
Optimal Policy Generation for Partially Satisfiable Co-Safe LTL Specifications

Bruno Lacerda, David Parker and Nick Hawes
School of Computer Science, University of Birmingham

Birmingham, United Kingdom
{b.lacerda, d.a.parker, n.a.hawes}@cs.bham.ac.uk

Abstract

We present a method to calculate cost-optimal poli-
cies for task specifications in co-safe linear tem-
poral logic over a Markov decision process model
of a stochastic system. Our key contribution is to
address scenarios in which the task may not be
achievable with probability one. We formalise a
task progression metric and, using multi-objective
probabilistic model checking, generate policies that
are formally guaranteed to, in decreasing order of
priority: maximise the probability of finishing the
task; maximise progress towards completion, if this
is not possible; and minimise the expected time or
cost required. We illustrate and evaluate our ap-
proach in a robot task planning scenario, where the
task is to visit a set of rooms that may be inaccessi-
ble during execution.

1 Introduction
Markov decision processes (MDPs) are a widely used formal-
ism to model sequential decision-making problems for sce-
narios where there is inherent uncertainty about a system’s
evolution. In general, planning for MDPs is performed by
defining a reward structure over the model, and using dy-
namic programming techniques such as value or policy itera-
tion [Puterman, 1994] to generate a policy that maximises the
cumulative discounted reward over an infinite horizon. This
approach has the drawback of requiring the designer to map
the planning goal into a reward structure over the MDP, which
can be quite cumbersome and error-prone.

Thus, in recent years, there has been increasing interest
in the use of higher-level formalisms to specify the plan-
ning problems, in order to allow the designer to tackle in-
tricate goal behaviours more naturally. In particular, linear
temporal logic (LTL) [Pnueli, 1981] has been proposed as
a suitable specification language, due to it being a powerful
and intuitive formalism to unambiguously specify a variety
of tasks. Furthermore, algorithms and tools exist to generate
provably correct policies from an MDP model of the system
and an LTL task specification. These approaches build upon
techniques from the field of formal verification, in particular,
probabilistic model checking, which provides tools to reason

not just about the probability of satisfying an LTL specifi-
cation, but also other quantitative metrics using cost (or re-
ward) functions. These might represent, for example, execu-
tion time or energy consumption.

In this paper, we are interested in generating policies
that minimise the undiscounted expected cumulative cost1 to
achieve a task specified in the co-safe fragment of LTL (i.e., a
task that can be completed in a finite horizon). Our novel
contribution is to generate cost-optimal policies for tasks
that cannot be achieved with probability one in the model
(i.e., there is some probability that part of the LTL specifica-
tion cannot be achieved). Defining cost-optimal policies for
such tasks presents an additional challenge as, in general, the
undiscounted cumulative cost calculation will not converge.
Furthermore, we tackle the question of what to do when the
task becomes unsatisfiable during execution. In many cases,
even if the probability of satisfying the overall task is zero, it
is still possible to fulfil part of it. An illustrative example is
a robot that needs to navigate to every office in a building to
perform security checks. During execution some doors might
be closed, making offices inaccessible. This will make the
overall task unsatisfiable, yet we still want the robot to check
as many offices as it can.

To allow this partial task satisfaction, we define a task pro-
gression metric for co-safe LTL formulas, which can be en-
coded as a reward function on the MDP. Using this, we show
that the problems of (i) maximising the probability of satisfy-
ing a co-safe LTL formula; (ii) maximising the task progres-
sion reward (i.e., fulfilling as much of the formula as possi-
ble); and (iii) minimising a cost function while performing (i)
and (ii) can be solved independently by standard techniques
in a trimmed product MDP. As there is a trade-off between
these problems, we apply multi-objective probabilistic model
checking techniques [Forejt et al., 2011b] to find the best pol-
icy for the three objectives, in decreasing order of priority.
We also describe how to analyse the resulting policy to calcu-
late conditional expectations such as expected cost to success
or expected cost to failure. This analysis provides extra in-
formation about the policy that can be used to, for example,

1Our goal is to provide meaningful formal guarantees on the sys-
tem’s performance, e.g., expected time for completion. For such
properties, following the more typical approach of optimising the
cumulative sum using a discount factor strips the optimisation result
of a well-defined meaning.



monitor execution, or inform a higher-level task scheduler,
e.g., [Mudrova and Hawes, 2015]. Finally, we evaluate the
approach on the illustrative example described above.

2 Related Work
Finding cost-optimal policies for MDPs using LTL specifi-
cations has been tackled in several ways. [Svoreňová et al.,
2013; Ding et al., 2014] study the problem of maximising the
probability of satisfying a LTL specification, while minimis-
ing the long-term average cost to pass between two states that
satisfy an “optimising” atomic proposition, which must be
visited infinitely often. In [Lacerda et al., 2014], cost-optimal
policies for co-safe LTL are generated, and a mechanism for
the dynamic addition of tasks during execution is presented.
In these cases, the cost minimisation is done only over states
where the probability of satisfying the specification is one.
Conversely, [Ulusoy et al., 2012; Cizelj and Belta, 2014;
Wolff et al., 2013; Lahijanian et al., 2012] deal with maximis-
ing the probability of satisfying temporal logic specifications
but cost-optimality is not taken into account.

