
Model Checking and Strategy Synthesis for
Stochastic Games: From Theory to Practice∗

Marta Kwiatkowska

University of Oxford
marta.kwiatkowska@cs.ox.ac.uk

Abstract
Probabilistic model checking is an automatic procedure for establishing if a desired property
holds in a probabilistic model, aimed at verifying quantitative probabilistic specifications such
as the probability of a critical failure occurring or expected time to termination. Much progress
has been made in recent years in algorithms, tools and applications of probabilistic model check-
ing, as exemplified by the probabilistic model checker PRISM (www.prismmodelchecker.org).
However, the unstoppable rise of autonomous systems, from robotic assistants to self-driving
cars, is placing greater and greater demands on quantitative modelling and verification technolo-
gies. To address the challenges of autonomy we need to consider collaborative, competitive and
adversarial behaviour, which is naturally modelled using game-theoretic abstractions, enhanced
with stochasticity arising from randomisation and uncertainty. This paper gives an overview of
quantitative verification and strategy synthesis techniques developed for turn-based stochastic
multi-player games, summarising recent advances concerning multi-objective properties and com-
positional strategy synthesis. The techniques have been implemented in the PRISM-games model
checker built as an extension of PRISM.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs.
D.2.4 Software/Program Verification

Keywords and phrases Quantitative verification; Stochastic games; Temporal logic; Model check-
ing; Strategy synthesis.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.XXX

1 Introduction

Probability is pervasive: it is used to quantify component failures, unreliable communication
media and sensor imprecision, in randomised schemes to ensure efficiency of distributed
coordination and resource management mechanisms, when dealing with environmental uncer-
tainty, and to model performance and biological systems. Probabilistic model checking [48],
also referred to as quantitative probabilistic verification, is an automated technique for
verifying quantitative temporal logic properties of probabilistic models, which typically arise
as extensions of Markov chains or Markov decision processes, additionally annotated with
quantitative information such as time, energy or cost. The properties capture a variety of
quantitative correctness, reliability or performance properties, and provide formal guarantees
for properties such as “the maximum probability of the airbag failing to deploy within 0.02
seconds is at most 10−10”. Probabilistic model checking involves conventional model checking
techniques, for example symbolic and automata-theoretic methods, in combination with

∗ This work was partially supported by ERC Advanced Grant VERIWARE and EPSRC Mobile Autonomy
Programme Grant EP/M019918/1.

© Marta Kwiatkowska;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi; Article No.XXX;
pp.XXX:1–XXX:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.prismmodelchecker.org
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.XXX
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XXX:2 Model Checking and Strategy Synthesis for Stochastic Games

numerical or statistical analysis. For models that allow nondeterministic choices, it also
enables strategy synthesis from temporal logic specifications to automate decision-making in
applications such as robotics and security, where it can be employed to generate controllers
or counter-attacks. This is similar to motion planning and optimal control, except that
temporal logics are used to rigorously specify high-level goals, yielding controllers that are
guaranteed to be correct.

Quantitative verification has been the focus of much interest in recent years, resulting in
the adoption of tools such as the real-time model checker UPPAAL [3] and the probabilistic
model checker PRISM [51] in several application domains. While UPPAAL is based on the
theory of timed automata developed in the 1990s [2], the algorithms underlying PRISM
have been known since the mid-1980s [69, 31], but have not entered the mainstream until
around year 2000, enabled by symbolic techniques [7, 33, 50, 60] implemented in PRISM’s
first release [49]. Since then several new models and features have been added, including
continuous-time Markov chains and probabilistic timed automata. PRISM has been success-
fully used to verify quantitative properties of a wide variety of real-life systems, automatically
discovering design flaws in some of them. These include anonymity protocols [65], randomised
distributed algorithms [53], wireless communication protocols [37], security [8], nanotechno-
logy designs [59], probabilistic software [47], self-adaptive systems [15], molecular signalling
pathways [45] and computational DNA circuits [57, 32].

Despite much success of probabilistic model checking, the accelerating technological ad-
vances in autonomous systems, to mention robotic assistants, self-driving cars and closed-loop
medical devices, place greater and greater demands on quantitative verification technologies.
Increasingly, we wish to delegate day-to-day tasks to autonomous, wirelessly connected,
Internet-enabled and software-controlled devices, whose aim is to achieve certain objectives,
such as safe and fuel efficient autonomous driving on a motorway. This incurs the need to
consider cooperative, competitive and adversarial behaviour due to conflicting goals, e.g.,
safety versus fuel efficiency, while also taking into account their (possibly adversarial) inter-
action with environment, e.g., other cars. We also need to consider communities comprising
digital and human agents, able to represent typical interactions and relationships present in
scenarios such as semi-autonomous driving scenarios or collaborating with robotic assistants.
Game-theoretic approaches, which explicitly represent the moves and countermoves of players
and adversaries, are a natural model to represent and analyse such behaviours through the
study of winning strategies. Strategy synthesis from quantitative specifications, in particular,
can be viewed as constructing a strategy that is winning against all adversarial players. In
these data-rich dynamic environments, stochasticity is needed not only to quantify aspects
such as failure, safety and sensor uncertainty, but also to facilitate model derivation through
inference from data, for example GPS sensor data.

In this paper we summarise recent progress made towards development of algorithmic
techniques, tool implementation and real-life applications for turn-based stochastic multi-
player games, implemented in an extension of the PRISM model checker called PRISM-
games [25, 54]. Game theory is widely studied in areas such as economics and mechanism
design, though is less well established as a modelling abstraction for autonomy. In the
verification community, the majority of current research activity is focused on the study
of algorithmic techniques and their computational complexity. In contrast, we report on
ongoing effort towards the “theory to practice” transfer of quantitative verification and
synthesis techniques to the challenging application domain of mobile autonomy. The overview
will cover verification and strategy synthesis from quantitative temporal logic specifications,
with a focus on zero-sum, complete observation stochastic games, and will include both

M. Kwiatkowska XXX:3

single- and multi-objective properties, together with a wide range of quantitative objectives
(expected total reward, longrun average and ratio objectives) and compositional assume-
guarantee strategy synthesis. We will also briefly describe a number of real-life examples from
autonomous systems and lessons learnt through applying PRISM-games in these scenarios.
We conclude the paper with a discussion of work in progress and future research in this area.

2 Stochastic Multi-Player Games

Stochastic multi-player games (SMGs) [64, 30] are a generalisation of Markov decision
processes, where we distinguish between several types of nondeterministic choices, each
corresponding to a different player. SMGs thus allow us to reason about strategic decisions of
multiple players competing or collaborating to achieve the same objective. Several stochastic
game models exist, which include concurrent games [64, 22] and partial-observation games [18,
20]. Here we focus on turn-based games as studied in [30], in which a single player controls
the choices made in a given state. The presentation is based on [23, 24, 26, 11, 10, 9, 67],
where we refer the reader for further details.

Let D(X) denote the family of all probability distributions over a set X.

