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Abstract

Despite considerable effort, the state-space explosion problem remains an issue in
the analysis of Markov models. Given structure, symbolic representations can result
in very compact encoding of the models. However, a major obstacle for symbolic
methods is the need to store the probability vector(s) explicitly in main memory.
In this paper, we present a novel algorithm which relaxes these memory limitations
by storing the probability vector on disk. The algorithm has been implemented
using an MTBDD-based data structure to store the matrix and an array to store
the vector. We report on experimental results for two benchmark models, a Kanban
manufacturing system and a flexible manufacturing system, with models as large as
133 million states.

1 Introduction

Discrete-state Markovian models are widely employed for the analysis of com-
munication networks and computer systems. It is often convenient to model
such systems as Continuous Time Markov Chains (CTMCs), provided prob-
ability distributions are assumed to be exponential. A CTMC may be rep-
resented by a set of states and a transition rate matrix Q containing state
transition rates as coefficients. A CTMC can be analysed using probabilistic
model checking. Required or desired performance properties are specified as
formulas in the temporal logic CSL and then automatically verified using the
appropriate model checking algorithms. A core component of these algorithms
is the computation of the steady-state probabilities of the CTMC. This is re-
ducible to the classical problem of solving a system of linear equations of the
form Ax = b where b = 0. A range of solution techniques exist to combat the
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so-called state-space explosion (also known as largeness) problem in this area.
These include symbolic techniques [8,13,15,25,14], on-the-fly methods [11] and
Kronecker methods [22]. While some new developments such as Matrix Di-
agrams (MDs) [5,4,20] and hybrid MTBDD methods [19] allow for a very
compact and time efficient encoding of CTMC matrices, they are obstructed
by explicit storage of the probability vector(s) needed during the numerical
solution phase.

An established direction of research in the area of Markov modelling has
concerned numerical solution techniques which store the CTMC matrix ex-
plicitly, using a sparse storage format. These are the most generally ap-
plicable techniques, fast though not as compact as the symbolic methods.
Improvements have been obtained through using disks (so called out-of-core
techniques 2 ) to store the CTMC matrix [10] and parallelising the disk-based
numerical solutions [16,2]. However, the in-core memory requirements for
these methods are also dominated by the storage of a vector with size propor-
tional to the number of states in the model.

The authors have presented, in [17], an out-of-core algorithm which relaxes
the above mentioned memory limitations on the explicit sparse methods. In
this paper, we introduce a novel algorithm which relaxes the same memory
limitations for symbolic methods; we call the algorithm a symbolic out-of-core
algorithm.

The philosophy behind our symbolic out-of-core algorithm is to store the
CTMC matrix using the MTBDD-based data structure of [19] and to store the
probability vector explicitly on disk. The algorithm divides the probability
vector into a certain number of blocks for this purpose. Since the matrix is
stored in an MTBDD-based data structure, blocks can be extracted as needed
in the calculation. It reads into main memory a block of the probability vec-
tor, performs the required calculation using a matrix block extracted from
the MTBDD-based data structure and writes back updated elements of the
probability vector onto the disk. To obtain performance from the algorithm,
the work is divided between two concurrent processes; one performs the com-
putation while the other schedules the disk reading and writing. The memory
requirement of the algorithm is dependent on the number of blocks; the higher
the number of blocks the probability vector is divided into, the less memory
is required by the algorithm at a cost of increased run time. We give experi-
mental results from the implementation of the symbolic out-of-core algorithm
applied to a Kanban manufacturing system [6] and a Flexible Manufacturing
System (FMS) [7].

2 Algorithms that are designed to achieve high performance when their data structures
are stored on disk are known as out-of-core algorithms; Toledo presents a survey of such
algorithms in numerical linear algebra, see [27].
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1.1 The Tool PRISM

All the CTMC matrices used in this paper were generated by the PRISM tool
[18]. PRISM, a probabilistic model checker being developed at the University
of Birmingham, is a tool for analysing probabilistic systems. It supports
three models: discrete-time Markov chains, continuous-time Markov chains
and Markov decision processes. For the numerical solution phase, it provides
three engines: one using pure MTBDDs, one based on in-core sparse iterative
methods, and a third which is a hybrid of the first two. Several case studies
have been analysed [23]. This paper is part of an effort to improve the range
of solution methods provided by PRISM.