Other work on policy generation for MDPs with tempo-
ral logic specifications have focused on using the more tradi-
tional approach of finding policies that maximise discounted
cumulative rewards over an infinite horizon, while constrain-
ing such policies to the class that satisfies a set of “until”
specifications [Teichteil-Königsbuch, 2012a; Sprauel et al.,
2014]. In these works, the temporal logic constraints are dis-
connected from the reward structure. This means that, in gen-
eral, no optimal policies exist for such a problem. However,
the authors prove that one can always build randomised poli-
cies that achieve a notion of ε-optimality. In our work, the
main focus is the LTL specification, and the generation of
cost-optimal policies that maximise its probability of satisfac-
tion. This makes our class of optimal policies simpler: given
that we prioritise maximisation of the probability of satisfac-
tion over minimisation of the expected cost, the class of deter-
ministic finite-history policies suffices to solve our problem.

There has also been work on generation of cost-optimal
policies for specifications where the probability of success
is not one. [Teichteil-Königsbuch, 2012b; Kolobov et al.,
2012] present approaches to generate cost-optimal policies
to reach a target state, in the presence of unavoidable dead
ends, i.e., states which cannot be avoided with probability one
from the initial state, and for which the probability of reach-
ing the target is zero. Our work extends these approaches
by focusing on co-safe LTL, instead of simpler single-state
reachability. This fact requires the construction of a product
MDP from the original model and the co-safe LTL specifi-
cation, and also introduces the notion of partial satisfiabil-
ity, which is not present when the goal is reaching a single
state. [Ding et al., 2013] present an approach, based on con-
strained MDPs, to generate cost-optimal policies for co-safe
LTL, where the probability of satisfying the specification is
kept above a threshold. Contrary to our approach, this re-
quires the threshold for probability of satisfaction to be pro-
vided by the designer beforehand, and does not include the
notion of partial task specification.

In terms of dealing with the unsatisfiability of temporal

logic specifications during execution, [Tumova et al., 2013;
Castro et al., 2013] deal with the generation of controllers
that only violate sets of safety rules for the shortest possible
amount of time as possible. [Maly et al., 2013] also defines a
metric for task progression for co-safe LTL, and generates
plans that satisfy as much of the specification as possible.
Contrary to our work however, the focus of these works is
on controlling a hybrid model of the system, thus they have
no notion of probabilistic outcomes. Our contribution goes
beyond these previous works by both dealing with the partial
satisfaction of LTL and doing this in a cost-optimal manner.

3 Preliminaries
3.1 Markov Decision Processes
We model systems using Markov decision processes (MDPs)
with atomic propositions labelling states. An MDP is a tuple
M = ⟨S, s,A, δM,AP,Lab⟩, where: S is a finite set of states;
s ∈ S is the initial state; A is a finite set of actions; δM ∶
S×A×S → [0,1] is a probabilistic transition function, where
∑s′∈S δM(s, a, s′) ∈ {0,1} for all s ∈ S, a ∈ A; AP is a set
of atomic propositions; and Lab ∶ S → 2AP is a labelling
function, such that p ∈ Lab(s) iff p is true in s ∈ S.

We define the set of enabled actions in s ∈ S as As = {a ∈
A ∣ δM(s, a, s′) > 0 for some s′ ∈ S}. An MDP model repre-
sents the possible evolutions of the state of a system: in each
state s, any of the enabled actions a ∈ As can be selected
and the probability of evolving to a successor state s′ is then
δM(s, a, s′). An infinite path through an MDP is a sequence
σ = s0

a0→ s1
a1→ . . . where δM(si, ai, si+1) > 0 for all i ∈ N. A

finite path ρ = s0
a0→ s1

a1→ ...
an−1→ sn is a prefix of an infinite

path. We denote the sets of all finite and infinite paths ofM
starting from state s by FPathM,s and IPathM,s.

The choice of action to take at each step of the execution of
an MDPM is made by a policy, which can base its decision
on the history ofM up to the current state. Formally, a policy
is a function π ∶ FPathM,s → A such that, for any finite
path σ ending in state sn, π(σ) ∈ Asn . Important classes
of policy include those that are memoryless (which only base
their choice on the current state) and finite-memory (which
need to track only a finite set of “modes”). The set of all
policies of MDPM is denoted by ΠM.

Under a particular strategy π for M, all nondeterminism
is resolved and the behaviour of M is fully probabilistic.
Formally, we can represent this using an (infinite) induced
discrete-time Markov chain, whose states are finite paths of
M. This leads us, using a standard construction [Kemeny et
al., 1976], to the definition of a probability measure PrπM,s
over the set of infinite paths IPathM,s, which allows us to de-
termine the probability of certain events holding under policy
π. For an event b ∶ IPathM,s → {0,1}, we write PrπM,s(b)
for the probability of b holding under π. Given a (measurable)
function f ∶ IPathM,s → R, we can define the expected value
EπM,s(f) of f with respect to the probability measure PrπM,s.
We can then consider the maximum probabilities or expected
values over all policies: Prmax

M,s(b) = supπ Pr
π
M,s(b) and

Emax
M,s(f) = supπ E

π
M,s(f), respectively. Minimum values

Prmin
M,s(b) or Emin

M,s(f) are defined analogously.