I Definition 1 (Stochastic multi-player game (SMG)). A stochastic multi-player game (SMG)
is a tuple G = (Π, S, (SΠ, Sp), sinit,∆,A, L), where Π is a finite set of players; S is a finite
nonempty set of states partitioned into player states SΠ =

⋃
Si∈Π and probabilistic states

Sp; sinit ∈ SΠ is an initial state; ∆: S × S → [0, 1] is a probabilistic transition function
such that for all player states s, t ∈ SΠ and probabilistic states s′ ∈ Sp we have ∆(s, t) = 0,
∆(s, s′) ∈ {0, 1} and

∑
t∈SΠ

∆(s′, t) = 1; A is a finite nonempty set of actions; and L : Sp → A
is an action labelling function.

Note that each state of an SMG is controlled by a single player. The game proceeds as
follows. It starts in the initial player state sinit and, when in a player i ∈ Π state s, the
player chooses the next state s′ such that ∆(s, s′) = 1, and when in a probabilistic state
s ∈ Sp the next state is sampled according to the probability distribution ∆(s′, ·).

Stochastic games can be equivalently defined, see e.g. [24], by partitioning the state space
into player states SΠ only, and associating with each such state s ∈ SΠ a set of action-
distribution pairs (a, µ) called moves, where a = L(s′) for some s′ ∈ Sp such that ∆(s, s′) = 1
and the distribution µ, defined by µ(t) = ∆(s′, t) for all t ∈ S, gives the probability of moving
to a successor state. If the sets of all players but one are empty, then a stochastic turn-based
game is a probabilistic automaton in the sense of Segala [63], a mild generalisation of a
Markov decision process (MDP).

We unfold an SMG G into paths, namely possibly infinite sequences λ = s0s1s2 . . . such
that ∆(si, si+1) > 0 for all i ≥ 0. Note that player states and probabilistic states alternate
in a path. For a finite path λ = s0s1 . . . sk we use |λ| = k + 1 to denote the length of the
path and last(λ) = xk denotes its last element. A trace of λ is the sequence of actions that
label the probabilistic states within λ. We use PathG,s to denote the set of all infinite paths
originating in a state s ∈ S and PathG =

⋃
s∈S PathG,s. The sets FPathG,s,FPathG of finite

paths are defined analogously.
SMGs can be annotated with rewards, which allows us to formulate a variety of quantitative

analyses that assign reward values to paths. We consider cumulative, longrun average and
ratio rewards. The analysis typically involves ensuring that the game achieves a certain
reward bound or optimising these values in the game.

ICALP 2016

XXX:4 Model Checking and Strategy Synthesis for Stochastic Games

I Definition 2 (Reward structure). Given a game G = (Π, S, (SΠ, Sp), sinit,∆,A, L), a reward
structure for G is a function r : S → R.

To resolve the nondeterminism in an SMG, similarly to MDPs we use strategies, except we
now have a strategy for each player i ∈ Π. We work with an explicit memory representation
of strategies due to [14].

I Definition 3 (Strategy). For an SMG G = (Π, S, (SΠ, Sp), sinit,∆,A, L), a strategy σi for
player i of G is a tuple σi = (M,σui , σ

n
i , σ

init
i), whereM is a countable set of memory elements,

σui : M × S → D(M) is a memory update function, σni : M × Si → D(S) is a next move
function such that σni (m, s)(s′) > 0 only if ∆(s, s′) > 0, and σinit

i : S → D(M) is an initial
memory element function. If the memory update function maps to point distributions, i.e. is
of type σui : M × S →M , the strategy σi is deterministic memory update, and otherwise it
is stochastic memory update. The set of all strategies for player i ∈ Π is denoted by ΣiG . A
strategy profile σ = σ1, ...σ|Π| comprises a strategy for every player in G.

For a given strategy σi of player i, the game proceeds as follows. It starts in a player
state with memory sampled according to the initial distribution function σinit

i . Then, in every
step of the game, player i updates the current memory element based on the current state of
the game using the memory update function σui . Moreover, if the game is in a player i state,
player i chooses the next state of the game using the next move action σni .

Strategies can be classified according to the use of randomisation or memory. A given
strategy σi of player i is deterministic (pure) if the next move action σni is of type σni : M ×
Si → S, and otherwise it is randomised. Similarly, σi is memoryless if M is a singleton, finite
memory ifM is finite, and infinite memory otherwise. An alternative, standard representation
of a deterministic player i strategy is as a function from finite paths terminating in a player
i state to distributions over the available moves (a, µ) in the given state. Deterministic
memoryless strategies can be simply represented as functions σni : Si → S.

Stochastic memory update strategies have the same power as deterministic memory update
but are exponentially more succinct than deterministic memory update [66]. Stochastic
memory update strategies can be determinised if their memory is not restricted [10, 9]; in
fact, a finite stochastic memory update strategy can result in a finite or infinite deterministic
update strategy. Memory elements of the determinised strategies are probability distributions
over memory elements, which can be interpreted as the belief that the player has about
the memory element, knowing only the history and rules to update them, while the actual
memory based on sampling is kept secret.

For a given strategy profile σ = σ1, ...σ|Π|, the behaviour of an SMG G is fully probabilistic
and we use PathσG,s, PathσG , FPathσG,s and FPathσG , respectively, to denote paths obtained
under the strategy profile σ. Following standard methods [13], we can define a probability
measure PrσG,s over the set of infinite paths PathσG,s. Given a random variable ρ over this
probability space, the expected value of ρ is defined as EσG,s(ρ) =

∫
PathσG,s

ρ dPrσG,s.
We will sometimes require restrictions on SMGs. One such restriction to so called stopping

games was introduced to avoid infinite accumulation of rewards.

I Definition 4 (Stopping game). A state sf ∈ S of a stochastic multi-player game G =
(Π, S, (SΠ, Sp), sinit,∆,A, L) is called terminal if and only if ∆(sf , sf) = 1 and ∆(sf , s′) = 0
for all s′ 6= sf , s

′ ∈ S. A game is called stopping if it has at least one terminal state and if it
holds that, for every strategy profile σ = σ1, ...σ|Π| and starting from the initial state, with
probability 1 the game eventually stops, i.e., a terminal state is reached.

M. Kwiatkowska XXX:5

3 Property Specification

We now introduce a notation for specifying temporal and reward-based properties of stochastic
games. The presentation employs a variant of the probabilistic temporal logic called RPATL,
based on Probabilistic Computation Tree Logic (PCTL) [12] with rewards [41], enhanced with
the coalition operator from Alternating Temporal Logic (ATL) [1]. We discuss both single
and multi-objective properties. The full logics RPATL and RPATL* are studied in [23, 29].

I Definition 5 (RPATL property). A single-objective, respectively multi-objective, RPATL
property is a formula φ, respectively Φ, in the following grammar:

φ ::= 〈〈C〉〉P./p[ψ] | 〈〈C〉〉Rr./x[ρ] | 〈〈C〉〉Rr/c./x[S]

Φ ::= 〈〈C〉〉(
n∧
i=1

P./pi [ψi]) | 〈〈C〉〉(
m∧
j=1

Rrj./xj [ρj]) | 〈〈C〉〉(
m∧
j=1

Rrj/cj./xj [S])

ψ ::= F a

ρ ::= C | S

where a ∈ AP is an atomic proposition, C ⊆ Π is a coalition of players, ./∈ {≤,≥}, p ∈ [0, 1],
r, c are reward structures, and x ∈ R.