2 Numerical Considerations

We focus in this paper on the numerical solution of continuous time Markov
chains. The task of solving a CTMC to obtain the steady-state probabilities
vector can be mathematically written as:

πQ = 0,
n−1∑
i=0

πi = 1, (1)

where Q ∈ Rn×n is the infinitesimal generator matrix of the CTMC, and
π ∈ Rn is the steady state probability vector. The matrices Q are usually very
sparse; further details about the properties of these matrices can be found in
[26]. The equation (1) can be reformulated as QT πT = 0, and well-known
methods for the solution of systems of linear equations of the form Ax = b
can be used.

The numerical solution methods for linear systems of the form Ax = b
are broadly classified into direct methods and iterative methods. For large
systems, direct methods become impractical due to the phenomenon of fill-
in, caused by the generation of new entries during the factorisation phase.
Iterative methods generate a sequence of approximations that only converges
in the limit to the solution. Beginning with a given approximate solution,
these methods modify the components of the approximation in each iteration,
until a required accuracy is achieved. See [12] for further information on direct
methods and [24,26] for iterative methods.

We concentrate here on stationary iterative methods. In each iteration of
the Jacobi method, for example, we calculate:

x
(k)
i =

1

aii

(
bi −

∑
j 6=i

x
(k−1)
j aij

)
, (2)

for 0 ≤ i < n, where aij denotes the element in row i and column j of matrix
A. We note in equation (2) that the new approximation of the solution vector
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(x
(k)
i ) is calculated using only the old approximation of the solution (x

(k−1)
j ).

The Gauss-Seidel (GS) iterative method, which in practice converges faster
than the Jacobi method, uses the most recently available approximation of
the solution:

x
(k)
i =

1

aii

(
bi −

∑
j<i

x
(k)
j aij −

∑
j>i

x
(k−1)
j aij

)
, (3)

for 0 ≤ i < n.

In the Jacobi method, the order in which entries of A are accessed within a
single iteration is unimportant. For Gauss-Seidel, access to individual columns
is required. For these reasons, symbolic implementations of iterative methods
based on MTBDDs are better suited to Jacobi than Gauss-Seidel. Parker
[21] resolves this problem by introducing the ‘Pseudo Gauss-Seidel’ method,
a compromise between Jacobi and Gauss-Seidel. Assuming that the matrix
A is split into B × B blocks of size n/B × n/B, Pseudo Gauss-Seidel can be
described as:

x
(k)
i =

1

aii

(
bi −

∑
j<Ni

aij · x(k)
j −

∑
j≥Ni∧j 6=i

aij · x(k−1)
j

)

where Ni = bi/(n/B)c ·n/B. Because access to the entries of A is on a block-
by-block basis, this method is also well suited to MTBDD-based methods.
Since each iteration uses some elements of the most recent approximation,
Pseudo Gauss-Seidel generally converges faster than Jacobi.

The convergence characteristics of Pseudo Gauss-Seidel for the computa-
tion of steady-state probabilities are similar to those of Jacobi and Gauss-
Seidel, as presented for example in [26]. This is because, like the other two
methods, Pseudo-Gauss Seidel can be shown to be based on a regular splitting.
See [21] for more details.

In all the experiments presented in this paper, we chose the relative error
criterion:

max
i

(
| x(k)

i − x
(k−1)
i |

| x(k)
i |

)
< 10−7. (4)

3 Symbolic CTMC Storage

MTBDDs (Multi-Terminal Binary Decision Diagrams) [8,1] are an extension of
BDDs (Binary Decision Diagrams). An MTBDD is a rooted, directed acyclic
graph which represents a function mapping Boolean variables to real numbers.
By encoding their indices as Boolean variables, real-valued vectors and ma-
trices can be represented as MTBDDs. It has been shown in [8,1,13,15] how
basic operations such as matrix addition and matrix-vector multiplication can
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be performed with MTBDDs and how this can be used to implement iterative
numerical solution techniques such as the Power and Jacobi methods.