2



The probabilistic reachability problem is the problem of
calculating Prmax

M,s(reachS′), along with the corresponding
optimal policy. Given S′ ⊆ S, we define the event of reach-
ing a state in S′ as reachS′ ∶ IPathM,s → {0,1} where
reachS′(s0

a0→ s1
a1→ ...) = 1 iff si ∈ S′ for some i. The ex-

pected cumulative reward problem is the problem of calcu-
lating Emax

M,s(cumulr), along with the corresponding optimal
policy. Let r ∶ S × A → R≥0 be a reward structure overM.
We define the cumulative reward cumulr ∶ IPathM,s → R≥0

as cumulr(s0
a0→ s1

a1→ ...) = ∑∞i=0 r(si, ai). Emin
M,s(cumulr)

is defined analogously, and in this case we write c instead of
r, and call it a cost structure.

We can solve the probabilistic reachability and expected
cumulative reward problems by using standard MDP algo-
rithms such as value or policy iteration [Puterman, 1994]
(which for these problems yield memoryless policies). Note
that for cumulative rewards, the expected value might not
converge. Thus, we first perform a graph analysis to identify
states for which the reward is infinite [Forejt et al., 2011a].

In this paper, we also consider multi-objective properties,
which optimise two or more distinct objectives, such as the
probability of an event or the cumulative value of a cost or
reward structure. To mix objective values, it is common to
consider their Pareto set. However, as we need to prioritise
certain values (to favour task completion over cost incurred,
for example) our approach uses constrained queries, such as:

Emax
M,s(cumulr ◃ reachS′ ≥ p)

which maximises expected cumulated reward over all policies
for which the probability of reaching S′ is at least p:

sup{EπM,s(cumulr) ∣π ∈ ΠM s. t. PrπM,s(reachS′) ≥ p}.

3.2 Syntactically Co-Safe Linear Temporal Logic
Linear temporal logic (LTL) is an extension of propositional
logic which allows us reasoning about infinite sequences of
states. It was developed as a means for formal reasoning
about concurrent systems [Pnueli, 1981], and provides a con-
venient and powerful way to formally specify a variety of
qualitative properties. In this work, we use the syntactically
co-safe class of LTL formulas. Co-safe LTL formulas ϕ over
propositions AP are defined using the following grammar:

ϕ ∶∶= true ∣ p ∣ ¬p ∣ ϕ ∧ ϕ ∣ Xϕ ∣ ϕUϕ, where p ∈ AP.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The U operator is read
“until”, meaning that its second argument will eventually be-
come true in some state, and the first argument will be con-
tinuously true until this point. See, e.g., [Pnueli, 1981] for the
formal semantics of the logic.

Given an infinite path σ, we write σ ⊧ ϕ to denote that
σ satisfies formula ϕ. Furthermore, we write Prmax

M,s(ϕ) to
denote the maximum probability of satisfying ϕ from s inM.
It is known that this problem can be reduced to a reachability
problem in a product MDP [Vardi, 1985].

Even though their semantics is defined over infinite se-
quences, co-safe LTL formulas always have a finite good
prefix [Kupferman and Vardi, 2001]. Given an LTL for-
mula ϕ and an infinite sequence of sets of atomic proposi-
tions w = w0w1... ∈ (2AP )ω such that w ⊧ ϕ, we say w has

a good prefix if there exists n ∈ N for which the truncated fi-
nite sequencew∣n = w0w1...wn is such that the concatenation
w∣n⋅w′ ⊧ ϕ for any infinite sequence w′ ∈ (2AP )ω .

Furthermore, for any co-safe LTL formula ϕ written over
AP , we can build a deterministic finite automaton (DFA)
Aϕ = ⟨Q, q,QF ,2AP , δAϕ⟩, where: Q is a finite set of states;
q ∈ Q is the initial state; QF ⊆ Q is the set of accepting (i.e.,
final) states; 2AP is the alphabet; and δAϕ ∶ Q × 2AP → Q
is a transition function. Aϕ accepts exactly the good pre-
fixes for ϕ [Kupferman and Vardi, 2001]. We extend δAϕ
to a function over finite sequences δ+Aϕ ∶ Q × (2AP )∗ → Q in
the usual manner, by applying it sequentially to the finite se-
quence. Given that a good prefix satisfies ϕ regardless of
how it is “completed’, an accepting state qF ∈ QF is such
that δAϕ(qF , α) ∈ QF for all α ∈ 2AP .

4 Policy Generation for Partially Satisfiable
Task Specifications

Given an MDP M, a cost structure c ∶ S × A → R≥0, and
a co-safe LTL specification ϕ such that Prmax

M,s(ϕ) > 0, our
goal is to find a policy that: (1) maximises the probability
of satisfying ϕ; (2) when ϕ becomes unsatisfiable (i.e., when
we reach a state s such that Prmax

M,s(ϕ) = 0), gets as close
as possible to satisfying ϕ; and (3) has a minimal expected
cost to achieve (1) and (2). Before we formally define this
problem, we define what we mean by “as close as possible”.