The operator P./p[ψ] is the PCTL probabilistic operator, where ψ is a CTL path formula.
To simplify the presentation we only consider the reachability path formulas F a. The
operators Rr./x[C] and Rr./x[S] respectively denote the expected total reward and longrun
average reward (mean payoff), whereas Rr/c./x[S] is a longrun average ratio reward. We combine
these operators with the coalition operator 〈〈·〉〉 of ATL as follows. Intuitively, 〈〈C〉〉P./p[ψ]
means that the players in coalition C can collectively ensure that P./p[ψ] is satisfied, no
matter what the players outside the coalition do. For example, in a game with players 1,
2 and 3, the property 〈〈{1, 3}〉〉P≥1[F end] states that players 1 and 3 have a strategy to
ensure that the game reaches an end-state almost surely, irrespective of what player 2 does.
〈〈C〉〉Rr./x[C] means that the players in coalition C can collectively ensure that the expected
total reward is in relation ./ to x. 〈〈C〉〉Rr./x[S] and 〈〈C〉〉Rr/c./x[S] are defined similarly, except
that they respectively concern expected average rewards cumulated over infinite paths and
expected ratio rewards. Both probabilistic and reward properties can be interpreted in
quantitative fashion, e.g. 〈〈C〉〉Pmax=?[F a], meaning the maximum probability of reaching an
a-state that players in C can ensure, regardless of the other players, and similarly for the
minimum.

We also allow formulti-objective properties Φ defined as conjunctions of coalition properties
of the same type, with the interpretation that all conjuncts are required to be satisfied
simultaneously; see [26, 10] for a more general definition of multi-objective properties as
Boolean combinations. Intuitively, the property 〈〈C〉〉(

∧n
i=1 P./pi [ψi]) means that players in

coalition C have a collective strategy to ensure that, for all i = 1, . . . , n, we have that P./pi [ψi]
holds, no matter what the other players do. 〈〈C〉〉(

∧m
j=1 Rrj./xj [ρj]) is defined similarly, so, for

example, 〈〈{4, 5}〉〉(Rprofit
≥5 [S] ∧ Rfuel

≤10 [S]) states that players 4 and 5 have a collective strategy
to ensure that expected longrun average profit is at least 5 and expected longrun average fuel
usage is at most 10, no matter what the other players do. Property 〈〈C〉〉(

∧m
j=1 Rrj/cj≥xj [ρj])

is a ratio reward, so for example 〈〈{1, 2}〉〉(Rfuel/time
≤10 [S] ∧ Rvisit/time

≥20 [S]) states that players 1
and 2 have a collective strategy to ensure that expected longrun fuel consumption per time
unit is at most 10 and expected longrun number of visits is at least 20, no matter what the
other players do.

ICALP 2016

XXX:6 Model Checking and Strategy Synthesis for Stochastic Games

In order to define the semantics of the coalition and multi-objective properties, we require
the notion of a coalition game based on the analogous notion for ATL.

I Definition 6 (Coalition game). Given an SMG G = (Π, S, (SΠ, Sp), sinit,∆,A, L) and
coalition of players C ⊆ Π, the coalition game of G induced by C is the two-player stochastic
game GC = (Π, S, (S′1, S′2), sinit,∆,A, L), where S′1 =

⋃
i∈C Si and S′2 =

⋃
i∈Π/C Si. The sets

of strategies of player 1 and 2 in the coalition game are respectively denoted Σ1
GC and Σ2

GC .

I Definition 7 (RPATL semantics). Let G = (Π, S, (SΠ, Sp), sinit,∆,A, L) be an SMG whose
states are labelled with atomic propositions a ∈ AP . We identify a proposition a with the
set of states Sa = {s ∈ S | s |= a} satisfying a, also denoted a. The satisfaction relation |= is
defined as follows, where formulas φ and Φ are interpreted over states of the game, whereas
temporal formulas ψ and reward functions ρ are interpreted over paths:

G, λ |= F a ⇐⇒ ∃i ≥ 0 : (λiλi+1 . . . |= a)

G, s |= 〈〈C〉〉P./p[ψ] ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Prσ1,σ2
GC ,s {λ ∈ PathGC ,s | GC , λ |= ψ} ./ p

G, s |= 〈〈C〉〉Rr./xρ ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Eσ1,σ2
GC ,s (rew(r, ρ)) ./ x

G, s |= 〈〈C〉〉Rr/c./xS ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Eσ1,σ2
GC ,s (rew(r, S)) ./ x

G, s |= 〈〈C〉〉(
∧n
i=1 P./pi [ψi]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ i ≤ n.

Prσ1,σ2
GC ,s {λ ∈ PathGC ,s | GC , λ |= ψi} ./ pi

G, s |= 〈〈C〉〉(
∧m
j=1 Rrj./xj [ρj]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ j ≤ m.

Eσ1,σ2
GC ,s (rew(r, ρj)) ./ xj

G, s |= 〈〈C〉〉(
∧m
j=1 Rrj/cj./xj [S]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ j ≤ m.

Eσ1,σ2
GC ,s (rew(r/c, S)) ./ xj

where GC=(Π, S, (S′1, S′2), sinit,∆,A, L) is the coalition game of G induced by C, r is a reward
structure for Gc, c is a nonnegative reward structure for GC s.t. the probability of its mean
payoff under any strategy profile is at least some constant value, and

rewk(r)(λ) =
∑k
i=0 r(λi)

rew(r, C)(λ) = lim infk→∞ rewk(r)(λ)
rew(r, S)(λ) = lim infk→∞ rewk(r)(λ)

k+1

rew(r/c, S)(λ) = lim infk→∞ rewk(r)(λ)
1+rewk(c)(λ)

The properties defined above can be employed for verification as well as strategy synthesis
for stochastic multi-player games.

4 Single-objective Properties

Model checking and strategy synthesis for single-objective RPATL properties in stochastic
games reduces to checking the existence of, respectively finding (if it exists), a winning strategy
in two-player stochastic games, and specifically coalition games. Formally, given a stochastic
multi-player game G and a single-objective RPATL property φ, e.g., φ = 〈〈C〉〉P./p[ψ] or

M. Kwiatkowska XXX:7

φ = 〈〈C〉〉R./x[ρ], the model checking problem is to establish whether sinit |= φ in the coalition
game GC . The strategy synthesis problem, on the other hand, for a stochastic game G and a
property φ as above is to construct a strategy σ1 for player 1 in the coalition game GC (if it
exists) that is a witness to the satisfaction sinit |= φ.