The most important advantage of the MTBDD data structure is that it can
provide extremely compact storage for very large, structured matrices, such as
those derived from high-level descriptions of CTMCs. Unfortunately, the per-
formance of MTBDD-based numerical computation has often been found to be
poor, especially in comparison to traditional, explicit implementations based
on sparse matrices and arrays. The drawback of sparse matrices, however, is
that they can be expensive in terms of memory.

In [18], a hybrid approach to numerical solution is presented, representing
the matrix as an MTBDD and the solution vector as an array. This is achieved
by making modifications to the MTBDD, labelling nodes with integer offsets.
The entries of the matrix can then be extracted by traversing the nodes and
edges of the graph and using the offsets to calculate indices into the solution
vector. It was found that this hybrid approach retained the compact storage
advantages of MTBDDs and could almost match the solution speed of sparse
matrices.

4 Related Work

We use the term “implicit methods” in this paper for the numerical solution
methods which use some kind of symbolic data structure for the storage of
a CTMC matrix. The term “explicit” will be used to denote the numerical
solution methods which store the CTMC matrix using a sparse data structure.

Implicit methods offer a compact representation of structured Markov
models and enable the fastest solutions for very large models with a certain
structure. Several developments in the area of symbolic methods for the anal-
ysis of Markovian models have occurred recently. We note the hybrid symbolic
approach of Kwiatkowska et al. [19] whose solution method is based on Jacobi
iteration. An alternative is the structural decomposition approach of Ciardo
and Miner [5,4,20], which results in a flexible data structure called Matrix
Diagrams (MDs) that can be used with the Gauss-Seidel iterative method for
the analysis of a wide range of models. However, as these researchers have
stated, symbolic methods are hindered by the memory requirement for the
storage of the probability vector(s).

In Table 1, we summarise the main representative approaches used for over-
coming the state space explosion problem when analysing stochastic models.
We concentrate on the data structures used to store the matrix and vector,
and whether they are stored in- or out-of-core.

The MTBDD-based methods use MTBDDs to store both the matrix as well
as the vector (in-core). This approach becomes impractical for large models
because of inefficient MTBDD representation of the probability vector, despite
the fact that the MTBDD representation of the CTMC matrix can be very
compact (using less memory than the vector). The hybrid approach of [19]
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combines MTBDDs and explicit methods (§3). The matrix is stored using an
MTBDD, labelled with offsets, and the vector is stored in-core, as an array.
Its limitation is the explicit storage of the probability vector(s). The next two
approaches (Kronecker and PDGs) are based on a compact representation of
the CTMC matrix using Kronecker expressions. The first of these offers a
compact representation of the CTMC matrix but requires explicit storage of
the vector. The second uses the Probabilistic Decision Graph data structure
to provide a symbolic (hence compact) storage of the probability vector. In
practice, it has been shown that this is not very efficient. The Matrix Diagrams
of Ciardo and Miner also suffer from the explicit storage of the probability
vector. The symbolic out-of-core approach introduced in this paper is listed
next, where the matrix is stored in-core using an offset-labelled MTBDD [19]
and the vector is stored on disk. This approach does not have the memory
limitations stated for all other implicit methods in Table 1.

The first explicit out-of-core method listed in Table 1 was introduced by
Deavours and Sanders [9,10], where the vector is stored explicitly in RAM as
an array and a disk is used to store the matrix explicitly. In [17] this method
was further extended by storing the vector as well as the matrix on disk. This
extension relaxes the memory limitations on out-of-core methods caused by
the need to store the probability vector in RAM.