4.1 Task Progression Metric
We propose a notion of task progression, defined from a dis-
tance metric dϕ ∶ Q → Q≥0 that maps each state of Aϕ to a
value representing how close we are to reaching an accepting
state. In the following, we write q →∗ q′ if there is a sequence
of transitions in Aϕ that leads it from state q to state q′.

Let Sucq ⊆ Q be the set of successors of state q, and
∣δq,q′ ∣ ∈ {0, ...,2∣AP ∣} be the number of transitions from q to
q′. We define the following distance metric:

dϕ(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if q ∈ QF
min

q′∈Sucq
{dϕ(q′) +

1

∣δq,q′ ∣
} if q /∈ QF and

∃qF ∈ QF s.t.
q →∗ qF

∣Q∣ otherwise

This metric represents the number of states that need to be
visited, starting in q, to reach a state in QF , balanced by the
number of transitions between these states. This balancing
is done because we assume that, if there are more transitions
between two DFA states, then it should be easier for the sys-
tem to evolve to a state that makes the DFA move between
them. Furthermore, if a state in QF is reachable from q, then
dϕ(q) ≤ ∣Q∣ − 1. So, if there is no path from q to QF , we set
dϕ(q) to the maximum value ∣Q∣. The values dϕ can be cal-
culated recursively by the following fixed-point calculation:

d0ϕ(q) = { 0 if q ∈ QF
∣Q∣ if q /∈ QF

3



Figure 1: A DFAAϕ for ϕ = ((¬a)U b)∧((¬a)U c), labelled
with distance dϕ, progression pϕ and transition counts ∣δ∣.

dk+1ϕ (q) = min{dkϕ(q), min
q′∈Sucq

{dkϕ(q′) +
1

∣δq,q′ ∣
}}

Using this distance metric, we can also define the progres-
sion pϕ ∶ Q×Q→ Q≥0 between two states ofAϕ as a measure
of how much the distance to an accepting state is reduced by
moving between q and q′:

pϕ(q, q′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max{0, dϕ(q) − dϕ(q′)} if q′ ∈ Sucq and
q′ /→∗

q
0 otherwise

We require q′ /→∗
q in the first condition to guarantee

that there are no cycles in the DFA with non-zero values for
pϕ. This is needed in order to guarantee convergence of in-
finite sums of values of pϕ, as will be explained below. We
can check existence of paths between q′ and q by computing
the strongly connected components (SCCs) of Aϕ. Finally,
given that we are only interested in getting closer to accepting
states, we only take positive progression values into account.

Example. Consider the DFA in Fig. 1. Inside each state
qi, we show the value dϕ(qi) and we label each edge with the
number of transitions corresponding to that edge ∣δ∣, and the
value of pϕ for the states connected by that edge. Note that
moving from any state to the accepting state q3 has a positive
progression, as once we get to the accepting state we cannot
leave it, due to the co-safe assumption. Also, dϕ(q4) = 5
because there is no path from q4 to the accepting state.

4.2 Problem Statement
We are now in a position to formalise the problem stated at
the beginning of this section, which is sub-divided into three
objectives. First, let us consider each problem in isolation.
LetM be an MDP and ϕ a co-safe LTL formula.
Problem 1 Calculate Prmax

M,s(ϕ), and find the corresponding
policy:

π1 = arg maxπ Pr
π
M,s(ϕ)

Problem 2 Let σ = s0
a0→ s1

a1→ ... ∈ IPathM,s, and
qσi = δ+Aϕ(q,Lab(s0)Lab(s1) . . . Lab(si)). We define the to-
tal progression of σ as prog(σ) = ∑∞i=0 pϕ(qσi , qσi+1). Calcu-
late Emax

M,s(prog), and find the corresponding policy:

π2 = arg maxπ E
π
M,s(prog)

Note that, by construction, the value of prog(σ) always con-
verges: any infinite sequence of visited states of a DFA al-
ways has an (infinite) suffix formed of only SCCs. Thus, we
are guaranteed that for all σ ∈ IPathM,s, ∃k ∈ N such that
pϕ(qσi , qσi+1) = 0, for all i ≥ k. We denote the minimum such
k as kσpϕ . Also, if σ ⊧ ϕ, then Lab(s0)...Lab(skσpϕ ) is a good
prefix for ϕ.

Problem 3 Let σ = s0
a0→ s1

a1→ ... ∈ IPathM,s. We define the

cumulated cost until progression pϕ is 0 as cumul
kσpϕ
c (σ) =

∑
kσpϕ
i=0 c(si, ai). Calculate Emin

M,s(cumul
kσpϕ
c ), and find the

corresponding policy:

π3 = arg minπ E
π
M,s(cumul

kσpϕ
c )

These three problems are pairwise conflicting. For exam-
ple, when the cost of reaching a state from where ϕ is not sat-
isfiable is lower than the cost of reaching an accepting state,
the solution for Problem 3 will be a policy that tries to make ϕ
not satisfiable as soon as possible. Also, maximising progres-
sion might lead to policies that get close to an accepting state
with high probability but have probability zero of reaching
it, instead of policies that reach an accepting state with some
probability. While the solution for each independent problem
does not meet our overall goal, we can employ multi-objective
probabilistic model checking techniques to look for a solution
for the three problems in decreasing order of priority.