Similarly to MDPs, deciding the verification and strategy synthesis problems involves
computing the optimal values of path formulas ψ and reward functions ρ defined for the
minimum in the coalition game GC as follows:

Prmin
GC ,s(ψ) = inf

σ1∈Σ1
GC

sup
σ2∈Σ2

GC

Prσ1,σ2
GC ,s (ψ),

Emin
GC ,s(rew(r, ρ)) = inf

σ1∈Σ1
GC

sup
σ2∈Σ2

GC

Eσ1,σ2
GC ,s (rew(r, ρ)),

(1)

where we swap infimum and supremum to compute the maximum value. A strategy σ1 ∈ Σ1
GC

of player 1 starting from state s is called optimal if it achieves the optimal value, e.g.,
supσ2∈Σ2

GC
Prσ1,σ2
GC ,s (ψ) = Prmin

GC ,s(ψ). Similarly, the strategy is called ε-optimal, for ε > 0, if
it achieves a value deviating by at most ε from the optimum, e.g., supσ2∈Σ2

GC
Prσ1,σ2
GC ,s (ψ) ≥

Prmin
GC ,s(ψ) + ε.
The optimal values and strategies can be used to solve the RPATL single-objective model

checking problem in the following way. For example, to establish the verification problem
for G, s and property 〈〈C〉〉P≥p[ψ], it suffices to verify that in the coalition game GC player
1 can ensure Prmax

GC ,s(ψ) ≥ p. The remaining single-objective properties can be addressed
in a similar fashion. To solve the strategy synthesis problem, we compute an optimal or
a suitable ε-optimal strategy for the coalition, that is, for player 1. Since the games are
zero-sum, for every single-objective RPATL property φ there exists a winning strategy for
one of the players.

The problems of computing the optimal values and strategies for the variant of RPATL
discussed here are in NP ∩ coNP [26, 9]. No polynomial-time algorithm is known, and the
method used in practice to compute optimal values is a value iteration algorithm [30]. For
probabilistic reachability properties, given the quantitative probabilistic reachability property
〈〈C〉〉Pmax=?[F a], the value iteration algorithm [30] computes the optimal values for player 1
states s ∈ S1 in the coalition game as

Prmax
GC ,s(ψ) = v∗(s) = lim

n→∞
v∗n(s), (2)

where v∗n(s) is computed iteratively as indicated in Fig. 1, with the computation terminated
when a suitable precision threshold α is reached, i.e. the maximum difference between v∗n(s)
and v∗n+1(s), for s ∈ S, is not more than α. The computation of minimum values proceeds
analogously.

It has been shown that for single-objective probabilistic reachability properties both
players have optimal strategies and memoryless deterministic strategies suffice, and an
optimal player 1 strategy can be constructed from the optimal values in time linear in the
size of the game [4]. For more complex RPATL* properties not discussed here, where ψ is an
LTL formula, pure finite-memory strategies may be required, see [4, 21, 23] and references
therein. LTL properties ψ involve converting the formula to a Rabin or parity automaton,
building the product of the automaton with the coalition game, and computing optimal
values for a probabilistic reachability property on the product.

For single-objective cumulative reward properties ρ = C, if a game is non-stopping then
the set of states that receive infinite total reward can be computed by solving the game with

ICALP 2016

XXX:8 Model Checking and Strategy Synthesis for Stochastic Games

v∗n(s) =

1 if s |= a

0 if s 6|= a and n = 0,
max{v∗n−1(s), v′n(s)} if n > 0,

v′n(s) =

maxs′∈S{∆(s, s′) · v∗n−1(s′)} if s 6|= a and s ∈ S1,

mins′∈S{∆(s, s′) · v∗n−1(s′)} if s 6|= a and s ∈ S2,∑
s′∈S ∆(s, s′) · v∗n−1(s′) if s 6|= a and s ∈ Sp.

Figure 1 Value iteration algorithm for the quantitative probabilistic reachability property
〈〈C〉〉Pmax=?[F a] computed on the coalition game GC .

respect to a parity condition [66]. After removing these states, value iteration algorithm
similar to that for probabilistic reachability can be applied to compute the (bounded) optimal
values for the remaining states. An optimal (memoryless deterministic) player 1 strategy for
a stopping game can be constructed from the optimal values in time linear in the size of the
game [4].

Longrun average reward properties ρ = S are more involved since average reward disregards
all transient behaviour. Nevertheless, memoryless deterministic strategies still suffice for
both players to win [43, 58] and an optimal strategy can be constructed by reduction to the
discounted reward problem. An alternative, more practical, method, which also extends to
expected and almost sure ratio rewards, was formulated for multi-objective properties [10, 9]
under certain restriction on the models. The method employs stochastic memory update
strategies and reduction to expected energy objectives, and is discussed in the next section.

5 Multi-objective Properties

In this section, we discuss the problem of multi-objective verification and strategy synthesis
for stochastic multi-player games, previously also studied for MDPs [38, 42], where the goal
is to simultaneously satisfy a certain combination of properties. Recall that we defined
a multi-objective RPATL property Φ as a conjunction of properties of the same type,
e.g. 〈〈C〉〉(

∧n
i=1 P./pi [ψi]) or 〈〈C〉〉(

∧m
j=1 Rrj./xj [ρj]) (note that in [26] any positive Boolean

combinations are allowed). As for single-objective properties, for a given coalition C we
reduce the analysis of a multi-player stochastic game G to the coalition game GC , and thus it
suffices to consider two-player stochastic games.

Let ΦC be a multi-objective property for coalition C involving m probabilistic or reward
properties and GC be the induced two-player coalition game. Let r = (r1, . . . , rm) denote
the vector of reward structures and r(s) = (r1(s), . . . , rm(s)), for every s ∈ S. Similarly,
p = (p1, . . . , pm) and x = (x1, . . . , xm) denote the vectors of probability and reward bounds.
We say that the vector of bounds (p,x) for ΦC , denoted ΦC(p,x), is achievable if and only if
there exists a winning strategy for player 1 that guarantees all properties in ΦC with bounds
p,x. The optimal achievable vectors of bounds are called Pareto vectors.

I Definition 8 (Pareto set). Let ΦC be a multi-objective property for coalition C involving
n probabilistic or reward properties. A vector (p,x) ∈ Rm is called a Pareto vector if the
property ΦC(p − ε,x − ε) is achievable in GC for every ε > 0 and ΦC(p + ε,x + ε) is not
achievable for any ε > 0. The set P of all Pareto vectors for ΦC is called a Pareto set.

M. Kwiatkowska XXX:9

V ∗n (s) =

{x ∈ Rm≥0 | x ≤ r(s)} if n = 0,
dwc(r(s) + conv(

⋃
∆(s,s′)=1 V

∗
n−1(s′))) if n > 0 and s ∈ S1,

dwc(r(s) +
⋂

∆(s,s′)=1 V
∗
n−1(s′)) if n > 0 and s ∈ S2,

dwc(r(s) +
∑

∆(s,s′)>0 ∆(s, s′) · V ∗n−1(s′)) if n > 0 and s ∈ Sp,

x ·X = {x · x | x ∈ X},
x +X = {x + x′ | x′ ∈ X},

dwc(X) = {y | ∃x ∈ X : y ≤ x},
conv(X) = {y | ∃x,x′ ∈ X,α ∈ [0, 1] : y = αx + (1− α)x′}.