Method Matrix (Q) Vector (π)

Data structure In-core/Out-of-core Data structure In-core/Out-of-core

Implicit Methods

MTBDDs MTBDD In-core MTBDD In-core

[13,15,14]

Hybrid Offset-labelled In-core Array In-core

[19,21] MTBDD

Kronecker Kronecker In-core Array In-core

[22] Expression

PDGs Kronecker In-core PDG In-core

[3] Expression

Matrix Diagrams Matrix In-core Array In-core

[5,4,20] Diagram

This paper Offset-labelled In-core Array Out-of-core

MTBDD

Explicit Methods

Out-of-core Sparse Out-of-core Array In-core

[9,10] matrix

Out-of-core Sparse Out-of-core Array Out-of-core

[17] matrix

Table 1
Various storage schemes for CTMC analysis
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This paper reports on a new approach combining ideas from symbolic [19]
and out-of-core [17] methods. This new approach, which we call the symbolic
out-of-core method, uses the offset-labelled MTBDD data structure of [19] to
store the CTMC matrix in-core, while the probability vector is kept explicitly
on a disk. As the name implies, the method is a composite of out-of-core and
symbolic techniques. The aim of this approach is to eliminate the bottleneck
imposed on symbolic methods, caused by the need to explicitly store the
probability vector in main memory.

The main difference between the symbolic out-of-core method introduced
in this paper and our earlier out-of-core approach of [17] lies in the way the
CTMC matrix is stored. In [17], the matrix is stored explicitly on disk, as
opposed to symbolically in this paper; the probability vector is stored out-of-
core explicitly for both approaches. The advantage of the symbolic out-of-core
approach over the out-of-core algorithm of [17] is reduced disk I/O at a cost of
increased CPU usage. However, the limitations on symbolic methods caused
by the need for matrices to have structure apply to the symbolic out-of-core
solution, whereas the method of [17] has no such restrictions.

5 A Symbolic Out-of-Core Solution with MTBDDs

The philosophy behind the symbolic out-of-core solution introduced here is
to keep the matrix in-core, in an appropriate symbolic data structure, and
to store the probability vector on disk. The iteration vector can be divided
into any number of blocks and these blocks can be stored on a disk. During
the iterative computation phase, these vector blocks can be fetched from disk,
one after another, into main memory to perform the numerical computation.
We have used offset-labelled MTBDDs [19,21] for CTMC storage, while the
iteration vector for numerical computation has been kept on disk as an array.

5.1 The Algorithm

The symbolic out-of-core algorithm, given in Figure 1, comprises two con-
current processes: the Disk-IO process and the Compute process. We have
implemented this algorithm on UNIX and Linux using two separate processes
communicating via shared memory and synchronising using semaphores. The
algorithm achieves communication between the two processes by using the
shared memory blocks Dbox and Πboxx. The processes synchronise by calling
the functions Wait(·) and Signal(·).

The algorithm assumes that the CTMC matrix to be solved is stored in-
core, using the offset-labelled MTBDD data structure [19]. The matrix is
virtually divided into B × B square blocks of dimension n/B × n/B, where
some of the blocks might be empty. Figure 2 shows the division of a matrix
resulting from the Flexible Manufacturing System (FMS) model of [7] into
4 × 4 blocks. What we mean here by “virtually” is described later in this
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Integer constant: B (number of blocks)
Semaphores: S1, S2: occupied
Shared variable: Dbox (to read diagonal blocks into RAM)
Shared variables: Πbox0, Πbox1 (to read solution vector π blocks into RAM)

Disk-IO process

1. Local variable: h, i, j, k
2. k ← B − 1
3. while not converged
4. for i = 0 to B − 1
5. if i = 0 then j ← B − 1
6. else j ← i− 1
7. for h = 0 to B − 1
8. if h 6= 0
9. if not an empty block

10. read Πj from disk
11. Signal(S1)
12. Wait(S2)
13. if h = 0
14. read Di into Dbox
15. write Πk to disk
16. if j = 0 then j ← B − 1
17. else j ← j − 1
18. k ← k + 1 mod B