4.3 Generation of the Trimmed Product
Before we define the multi-objective based solution, we show
that each of the three problems stated above can be reduced
to simpler problems in a trimmed product MDP. We start
by building the product MDP Mϕ = M ⊗ Aϕ = ⟨S ×
Q,sϕ,A, δMϕ ,AP,Labϕ⟩, and extending the cost structure c
toMϕ as cϕ((s, q), a) = c(s, a). Mϕ behaves like the orig-
inal MDP M, but is augmented with information about the
satisfaction of ϕ. Once a path of Mϕ reaches an accepting
state (i.e., a state of the form (s, qF )), it is a good prefix for
ϕ, and we are sure that ϕ is satisfied. The construction of the
product MDP is well known and is such thatMϕ preserves
the probabilities of paths fromM (see, e.g., [Baier and Ka-
toen, 2008]), thus we can reduce Problem 1 to a reachability
problem inMϕ. Furthermore, Problem 2 can be reduced to
an expected cumulative reward problem inMϕ, by encoding
pϕ as a reward structure rϕ ∶ (S ×Q) ×A→ Q≥0:

rϕ((s, q), a) = ∑
(s′,q′)∈S×Q

δMϕ((s, q), a, (s′, q′))pϕ(q, q′)

However, Problem 3 cannot be reduced to an expected cu-
mulative cost problem in Mϕ, because the value kσpϕ is not
constant, being dependent on the path σ. Thus, we need to
remove states fromMϕ for which it is not possible to accu-
mulate more pϕ. To do that, we start by defining the set of
states for which we can gather more reward immediately as:

S0
rϕ = {(s, q) ∈ S ×Q ∣ ∃a ∈ A s. t. rϕ((s, q), a) > 0}

Furthermore, we define the set of states for which it is still
possible to gather more reward as:

4



Srϕ = {(s, q) ∈ S ×Q ∣ Prmax
Mϕ,(s,q)

(reachS0
rϕ

) > 0}

If (s, q) /∈ Srϕ then, by construction of rϕ, it is guaranteed
that we cannot progress further towards the goal from (s, q).
Thus, such states are not needed to solve Problems 1 – 3.

We can calculate Srϕ efficiently by using S0
rϕ as above,

and finding the fixed-point of the following calculation:

Sk+1rϕ = Skrϕ ∪ {sϕ ∈ S ×Q ∣ ∃s′ϕ ∈ Skrϕ , a ∈ A s.t.

δMϕ(sϕ, a, s′ϕ) > 0}
Along with Srϕ , we also need to keep states which are suc-

cessors of a state in Srϕ , but are not in Srϕ . These are the
states for which we are certain that no more can be done to-
wards satisfying ϕ, thus they are the states where we should
stop accumulating costs. Thus, let:

SucSrϕ = {sϕ ∈ S ×Q ∣ ∃s′ϕ ∈ Srϕ , a ∈ A s. t.

δMϕ(s′ϕ, a, sϕ) > 0}
We can now define the trimmed product MDP Mrϕ

ϕ =
⟨Srϕ ∪ SucSrϕ , sϕ,A, δMrϕ

ϕ
,AP,Labϕ⟩ as the restriction of

Mϕ to the set of states Srϕ plus their possible successor
states. More precisely, we project Labϕ, cϕ, and rϕ to
Srϕ ∪ SucSrϕ , and only keep transitions from states in Srϕ ,
i.e., δ

M
rϕ
ϕ

is defined as:

δ
M

rϕ
ϕ

(sϕ, a, s′ϕ) = { δMϕ(sϕ, a, s′ϕ) if sϕ ∈ Srϕ
0 if sϕ ∈ SucSrϕ

We just remove states for which the probability of accu-
mulating progression reward is zero in the construction of
Mrϕ

ϕ , and we remove all the transitions (along with the cor-
responding costs) from all such states. This means that the
solutions for Problems 1 and 2 forMrϕ

ϕ are the same as the
solutions for Mϕ. Furthermore, by removing those states,
we guarantee convergence of the calculation of the cumula-
tive cost, by removing all end components in the model with
a positive cost. Also, once we reach a state where we can-
not progress more towards the goal, we achieved the cor-
responding value for the cumulative cost, thus we can re-
place the path-dependent sum upper-bound kσpϕ on the cu-
mulative cost minimisation by an infinite sum. Thus, letting
Sϕ,F = {(s, q) ∈ Srϕ ∪ SucSrϕ ∣ q ∈ QF }, we have:

Prmax
M,s(ϕ) = Prmax

M
rϕ
ϕ ,sϕ

(reachSϕ,F )

Emax
M,s(prog) = Emax

M
rϕ
ϕ ,sϕ

(cumulrϕ)

Emin
M,s(cumul

kσpϕ
c ) = Emin

M
rϕ
ϕ ,sϕ

(cumulcϕ)
So, Problem 1 can be reduced to solving a reachability

problem, and Problems 2 and 3 can be reduced to expected
cumulative reward/cost problems, where convergence is guar-
anteed. These problems can be solved on the same underlying
model Mrϕ

ϕ using standard techniques, such as value itera-
tion. This allows us to solve a multi-objective problem with
three functions to be optimised, as will be discussed next.