Figure 2 Iterative computation of an ε-approximation of the Pareto set for a multi-objective
expected total reward property in a two-player stochastic game. Here, x ∈ R≥0 is a real number,
x ∈ Rm≥0 is a vector, X ⊆ Rm≥0 is a set, ≤ is the componentwise partial order on Rm≥0, dwc(X) is the
downward closure of the set X, and conv(X) is the convex closure of X. Given a two-player stopping
game G with multiple reward structures r and a multi-objective total reward property Φ(x), the
approximation is computed for every state s ∈ S in k = |S|+ d|S| · ln(ε·(n·M)−1)

ln(1−δ) e iterations, where
M = |S| · maxi,s∈S ri(s)

δ
, δ = ∆|S|min, and ∆min is the smallest positive probability in G.

The problems of multi-objective verification and strategy synthesis are formulated similarly
to the single-objective case discussed in the previous section. However, unlike in the single-
objective case, optimal strategies might not exist, as shown in [27] for conjunctions. Further,
an infinite-memory strategy may be required, even for stopping games with reachability
objectives [26]. Existing solutions therefore compute ε-approximations of Pareto sets and
the corresponding ε-optimal strategies.

I Definition 9 (Pareto set approximation). For ε > 0, an ε-approximation of the Pareto set
is a set of vectors Q such that for every (q,y) ∈ Q there exists a Pareto vector (p,x) ∈ P
with ‖(q,y)− (p,x)‖ ≤ ε, and vice versa, for every Pareto vector (p,x) ∈ P there exists a
vector (q,y) ∈ Q with ‖(q,y)− (p,x)‖ ≤ ε, where ‖ · ‖ is the Manhattan distance defined
as the sum of componentwise differences.

The ε-approximation of the Pareto set for a stopping coalition game GC and a multi-
objective property ΦC(x) can be computed using the iteration algorithm in Fig. 2. The
algorithm successively computes, for each state s ∈ S, the sets V ∗n (s), where the nth such set
is the downward closure of vectors of bounds achievable by the coalition (player 1), from s,
in up to n steps. Since player 1 can randomise between its successor states, the set V ∗n (s) for
s ∈ S1 is computed as a downward, convex closure of the union of V ∗n−1(s′), for all s′ such
that ∆(s, s′) = 1. For s ∈ S2, the bounds must be achievable for all successor states, and
hence we take the intersection. Finally, for probabilistic states s ∈ Sp, we consider the sum
weighted by the corresponding probabilistic distribution.

Once an ε-approximation of the Pareto set has been computed, the corresponding ε-
optimal player 1 strategy can be constructed [29, 26, 70], where the stochastic memory
update, σ1 = (M,σu1 , σ

n
1 , σ

init
1), representation is employed. In the construction, the vertices

of approximation sets V ∗n (s), s ∈ S, act as memory elements M and represent the vector of
reward bounds that the strategy currently aims to achieve. The distributions in functions
σu1 and σinit

1 are constructed so that the expected value of the next memory element is
an ε-approximation of the target reward bounds x. Employing stochastic memory update

ICALP 2016

XXX:10 Model Checking and Strategy Synthesis for Stochastic Games

representation enables a reduction in the memory required from up to infinite to finite for
stopping games [26].

Since probabilistic reachability properties can be reduced to total reward properties, the
iterative algorithm in Fig. 2 can be adapted to compute ε-approximations of Pareto sets for
any stopping stochastic game with a multi-objective property that involves only probabilistic
reachability properties. This can be extended, for stopping games, to probabilistic LTL
properties [29] by employing reduction to Rabin automata and building a synchronous
product of all the automata and the original SMG G, with a new terminal state which is
entered after G enters any of its terminal states. However, the strategy synthesis problem for
multi-objective probabilistic LTL properties in general stochastic games remains open.

Unfortunately, this method cannot be used for multi-objective strategy synthesis for
longrun average reward properties. This is because the algorithm in Fig. 2 approximates the
Pareto set in a finite number of iterations by combining the achievable values of successive
states, but expected average reward disregard all transient behaviour. Nevertheless, for the
special case of almost sure average reward properties [10], strategy synthesis for multi-objective
properties of this type reduces to synthesis for multi-objective expected energy properties.
The corresponding decision problem is in co-NP, as shown in [9] and [19]. In addition, [9]
also formulate an algorithm to construct a strategy, if it exists, where stochastically updated
memory strategies are generated, which can yield exponentially more compact representations
than deterministically updated strategies used in [19]. Further, [9] identify a general class of
games for which the synthesis algorithm can be extended to arbitrary Boolean combinations
of expected mean-payoff objectives.

Finally, in [10, 9] a method to handle multi-objective ratio reward properties is provided.
To solve the strategy synthesis problem for a single-objective ratio reward property in a
coalition game, it suffices to solve the problem for an almost sure average reward property,
and this can be extended to (conjunctive) multi-objective properties using vectors.

6 Compositional Strategy Synthesis

One difficulty with multi-objective strategy synthesis, in view of high computational com-
plexity [26], is its scalability. To deal with this problem, [11, 70] formulate a compositional
framework for strategy synthesis, which allows one to derive a strategy for the composed
system by synthesising only for the (smaller) individual components. Firstly, recall that
probabilistic automata of [63] correspond to coalition games with only one player present.
In verification, the nondeterminism that is present in the probabilistic automaton models
an adverse, uncontrollable, environment. By applying a coalition strategy to a game to
resolve the controllable nondeterminism, we are left with a probabilistic automaton where
only uncontrollable nondeterminism for the remaining players remains. This observation
allows us to reuse rules for compositional verification of probabilistic automata, such as those
in [56], to derive strategy synthesis rules for SMGs.

The compositional framework of [11, 9, 70] is based on a parallel composition operation
for stochastic games, which is closely related to that of probabilistic automata [63], except
that the identity of the player is preserved through composition. When composed, the com-
ponent SMGs G = (Π, S, (SΠ, Sp), sinit,∆,A, L) and G′ = (Π′, S′, (S′Π, S′p), s′init,∆′,A′, L′)
synchronise on shared actions A ∪A′, yielding the composed game G′′ = G ‖ G′. Properties
of the component SMGs, as well as the composed game, are then defined on traces, that is,
sequences of actions that label the probabilistic states in the path, rather than over paths.
Under the assumption that the component games are compatible, i.e., all actions of player 1

M. Kwiatkowska XXX:11

in each composite game are enabled and fully controlled by player 1, the player 1 strategy
σ′′1 = σ1 ‖ σ′1 for G′′ that is a composition of player 1 strategies for component games preserves
all properties. More precisely, if strategies σ1 and σ′1 guarantee (possibly multi-objective)
properties Φ, Φ′ in component games, then the composed strategy σ′′1 guarantees property
Φ′′ in G′′, where Φ′′ is any property for the composed game that can be derived from Φ and
Φ′ using, for example, assume-guarantee rules in [56]. In particular, player 1 of different
component games can cooperate to achieve a common goal: if in one component game
player 1 guarantees a property Φ2 under some assumption Φ1 on the environment, i.e.,
Φ1 ⇒ Φ2, and player 1 in a different component game ensures Φ1, then the composition
satisfies property Φ2. A broad range of such assume-guarantee contracts can be supported
for both probabilistic and reward multi-objective properties.

