w1=10 & stator12=0 -> 1.7999999999999998E-4 : (w1’=12) & (stator12’=1);

[step] w1=10 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=10 & stator14=0 -> 1.7999999999999998E-4 : (w1’=14) & (stator14’=1);

[step] w1=10 & stator15=0 -> 8.999999999999999E-5 : (w1’=15) & (stator15’=1);

[step] w1=11 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=11 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=11 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=11 & stator8=0 -> 1.7999999999999998E-4 : (w1’=8) & (stator8’=1);

[step] w1=11 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);

[step] w1=11 & stator10=0 -> 0.009 : (w1’=10) & (stator10’=1);

[step] w1=11 & stator12=0 -> 0.009 : (w1’=12) & (stator12’=1);

[step] w1=11 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=11 & stator14=0 -> 1.7999999999999998E-4 : (w1’=14) & (stator14’=1);

[step] w1=11 & stator15=0 -> 8.999999999999999E-5 : (w1’=15) & (stator15’=1);

[step] w1=11 & stator16=0 -> 8.999999999999999E-5 : (w1’=16) & (stator16’=1);

[step] w1=12 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=12 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=12 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=12 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=12 & stator9=0 -> 1.7999999999999998E-4 : (w1’=9) & (stator9’=1);

[step] w1=12 & stator10=0 -> 1.7999999999999998E-4 : (w1’=10) & (stator10’=1);

[step] w1=12 & stator11=0 -> 0.009 : (w1’=11) & (stator11’=1);

[step] w1=12 & stator13=0 -> 0.009 : (w1’=13) & (stator13’=1);

[step] w1=12 & stator14=0 -> 0.009 : (w1’=14) & (stator14’=1);

[step] w1=12 & stator15=0 -> 1.7999999999999998E-4 : (w1’=15) & (stator15’=1);

[step] w1=12 & stator16=0 -> 8.999999999999999E-5 : (w1’=16) & (stator16’=1);

[step] w1=12 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=12 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=13 & stator1=0 -> 0.009 : (w1’=1) & (stator1’=1);

[step] w1=13 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=13 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=13 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=13 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=13 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=13 & stator7=0 -> 8.999999999999999E-6 : (w1’=7) & (stator7’=1);

[step] w1=13 & stator8=0 -> 1.7999999999999998E-4 : (w1’=8) & (stator8’=1);

[step] w1=13 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=13 & stator10=0 -> 1.7999999999999998E-4 : (w1’=10) & (stator10’=1);

[step] w1=13 & stator11=0 -> 1.7999999999999998E-4 : (w1’=11) & (stator11’=1);

[step] w1=13 & stator12=0 -> 0.009 : (w1’=12) & (stator12’=1);

[step] w1=13 & stator14=0 -> 1.7999999999999998E-4 : (w1’=14) & (stator14’=1);

[step] w1=13 & stator15=0 -> 1.7999999999999998E-4 : (w1’=15) & (stator15’=1);

[step] w1=13 & stator16=0 -> 1.7999999999999998E-4 : (w1’=16) & (stator16’=1);

[step] w1=13 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=13 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=13 & stator19=0 -> 8.999999999999999E-5 : (w1’=19) & (stator19’=1);

[step] w1=13 & stator20=0 -> 8.999999999999999E-5 : (w1’=20) & (stator20’=1);

[step] w1=13 & stator21=0 -> 8.999999999999999E-5 : (w1’=21) & (stator21’=1);

[step] w1=14 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);
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[step] w1=14 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=14 & stator8=0 -> 8.999999999999999E-5 : (w1’=8) & (stator8’=1);

[step] w1=14 & stator9=0 -> 8.999999999999999E-5 : (w1’=9) & (stator9’=1);

[step] w1=14 & stator10=0 -> 1.7999999999999998E-4 : (w1’=10) & (stator10’=1);

[step] w1=14 & stator11=0 -> 1.7999999999999998E-4 : (w1’=11) & (stator11’=1);

[step] w1=14 & stator12=0 -> 0.009 : (w1’=12) & (stator12’=1);