4.4 Multi-objective Model Checking
Finally, we use multi-objective probabilistic model checking
to generate a policy that takes into account Problems 1, 2 and
3, in decreasing order of priority. As explained above, each
of these can be computed using the trimmed product model
Mrϕ

ϕ . More precisely, we proceed as follows. We first com-
pute the maximum probability p of completing the task:

p = Prmax
M

rϕ
ϕ ,sϕ

(reachSϕ,F )

Then, we find the maximum expected total progression that
can be achieved whilst maintaining a task satisfaction proba-
bility of p, denoting this value by r:

r = Emax
M

rϕ
ϕ ,sϕ

(cumulrϕ ◃ reachSϕ,F ≥ p)

Finally, we determine the policy which minimises the total
expected cost, whilst ensuring that the task satisfaction prob-
ability and total progression remain at their optimal values of
p and r, respectively:

c∗ = Emin
M

rϕ
ϕ ,sϕ

(cumulcϕ ◃ reachSϕ,F ≥p ∧ cumulrϕ≥r)

By calculating c∗, we also get a corresponding policy π∗ that
optimises the three objectives in decreasing order of priority.
Note that, even though in general policies for multi-objective
specifications can be randomised, we are guaranteed by con-
struction that there exists a deterministic policy that solves
the overall problem, because the values p and r we use to
constrain the multi-objective queries are the extreme values
obtained from the previous query.

4.5 Calculation of Conditional Expectations
We can now generate a cost-optimal policy π∗ for our prob-
lem, however the value we obtain for the expected cumula-
tive cost is the expectation to reach a state for which it is
not possible to gather more cumulative progression reward.
This value can have a very large variance because the ex-
pected costs to reach each of these states can be very different.
Thus, we are interested in “splitting” the expected cumulative
cost value, into expected cost to success, and expected cost
to failure. These conditional expectations are more informa-
tive and can be used for execution monitoring, or for a higher
level task scheduler. We present a procedure to calculate the
conditional expectation Eπ

∗

M
rϕ
ϕ ,sϕ

(cumulcϕ ∣ reachSϕ,F ) ef-
ficiently. We start by noting that, given that π∗ is a mem-
oryless policy for Mrϕ

ϕ , applying π∗ to Mrϕ
ϕ induces a (fi-

nite) Markov chain C = ⟨Srϕ ∪ SucSrϕ , sϕ, δC⟩, where the
transition for each state sϕ ∈ Srϕ ∪ SucSrϕ is given by
δC(sϕ, s′ϕ) = δ

M
rϕ
ϕ

(sϕ, π∗(sϕ), s′ϕ). Furthermore, during
the calculation of π∗, we calculated PrC,sϕ(reachSϕ,F ) =
Prπ

∗

M
rϕ
ϕ ,sϕ

(reachSϕ,F ) for all states of C. Let S/⊧ be the set
of all the states where such probability is zero. To calculate
the expected cumulative cost to success, i.e., only for runs of
C that reach Sϕ,F , we trim C, and build C⊧ = ⟨S⊧, sϕ, δC⊧⟩,
where S⊧ = (Srϕ ∪ SucSrϕ ) ∖ S/⊧, and for all s, s′ ∈ S⊧:

δC⊧(s, s′) = δC(s, s′)
PrC,s′(reachSϕ,F )
PrC,s(reachSϕ,F )

5



So, to build C⊧ we simply remove all states for which the
probability of satisfying the specification is zero, and nor-
malise the transition function accordingly. Then:

Eπ
∗

M
rϕ
ϕ ,sϕ

(cumulcϕ ∣ reachSϕ,F ) = EC⊧,sϕ(cumulcϕ)

This value can be calculated efficiently, as it is a simple
expectation over C. We can also calculate the expected cost
to failure Eπ

∗

M
rϕ
ϕ ,sϕ

(cumulcϕ ∣ ¬reachSϕ,F ), since we also

know Prπ
∗

M
rϕ
ϕ ,sϕ

(reachSϕ,F ) and Eπ
∗

M
rϕ
ϕ ,sϕ

(cumulcϕ).
This method can be generalised over the trimmed product,

in order to calculateEmin
M

rϕ
ϕ ,sϕ

(cumulcϕ ∣ reachSϕ,F ), and the
corresponding policy. However, such an approach does not
provide guarantees on probability of task satisfaction, hence it
might have a large probability of failure (in spite of providing
an optimal expectation for the satisfying runs). See [Baier
et al., 2014] for a proof of correctness of the construction of
C⊧, and for a more general discussion on the calculation of
conditional expectations for Markovian models.

5 Implementation and Evaluation
We implemented our approach in the widely used PRISM
model checker [Kwiatkowska et al., 2011], which already has
support for solving MDPs against properties in LTL and, in
particular, for multi-objective policy generation [Forejt et al.,
2011b]. The tool also includes multiple efficient solution en-
gines, based on symbolic data structures (e.g., binary decision
diagrams) designed to improve scalability.

Consider the topological map of an office environment in
Fig. 2. We assume that v0 should always be avoided (e.g.
to prevent the robot blocking a fire exit), and that our task is
to visit nodes v1, v6 and v18 (i.e., visit three rooms). This
specification can be written in co-safe LTL as ((¬v0)U v1) ∧
((¬v0)U v6) ∧ ((¬v0)U v18).