The method for compositional strategy synthesis [11] first computes an under-approximation
Q of the Pareto set for Φ′′ based on ε-approximations Q,Q′ of Pareto sets for Φ,Φ′. For a
chosen achievable vector of bounds (p,x) for Φ′′, player 1 strategies σ1, σ

′
i are synthesised for

component games that achieve Φ(p,x), Φ′(p′,x′), where (p,x), (p′,x′) are the respective
bounds obtained by projecting (p,x) from Q′′ to Q,Q′. The composed strategy σ′′1 = σ1 ‖ σ′1
then achieves Φ′′(p′′,x′′). Note that, since assume-guarantee contracts may involve im-
plication, to be able to apply this framework and, in particular, to take full advantage
of assume-guarantee rules, we would need to be able to synthesise strategies for arbitrary
Boolean combinations of properties, which is possible [9, 70] under certain restrictions on
models and properties.

7 Tool Implementation and Applications

All techniques overviewed in this paper, including single- and multi-objective, as well as
compositional, strategy synthesis problems for turn-based stochastic multi-player games,
have been implemented in the open-source tool called PRISM-games [25, 54], developed as
an extension of the probabilistic model checker PRISM [52]. PRISM-games can be used to
model, verify, solve and simulate stochastic multi-player games with complex properties. As
a modelling notation, PRISM-games uses an extension of PRISM’s modelling language based
on reactive modules. The specification notation is based on RPATL [23], and includes support
for the coalition operator; single-objective properties, namely probabilistic reachability, total
reward properties for stopping games, average reward and ratio properties for a special
class of games called controllable multichain games (for details, see [70]), and almost sure
average reward and ratio properties; and multi-objective properties, and specifically Boolean
combinations of the same type of reward properties, except for the almost sure average and
ratio reward properties for which only conjunctions are supported.

Currently, PRISM-games is an explicit state model checker, which extends the Java-based
engine of PRISM, and relies on the Parma Polyhedra Library [6] for symbolic manipulation
of convex sets during ε-approximate computation of Pareto sets, see [66, 70].

Below we report on a variety of case studies of autonomous systems that employed
stochastic game models and were analysed using PRISM-games. For more information, see
[66, 70, 68, 67] and the PRISM-games website [61].

Microgrid demand-side management [66]. The example models a decentralised
energy management protocol for smart grids that draw energy from a variety of sources. The
system consists of a set of households, where each household follows a simple probabilistic
protocol to execute a load if the current energy cost is below a pre-agreed limit, and otherwise
it only executes the load with a pre-agreed probability. The energy cost to execute a load for

ICALP 2016

XXX:12 Model Checking and Strategy Synthesis for Stochastic Games

a single time unit is the number of loads currently being executed in the grid. The analysis
of the protocol with respect to the expected load per cost unit for a household, formulated
as a single-objective total reward property, exposed a protocol weakness. The weakness was
then corrected by disincentivising non-cooperative behaviour.

Human-in-the-loop UAV mission planning [40]. This case study concerns autonom-
ous unmanned aerial vehicles (UAV) performing road network surveillance and reacting to
inputs from a human operator. The UAV performs most of the piloting functions, such as
selecting the waypoints and flying the route. The operator primarily performs sensor tasks
at waypoints but may also pick a road for the UAV at waypoints. The optimal UAV piloting
strategy depends on mission objectives, e.g., safety, reachability, coverage, and operator
characteristics, i.e., workload, proficiency, and fatigue. The main focus of the case study is on
studying a multi-objective property to analyse the trade-off between the mission completion
time and the number of visits to restricted operating zones, which have been investigated by
computing Pareto sets.

Autonomous urban driving [29]. A stochastic game model of an autonomous car is
developed, which considers the car driving through an urban environment and reacting to
hazards such as pedestrians, obstacles, and traffic jams. The car does not only decide on
the reactions to hazards, which are adversarial, but also chooses the roads to take in order
to reach a target location. The presence and probability of hazards is based on statistical
information for the road. Through multi-objective strategy synthesis, strategies with optimal
trade-off between the probability of reaching the target location, the probability of avoiding
accidents and the overall quality of roads on the route are identified.

Aircraft power distribution [10]. An aircraft electrical power network is considered,
where power is to be routed from generators to buses through controllable switches. The
generators can exhibit failures and switches have delays. The system consists of several
components, each containing buses and generators, and the components can deliver power
to each other. The network is modelled as a composition of stochastic games, one for each
component. These components are physically separated for reliability, and hence allow limited
interaction and communication. Compositional strategy synthesis is applied to find strategies
with good trade-off between uptime of buses and failure rate. By employing stochasticity, we
can faithfully encode the reliability specifications in quantitative fashion, thus improving
over previous results. The property is modelled as a conjunction of ratio reward properties.

Self-adaptive software architectures [44, 16]. Self-adaptive software automatically
adapts its structure and behaviour according to changing requirements and quantitative goals.
Several self-adaptive software architectures, such as adaptive industrial middleware used
to monitor and manage sensor networks in renewable energy production plants, have been
modelled as stochastic games and analysed. Both single- and multi-objective verification of
multi-player stochastic games has been applied to to evaluate their resilience properties and
synthesise pro-active adaptation policies.

DNS Bandwidth Amplification Attack [35]. The Domain Name System (DNS) is
an Internet-wide hierarchical naming system for assigning IP addresses to domain names,
and any disruption of the service can lead to serious consequences. A notable threat to DNS,
namely the bandwidth amplification attack, where an attacker attempts to flood a victim
DNS server with malicious traffic, is modelled as a stochastic game. Verification and strategy
synthesis is used to analyse and generate counter-measures to defend against the attack.

Attack-defence scenarios in RFID goods management system [5]. This case
study considers complex attack-defence scenarios, such as an RFID goods management system,
translating attack-defence trees to two-player stochastic games. Probabilistic verification is

M. Kwiatkowska XXX:13

then employed to check security properties of the attack-defence scenarios and to synthesise
strategies for attackers or defenders which guarantee or optimise some quantitative property.
The properties considered include single-objective properties such as the probability of a
successful attack or the incurred cost, as well as their multi-objective combinations.

8 Challenges

Clearly, there has been much progress towards quantitative verification and aspects of
quantitative synthesis for autonomy, with a wide variety of relevant case studies serving as
proof of concept. However, a number of significant challenges have yet to be overcome. We
briefly review a selection of these below.

Partial information. Practical quantitative verification, as exemplified by PRISM,
has so far mostly been limited to complete information systems. This restriction is not
applicable to many autonomous scenarios, where agents in the system only have partial
information. Partial observability [18, 20] raises a number of algorithmic challenges that
need to be tackled.

Modelling social interactions. Autonomous systems are increasingly often employed
to assist and interact with humans, and operator models have to be taken into account.
Though some progress has been made, for example in the context of UAVs [40], models that
incorporate cognitive processes and social interactions, such as those based on trust [39, 46],
and the corresponding verification techniques are needed.

Model learning and adaptation from data. Quantitative verification has so far
mainly focused on modelling system dynamics, but the behaviour of many autonomous and
semi-autonomous systems, such as those involving perception, is data-driven [62]. Techniques
that integrate model learning from data in order to inform adaptation in real-time and
programming with uncertain data within quantitative verification methodologies are needed.