[step] w1=14 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=14 & stator15=0 -> 0.009 : (w1’=15) & (stator15’=1);

[step] w1=14 & stator16=0 -> 1.7999999999999998E-4 : (w1’=16) & (stator16’=1);

[step] w1=14 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=14 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=15 & stator1=0 -> 1.7999999999999998E-4 : (w1’=1) & (stator1’=1);

[step] w1=15 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=15 & stator10=0 -> 8.999999999999999E-5 : (w1’=10) & (stator10’=1);

[step] w1=15 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=15 & stator12=0 -> 1.7999999999999998E-4 : (w1’=12) & (stator12’=1);

[step] w1=15 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=15 & stator14=0 -> 0.009 : (w1’=14) & (stator14’=1);

[step] w1=15 & stator16=0 -> 0.009 : (w1’=16) & (stator16’=1);

[step] w1=15 & stator17=0 -> 1.7999999999999997E-5 : (w1’=17) & (stator17’=1);

[step] w1=15 & stator18=0 -> 8.999999999999999E-5 : (w1’=18) & (stator18’=1);

[step] w1=15 & stator19=0 -> 8.999999999999999E-5 : (w1’=19) & (stator19’=1);

[step] w1=16 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=16 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=16 & stator11=0 -> 8.999999999999999E-5 : (w1’=11) & (stator11’=1);

[step] w1=16 & stator12=0 -> 8.999999999999999E-5 : (w1’=12) & (stator12’=1);

[step] w1=16 & stator13=0 -> 1.7999999999999998E-4 : (w1’=13) & (stator13’=1);

[step] w1=16 & stator14=0 -> 1.7999999999999998E-4 : (w1’=14) & (stator14’=1);

[step] w1=16 & stator15=0 -> 0.009 : (w1’=15) & (stator15’=1);

[step] w1=16 & stator17=0 -> 9.0E-4 : (w1’=17) & (stator17’=1);

[step] w1=16 & stator18=0 -> 1.7999999999999998E-4 : (w1’=18) & (stator18’=1);

[step] w1=16 & stator19=0 -> 8.999999999999999E-5 : (w1’=19) & (stator19’=1);

[step] w1=16 & stator20=0 -> 8.999999999999999E-5 : (w1’=20) & (stator20’=1);

[step] w1=18 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=18 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=18 & stator3=0 -> 8.999999999999999E-5 : (w1’=3) & (stator3’=1);

[step] w1=18 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=18 & stator12=0 -> 8.999999999999999E-5 : (w1’=12) & (stator12’=1);

[step] w1=18 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=18 & stator14=0 -> 8.999999999999999E-5 : (w1’=14) & (stator14’=1);

[step] w1=18 & stator15=0 -> 8.999999999999999E-5 : (w1’=15) & (stator15’=1);

[step] w1=18 & stator16=0 -> 1.7999999999999998E-4 : (w1’=16) & (stator16’=1);

[step] w1=18 & stator17=0 -> 9.0E-4 : (w1’=17) & (stator17’=1);

[step] w1=18 & stator19=0 -> 0.009 : (w1’=19) & (stator19’=1);

[step] w1=18 & stator20=0 -> 1.7999999999999998E-4 : (w1’=20) & (stator20’=1);

[step] w1=18 & stator21=0 -> 1.7999999999999998E-4 : (w1’=21) & (stator21’=1);

[step] w1=19 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=19 & stator2=0 -> 8.999999999999999E-5 : (w1’=2) & (stator2’=1);

[step] w1=19 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=19 & stator4=0 -> 8.999999999999999E-5 : (w1’=4) & (stator4’=1);

[step] w1=19 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=19 & stator15=0 -> 8.999999999999999E-5 : (w1’=15) & (stator15’=1);
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[step] w1=19 & stator16=0 -> 8.999999999999999E-5 : (w1’=16) & (stator16’=1);

[step] w1=19 & stator17=0 -> 1.7999999999999997E-5 : (w1’=17) & (stator17’=1);

[step] w1=19 & stator18=0 -> 0.009 : (w1’=18) & (stator18’=1);