The policy obtained for this specification simply tries to
visit v1, v6 and v18 in the order which minimises expected
cost (i.e., time), which is the numerical order in this case.
However, since there is a chance the robot will end up in v0
when navigating directly between v3 and v4, the policy takes
a “detour” through v10. This is because our approach priori-
tises robustness – in the form of maximisation of the proba-
bility of success – over optimality of expected time.

If a closed door is encountered during execution, the pol-
icy simply tries to go to the next unvisited closest node. This
allows it to satisfy as much of the specification as possible.
Based on the values in Fig. 2 the probability of the policy
satisfying the specification is 0.729, with an expected time
of 11.8 minutes. The values for the expected time of suc-
cess and failure are 13.8 and 6.42, respectively. The lower
time for failure is explained by the fact that the more of the
specification the robot fails to satisfy (due to closed doors),
the less it has to move. The MDP model used for the sce-
nario on Fig. 2 has 10,206 states and 49,572 transitions.
This number is due to the state space of the MDP having one
additional dimension per door, each with value “unknown”,
“open”, or “closed”. The trimmed product has 21,222 states,
and 100,926 transitions, and was generated in 0.354 seconds.

Figure 2: An office environment with 6 rooms, and the
nodes used for patrolling. The initial node is v3. Blue (bi-
directional) edges represent possible navigation actions be-
tween nodes. The MDP model also includes the state of each
door, and before navigating through a door the robot must
check if it is open (we assume probability 0.9 of being open
for each door). All navigation actions are successful with
probability 1, except from v3 to v4, which might finish in
v0, with probability 0.2. A cost structure, representing the
expected time taken to move between each pair of nodes, is
defined by a coarse distance between the nodes.

Calculating p = Prmax
M

rϕ
ϕ ,sϕ

(reachSϕ,F ) took approximately 1

second, r = Emax
M

rϕ
ϕ ,sϕ

(cumulrϕ ◃ reachSϕ,F ≥ p) 305 sec-

onds, and Emin
M

rϕ
ϕ ,sϕ

(cumulcϕ ◃ reachSϕ,F ≥ p, cumulrϕ ≥
r) 227 seconds, yielding a total of approximately 9 minutes
to generate the policy (on an Intel® Core™i7 @ 1.70GHz x 4
processor, 8GB of RAM). While the specification we tested is
computationally challenging, featuring the combinatorial ex-
plosion of choosing the best order to visit a set of locations,
the time taken to generate the policy is higher than desirable,
given that the model is relatively small. This motivates the
need to find more efficient approaches for objective prioriti-
sation, and better modelling approaches for this type of en-
vironment, and will be the subject of future work. However,
with this example we showcase the ability to generate opti-
mal policies for our problem by using multi-objective model-
checking techniques. Moreover, the policies can be calcu-
lated offline, and executing them requires negligible compu-
tational effort. Since these policies map all reachable states
of the trimmed product to an action, this provides a robust
plan that can handle every probabilistic environmental out-
come without the need for replanning.

6 Conclusions
This paper presented a methodology for the generation of
policies that maximise the probability of satisfying a co-safe
LTL specification, whilst trying to satisfy it as much as pos-
sible when it becomes unsatisfiable, and minimising the ex-
pected cumulative cost while doing so. This approach is one
of the first cost-optimal policy generation approach for LTL
specifications over MDP models able to optimise an undis-
counted expected cost over states where the probability of
satisfying the specification is not one. Furthermore, the fact

6



that we base our approach on probabilistic model checking
techniques allows us to provide meaningful formal guaran-
tees, which can be used to analyse the overall quality of
service of the system. In particular, we show how to pro-
vide guarantees on the probability of task satisfaction, along
with expected cumulative costs for success and failure. We
also illustrated the approach on an example that motivates the
need to investigate more efficient solutions to our objective
prioritisation problem and to model certain environments as
MDPs. This will be subject of future work, e.g., modelling of
office-like environments, as we are interested in the deploy-
ment of service robots using these techniques, and investi-
gating how the approaches in [Teichteil-Königsbuch, 2012b;
Kolobov et al., 2012] can be adapted to increase computa-
tional efficiency of our solution, as the problem solved there
is very similar to our reduced problem in the product MDP.

Acknowledgements
The research leading to these results has received funding
from the EU Seventh Framework Programme (FP7/2007-
2013) under grant agreement No 600623, STRANDS.

References
[Baier and Katoen, 2008] C. Baier and J.-P. Katoen. Principles of

Model Checking. MIT Press, 2008.

[Baier et al., 2014] C. Baier, J. Klein, S. Klüppelholz, and
S. Märcker. Computing conditional probabilities in Markovian
models efficiently. In Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014.

[Castro et al., 2013] L. Castro, P. Chaudhari, J. Tumova, S. Kara-
man, E. Frazzoli, and D. Rus. Incremental sampling-based algo-
rithm for minimum-violation motion planning. In Proc. of 52nd
IEEE Conf. on Decision and Control (CDC), 2013.

[Cizelj and Belta, 2014] I. Cizelj and C. Belta. Control of noisy
differential-drive vehicles from time-bounded temporal logic
specifications. Int. Journal of Robotics Research, 33(8), 2014.