Model synthesis from specifications. Though correct-by-construction synthesis
of strategies has been tackled in a range of models, model synthesis from quantitative
specifications requires further study. A possible approach is combining template-based and
parameter synthesis methods already developed for Markov chains and MDPs [34, 28, 17]
and via discretisation for timed and hybrid automata [36, 55], but more effort is required to
tackle autonomous systems.

Scalability, efficiency and precision. Existing model checking and strategy synthesis
tools for stochastic games are in early stages of development and substantial effort is necessary
to ensure their effectiveness in industrial applications. Compositional approaches, symbolic
techniques and methodologies based on induction, deduction and machine learning, as well
as their judicious combinations, have great potential.

9 Conclusion

As autonomous systems are becoming an integral part of our society, their failure carries
potentially unacceptable and life-endangering risks. Rigorous model-based verification
technologies incorporated within the design process can improve their safety and reliability
and reduce development costs. This paper has briefly summarised quantitative verification
and strategy synthesis techniques developed for autonomous systems modelled as turn-based
stochastic multi-player games as implemented in the tool PRISM-games and outlined future
research challenges in this challenging yet exciting field.

ICALP 2016

XXX:14 Model Checking and Strategy Synthesis for Stochastic Games

References
1 R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of

the ACM, 49(5):672–713, 2002.
2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183 – 235, 1994.
3 Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre David,

Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, M. Oliver Möller, Paul
Pettersson, Carsten Weise, and Wang Yi. Uppaal - Now, Next, and Future. In F. Cassez,
C. Jard, B. Rozoy, and M. Ryan, editors, Modelling and Verification of Parallel Processes,
number 2067 in Lecture Notes in Computer Science Tutorial, pages 100–125. Springer–
Verlag, 2001.

4 Daniel Andersson and Peter Bro Miltersen. The Complexity of Solving Stochastic Games
on Graphs. In Algorithms and Computation, volume 5878 of LNCS, pages 112–121. 2009.

5 Zaruhi Aslanyan, Flemming Nielson, and David Parker. Quantitative Verification and Syn-
thesis of Attack-Defence Scenarios. In Proc. of Computer Security Foundations Symposium
CSF, 2016. to appear.

6 Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3 – 21, 2008.

7 C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, Proc. 24th Int. Colloq. Automata, Languages and Programming (IC-
ALP’97), volume 1256 of LNCS, pages 430–440. Springer, 1997.

8 S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou. Probabilistic model checking
for the quantification of DoS security threats. Computers & Security, 2009.

9 N. Basset, M. Kwiatkowska, and C. Wiltsche. Compositional strategy synthesis for
stochastic games with multiple objectives. Technical Report CS-RR-16-03, Department
of Computer Science, University of Oxford, 2016.

10 Nicolas Basset, Marta Z. Kwiatkowska, Ufuk Topcu, and Clemens Wiltsche. Strategy
Synthesis for Stochastic Games with Multiple Long-Run Objectives. In Proc. of Tools and
Algorithms for the Construction and Analysis of Systems TACAS, pages 256–271, 2015.

11 Nicolas Basset, Marta Z. Kwiatkowska, and Clemens Wiltsche. Compositional Controller
Synthesis for Stochastic Games. In Proc. of Concurrency Theory CONCUR, pages 173–187,
2014.

12 Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. of Foundations of Software Technology and Theoretical Computer Science
FSTTCS, volume 1026 of LNCS, pages 499–513, 1995.

13 P. Billingsley. Probability and Measure. Wiley, 1995.
14 Tomás Brázdil, Václav Brozek, Vojtech Forejt, and Antonín Kucera. Stochastic Games

with Branching-Time Winning Objectives. In Proc. of Logic in Computer Science LICS,
pages 349–358, 2006.

15 R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications of the ACM, 55(9):69–77, 2012.

16 Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic Game Analysis and
Latency Awareness for Proactive Self-adaptation. In Proc. of Software Engineering for
Adaptive and Self-Managing Systems SEAMS, pages 155–164, 2014.

17 M. Ceska, F. Dannenberg, N. Paoletti, M. Kwiatkowska, and L. Brim. Precise parameter
synthesis for stochastic biochemical systems. Acta Informatica, to appear, 2016.

18 Krishnendu Chatterjee and Laurent Doyen. Partial-Observation Stochastic Games: How
to Win when Belief Fails. Transactions on Compuational Logic, 15(2):16, 2014.

M. Kwiatkowska XXX:15

19 Krishnendu Chatterjee and Laurent Doyen. Perfect-information Stochastic Games with
Generalized Mean-Payoff Objectives. In Proc. of LICS. 2016. To appear.

20 Krishnendu Chatterjee, Laurent Doyen, Sumit Nain, and Moshe Y. Vardi. The Complexity
of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies. In Proc.
of Foundations of Software Science and Computation Structures FOSSACS, pages 242–257,
2014.

21 Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games.
Journal of Computer and System Sciences, 78(2):394 – 413, 2012.

22 Krishnendu Chatterjee and Rasmus Ibsen-Jensen. Qualitative analysis of concurrent mean-
payoff games. Information and Computation, 242:2 – 24, 2015.

23 T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic Verification
of Competitive Stochastic Systems. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems TACAS, volume 7214 of LNCS, pages 315–330, 2012.

24 T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic verification
of competitive stochastic systems. Formal Methods in System Design, 43(1):61–92, 2013.

25 T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games: A
Model Checker for Stochastic Multi-Player Games. In Proc. of Tools and Algorithms for
the Construction and Analysis of Systems TACAS, volume 7795 of LNCS, pages 185–191,
2013.

26 Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche.
On Stochastic Games with Multiple Objectives. In Proc. of Mathematical Foundations of
Computer Science MFCS, pages 266–277, 2013.

27 Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Aistis Simaitis, Ashutosh Trivedi, and
Michael Ummels. Playing Stochastic Games Precisely. In Proc. of Concurrency Theory
CONCUR, volume 7454 of LNCS, pages 348–363. 2012.

28 Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Kwiatkowska, Hongyang Qu, and
Lijun Zhang. Model repair for Markov decision processes. In Proc. 7th Int. Symp. The-
oretical Aspects of Software Engineering (TASE’13), pages 85–92. IEEE Computer Society
Press, 2013.

29 Taolue Chen, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche. Synthesis
for Multi-objective Stochastic Games: An Application to Autonomous Urban Driving. In
Proc. of Quantitative Evaluation of Systems QEST, pages 322–337, 2013.

30 Anne Condon. The Complexity of Stochastic Games. Information and Computation,
96:203–224, 1992.

31 C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite state probabil-
istic programs. In Proc. 29th Annual Symp. Foundations of Computer Science (FOCS’88),
pages 338–345. IEEE Computer Society Press, 1988.

32 F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J. Turberfield. Dna walker circuits:
Computational potential, design and verification. Natural Computing, 14(2):195–211, 2015.

33 L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model
checking of probabilistic processes using MTBDDs and the Kronecker representation. In
S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS, pages 395–410.
Springer, 2000.