[step] w1=19 & stator20=0 -> 0.009 : (w1’=20) & (stator20’=1);

[step] w1=19 & stator21=0 -> 1.7999999999999998E-4 : (w1’=21) & (stator21’=1);

[step] w1=20 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=20 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=20 & stator3=0 -> 1.7999999999999998E-4 : (w1’=3) & (stator3’=1);

[step] w1=20 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=20 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=20 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=20 & stator16=0 -> 8.999999999999999E-5 : (w1’=16) & (stator16’=1);

[step] w1=20 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=20 & stator18=0 -> 1.7999999999999998E-4 : (w1’=18) & (stator18’=1);

[step] w1=20 & stator19=0 -> 0.009 : (w1’=19) & (stator19’=1);

[step] w1=20 & stator21=0 -> 0.009 : (w1’=21) & (stator21’=1);

[step] w1=21 & stator1=0 -> 8.999999999999999E-5 : (w1’=1) & (stator1’=1);

[step] w1=21 & stator2=0 -> 1.7999999999999998E-4 : (w1’=2) & (stator2’=1);

[step] w1=21 & stator3=0 -> 0.009 : (w1’=3) & (stator3’=1);

[step] w1=21 & stator4=0 -> 1.7999999999999998E-4 : (w1’=4) & (stator4’=1);

[step] w1=21 & stator5=0 -> 8.999999999999999E-5 : (w1’=5) & (stator5’=1);

[step] w1=21 & stator6=0 -> 8.999999999999999E-5 : (w1’=6) & (stator6’=1);

[step] w1=21 & stator13=0 -> 8.999999999999999E-5 : (w1’=13) & (stator13’=1);

[step] w1=21 & stator17=0 -> 8.999999999999999E-6 : (w1’=17) & (stator17’=1);

[step] w1=21 & stator18=0 -> 1.7999999999999998E-4 : (w1’=18) & (stator18’=1);

[step] w1=21 & stator19=0 -> 1.7999999999999998E-4 : (w1’=19) & (stator19’=1);

[step] w1=21 & stator20=0 -> 0.009 : (w1’=20) & (stator20’=1);

[] w1 = 1 ->.000000001 : (w1’=1);

[] w1 = 2 ->.000000001 : (w1’=2);

[] w1 = 3 ->.000000001 : (w1’=3);

[] w1 = 4 ->.000000001 : (w1’=4);

[] w1 = 5 ->.000000001 : (w1’=5);

[] w1 = 6 ->.000000001 : (w1’=6);

[] w1 = 7 ->.000000001 : (w1’=7);

[] w1 = 8 ->.000000001 : (w1’=8);

[] w1 = 9 ->.000000001 : (w1’=9);

[] w1 = 10 ->.000000001 : (w1’=10);

[] w1 = 11 ->.000000001 : (w1’=11);

[] w1 = 12 ->.000000001 : (w1’=12);

[] w1 = 13 ->.000000001 : (w1’=13);

[] w1 = 14 ->.000000001 : (w1’=14);

[] w1 = 15 ->.000000001 : (w1’=15);

[] w1 = 16 ->.000000001 : (w1’=16);

[] w1 = 17 ->.000000001 : (w1’=17);

[] w1 = 18 ->.000000001 : (w1’=18);

[] w1 = 19 ->.000000001 : (w1’=19);

[] w1 = 20 ->.000000001 : (w1’=20);

[] w1 = 21 ->.000000001 : (w1’=21);

endmodule

rewards "steps"

[step] true : 1;

endrewards
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rewards "time"

true : 1;

endrewards

rewards "blocked" // time spend in blocked anchorages

w1 =2 | w1 =3 | w1 =4 | w1 =5 | w1 =14 | w1 =15 : 1;

endrewards

ring.pctl

P = ? [F[200*60,200*60] (w1=7)|(w1=17)]

P = ? [F[12000,12000] (w1=7) ]

P = ? [F[12000,12000] (w1=17) ]

R{"steps"}=? [ C<=200*60 ]

R{"blocked"}=? [ C<=200*60 ]
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