[Ding et al., 2013] X. Ding, A. Pinto, and A. Surana. Strategic
planning under uncertainties via constrained Markov decision
processes. In Proc. of the 2013 IEEE Int. Conf. on Robotics and
Automation (ICRA), 2013.

[Ding et al., 2014] X. Ding, S. Smith, C. Belta, and D. Rus. Op-
timal control of Markov decision processes with linear tempo-
ral logic constraints. IEEE Trans. on Automatic Control, 59(5),
2014.

[Forejt et al., 2011a] V. Forejt, M. Kwiatkowska, G. Norman, and
D. Parker. Automated verification techniques for probabilistic
systems. In Formal Methods for Eternal Networked Software
Systems (SFM), volume 6659 of LNCS. Springer, 2011.

[Forejt et al., 2011b] V. Forejt, M. Kwiatkowska, G. Norman,
D. Parker, and H. Qu. Quantitative multi-objective verification
for probabilistic systems. In Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2011.

[Kemeny et al., 1976] J. Kemeny, J. Snell, and A. Knapp. Denu-
merable Markov chains. Springer-Verlag, 2nd edition, 1976.

[Kolobov et al., 2012] A. Kolobov, Mausam, and D. Weld. A the-
ory of goal-oriented MDPs with dead ends. In Proc. of 28th Conf.
on Uncertainty in Artificial Intelligence (UAI), 2012.

[Kupferman and Vardi, 2001] O. Kupferman and M. Vardi. Model
checking of safety properties. Formal Methods in System Design,
19(3), 2001.

[Kwiatkowska et al., 2011] M. Kwiatkowska, G. Norman, and
D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In Computer Aided Verification (CAV), volume 6806
of LNCS. Springer, 2011.

[Lacerda et al., 2014] B. Lacerda, D. Parker, and N. Hawes. Opti-
mal and dynamic planning for Markov decision processes with
co-safe LTL specifications. In Proc. of 2014 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2014.

[Lahijanian et al., 2012] M. Lahijanian, S. Andersson, and
C. Belta. Temporal logic motion planning and control with
probabilistic satisfaction guarantees. IEEE Trans. on Robotics,
28(2), 2012.

[Maly et al., 2013] M. Maly, M. Lahijanian, L. Kavraki, H. Kress-
Gazit, and M. Vardi. Iterative temporal motion planning for hy-
brid systems in partially unknown environments. In Proc. of 16th
Int. Conf. on Hybrid Systems: Computation and Control (HSCC),
2013.

[Mudrova and Hawes, 2015] L. Mudrova and N. Hawes. Task
scheduling for mobile robots using interval algebra. In Proc. of
2015 IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[Pnueli, 1981] A. Pnueli. The temporal semantics of concurrent
programs. Theoretical Computer Science, 13, 1981.

[Puterman, 1994] M. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, 1994.

[Sprauel et al., 2014] J. Sprauel, F. Teichteil-Königsbuch, and
A. Kolobov. Saturated path-constrained MDP: Planning under
uncertainty and deterministic model-checking constraints. In
Proc. of 28th AAAI Conf. on Artificial Intelligence (AAAI), 2014.

[Svoreňová et al., 2013] M. Svoreňová, I. Černá, and C. Belta. Op-
timal control of MDPs with temporal logic constraints. In Proc.
of 52nd IEEE Conf. on Decision and Control (CDC), 2013.

[Teichteil-Königsbuch, 2012a] F. Teichteil-Königsbuch. Path-
constrained Markov decision processes: bridging the gap be-
tween probabilistic model-checking and decision-theoretic plan-
ning. In Proc. of 2012 European Conf. on Artificial Intelligence
(ECAI), 2012.

[Teichteil-Königsbuch, 2012b] F. Teichteil-Königsbuch. Stochastic
safest and shortest path problems. In Proc. of 26th AAAI Conf.
on Artificial Intelligence (AAAI), 2012.

[Tumova et al., 2013] J. Tumova, G. Hall, S. Karaman, E. Frazzoli,
and D. Rus. Least-violating control strategy synthesis with safety
rules. In Proc. of 16th Int. Conf. on Hybrid Systems: Computation
and Control (HSCC), 2013.

[Ulusoy et al., 2012] A. Ulusoy, T. Wongpiromsarn, and C. Belta.
Incremental control synthesis in probabilistic environments with
temporal logic constraints. In Proc. of 51st IEEE Conf. on Deci-
sion and Control (CDC), 2012.

[Vardi, 1985] M. Vardi. Automatic verification of probabilistic con-
current finite state programs. In Proc. of 26th IEEE Annual Symp.
on Foundations of Comp. Sci. (FOCS), 1985.

[Wolff et al., 2013] E. Wolff, U. Topcu, and R. Murray. Efficient re-
active controller synthesis for a fragment of linear temporal logic.
In Proc. of 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA), 2013.

7


	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes
	Syntactically Co-Safe Linear Temporal Logic

	Policy Generation for Partially Satisfiable Task Specifications
	Task Progression Metric
	Problem Statement
	Generation of the Trimmed Product
	Multi-objective Model Checking
	Calculation of Conditional Expectations

	Implementation and Evaluation
	Conclusions