34 C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J-P. Katoen, and
E. Ábrahám. PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In Proc. 27th
Int. Conf. Computer Aided Verification (CAV’15), volume 9206 of LNCS, pages 214–231.
Springer, 2015.

ICALP 2016

XXX:16 Model Checking and Strategy Synthesis for Stochastic Games

35 T. Deshpande, P. Katsaros, S.A. Smolka, and S.D. Stoller. Stochastic Game-Based Analysis
of the DNS Bandwidth Amplification Attack Using Probabilistic Model Checking. In Proc.
of European Dependable Computing Conference EDCC, pages 226–237, 2014.

36 M. Diciolla, C. H. P. Kim, M. Kwiatkowska, and A. Mereacre. Synthesising optimal timing
delays for timed I/O automata. In Proc. 14th International Conference on Embedded
Software (EMSOFT’14). ACM, 2014.

37 M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis of Bluetooth
device discovery. Int. Journal on Software Tools for Technology Transfer, 8(6):621–632,
2006.

38 K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective model check-
ing of Markov decision processes. Logical Methods in Computer Science, 4(4):1–21, 2008.

39 R. Falcone and C. Castelfranchi. Social trust: A cognitive approach. In Trust and Deception
in Virtual Societies, pages 55–90. Kluwer, 2001.

40 Lu Feng, Clemens Wiltsche, Laura Humphrey, and Ufuk Topcu. Controller Synthesis for
Autonomous Systems Interacting with Human Operators. In Proc. of Int. Conf. on Cyber-
Physical Systems ICCPS, pages 70–79, 2015.

41 V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated Verification Techniques
for Probabilistic Systems. In Proc. of Formal Methods for Eternal Networked Software
System SFM, volume 6659 of LNCS, pages 53–113, 2011.

42 V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-objective
verification for probabilistic systems. In P. Abdulla and K. Leino, editors, Proc. 17th Int.
Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11),
volume 6605 of LNCS, pages 112–127. Springer, 2011.

43 D. Gillette. Stochastic games with zero stop probabilities. Contributions to the Theory of
Games, 39:179–187, 1957.

44 T.J. Glazier, J. Camara, B. Schmerl, and D. Garlan. Analyzing Resilience Properties of
Different Topologies of Collective Adaptive Systems. In Proc. of Self-Adaptive and Self-
Organizing Systems Workshops SASOW, pages 55–60, 2015.

45 J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic
model checking of complex biological pathways. Theoretical Computer Science, 319(3):239–
257, 2008.

46 X. Huang and M. Kwiatkowska. Reasoning about cognitive trust in stochastic multiagent
systems. Technical Report CS-RR-16-02, Department of Computer Science, University of
Oxford, 2016.

47 M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement for
probabilistic software. In N. Jones and M. Muller-Olm, editors, Proc. 10th Int. Conf.
Verification, Model Checking, and Abstract Interpretation (VMCAI’09), volume 5403 of
LNCS, pages 182–197. Springer, 2009.

48 M. Kwiatkowska. Model checking for probability and time: From theory to practice. In
Proc. 18th Annual IEEE Symp. Logic in Computer Science (LICS’03), pages 351–360. IEEE
Computer Society Press, 2003. Invited Paper.

49 M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker.
In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th Int. Conf. Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS’02), volume 2324 of
LNCS, pages 200–204. Springer, 2002.

50 M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with
PRISM: A hybrid approach. International Journal on Software Tools for Technology Trans-
fer (STTT), 6(2):128–142, 2004.

51 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Int. Conf.

M. Kwiatkowska XXX:17

Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

52 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In Proc. of Computer Aided Verification CAV, volume 6806 of LNCS,
pages 585–591, 2011.

53 M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a randomized dis-
tributed consensus protocol using Cadence SMV and PRISM. In G. Berry, H. Comon, and
A. Finkel, editors, Proc. 13th Int. Conf. Computer Aided Verification (CAV’01), volume
2102 of LNCS, pages 194–206. Springer, 2001.

54 M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A Tool for Multi-
Objective Strategy Synthesis for Stochastic Games. In Proc. of Tools and Algorithms for
the Construction and Analysis of Systems TACAS, 2016. to appear.

55 Marta Kwiatkowska, Alexandru Mereacre, Nicola Paoletti, and Andrea Patanè. Synthes-
ising robust and optimal parameters for cardiac pacemakers using symbolic and evolution-
ary computation techniques. In Proceedings of the 4th International Workshop on Hybrid
Systems and Biology (HSB 2015), volume 9271 of LNCS/LNBI, pages 119–140. Springer,
2015.

56 Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Compositional
probabilistic verification through multi-objective model checking. Information and Com-
putation, 232:38 – 65, 2013.

57 M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and analysis of
DNA strand displacement devices using probabilistic model checking. Journal of the Royal
Society Interface, 9(72):1470–1485, 2012.

58 Thomas M. Liggett and Steven A. Lippman. Stochastic Games with Perfect Information
and Time Average Payoff. SIAM Review, 11(4):604–607, 1969.

59 G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the reliability of NAND
multiplexing with PRISM. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(10):1629–1637, 2005.

60 D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems. PhD
thesis, University of Birmingham, 2002.

61 PRISM-games website. http://www.prismmodelchecker.org/games/.
62 Dorsa Sadigh, Katherine Driggs-Campbell, Alberto Puggelli, Wenchao Li, Victor Shia,

Ruzena Bajcsy, Alberto L. Sangiovanni-Vincentelli, S. Shankar Sastry, and Sanjit A. Seshia.
Data-driven probabilistic modeling and verification of human driver behavior. In Formal
Verification and Modeling in Human-Machine Systems, AAAI Spring Symposium, 2014.

63 R. Segala. Modelling and Verification of Randomized Distributed Real Time Systems. PhD
thesis, Massachusetts Institute of Technology, 1995.

64 L. S. Shapley. Stochastic games. In National Academy of Sciences, pages 1095–1100, 1953.
65 V. Shmatikov. Probabilistic analysis of anonymity. In Proc. 15th IEEE Computer Security

Foundations Workshop (CSFW’02), pages 119–128. IEEE Computer Society Press, 2002.
66 A. Simaitis. Automatic Verification of Competitive Stochastic Systems. PhD thesis, De-

partment of Computer Science, University of Oxford, 2014.
67 M. Svorenova and M. Kwiatkowska. Quantitative verification and strategy synthesis for

stochastic games. European Journal of Control, 2016. To appear.
68 M. Ujma. On Verification and Controller Synthesis for Probabilistic Systems at Runtime.

PhD thesis, University of Oxford, 2015.
69 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state programs.

Foundations of Computer Science, IEEE Annual Symposium on, 0:327–338, 1985.
70 C. Wiltsche. Assume-Guarantee Strategy Synthesis for Stochastic Games. PhD thesis,

Department of Computer Science, University of Oxford, 2015.

ICALP 2016

http://www.prismmodelchecker.org/games/

	Introduction
	Stochastic Multi-Player Games
	Property Specification
	Single-objective Properties
	Multi-objective Properties
	Compositional Strategy Synthesis
	Tool Implementation and Applications
	Challenges
	Conclusion