Compute process

1. Local variable: i, j
2. while not converged
3. for i = 0 to B − 1
4. if i = 0 then j ← B − 1
5. else j ← i− 1
6. for 0 to B − 1
7. Wait(S1)
8. Signal(S2)
9. if not an empty block

10. Accumulate QijΠj

11. if j = 0 then j ← B − 1
12. else j ← j − 1
13. Update Πi using Di

14. check for convergence

Fig. 1. The symbolic out-of-core Pseudo Gauss-Seidel iterative algorithm

section, in the context of matrix-vector block multiplication. The algorithm
assumes n mod B = 0.

The probability vector π is also divided into B blocks, each with n/B
elements. In order to avoid confusion between the j-th element of the prob-
ability vector π and its j-th block, we use πj to indicate the j-th element of
the vector π and Πj to indicate the j-th block of the vector π; Πij stands for
the j-th element of the block Πi. The algorithm also assumes that the initial
approximation for all the blocks of the probability vector π is stored on disk
except for the last block ΠB−1.

To preserve structure in the symbolic representation, the diagonal elements
of the CTMC matrix are stored 3 separately as a vector d. The vector d is
also divided into B blocks with n/B elements each, and is stored on disk.
A diagonal block is fetched from disk (line 14 in disk-IO process) into Dbox
and is overwritten by another diagonal block after use. The notation for the

3 Since the number of distinct values in the diagonal of the matrices considered here is
relatively small, n short pointers to these distinct values are stored instead of doubles.
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Fig. 2. Division of the CTMC matrix of an FMS model into 4× 4 square blocks

probability vector described in the above paragraph applies to the diagonal
vector; dj stands for the j-th element of the diagonal vector and Dk is the
k-th block of the diagonal vector.

5.1.1 Disk-IO Process.

The Disk-IO process is responsible for all the file I/O work. It reads the
diagonal and the probability vector blocks from disk into RAM, and writes
the new approximations of the probability vector onto disk. If required, the
Disk-IO process reads a vector block in each iteration of the inner loop (lines
7−17). The index of a particular block to be read is determined using the lines
5−6 along with the lines 16−17. The process uses two shared memory arrays
– Πbox0 and Πbox1 – to read the blocks from disk into RAM. At one point
in time, one shared memory array (Πboxx) is used by the Compute process
for the multiplication of a matrix block and a vector block (QijΠj), while the
other shared memory array (Πboxx) is used by the Disk-IO process to read
the next required vector block from disk. The variable x alternates between
0 and 1 locally within each process to determine the shared memory block to
be used in a particular iteration of the inner loop. For the sake of simplicity,
we have omitted from the algorithm in Figure 1 information regarding the
indexing of shared memory segments.

In each of the first iterations (h = 0) of the inner loop (lines 7 − 17),
the new approximation of a vector block is written to disk instead of a read
operation for a vector block. The index for the block to be written to disk
is determined by the variable k. Another shared memory array (Dbox) of
n/B short integers is used to read a block of the diagonal vector into RAM.
The diagonal block is read in each of the first iterations (h = 0) of the inner
loop. On the other hand, the Compute process uses the shared memory block
(Dbox) during each of the last iterations of the inner loop. Using two shared
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blocks for the diagonal vector may possibly improve the time performance of
the algorithm with an increase in the memory requirement.

The high-level structure of the algorithm is that of a producer-consumer
problem. The Disk-IO process begins by issuing the Signal(·) operation after
reading a vector block from disk. Since both semaphores – S1 and S2 – are
occupied innitially, the Compute process cannot advance until the Signal(·)
operation is carried out by the Disk-IO process.

5.1.2 Compute Process.

This process is responsible for all the numerical computations involved in the
steady-state solution of a CTMC model. The numerical iterative method we
employed in this algorithm is the Pseudo Gauss-Seidel method (see §2). Since
the vector π is read into RAM one block after another, we accumulate the
products QijΠj in an array of doubles of size n/B for all 0 ≤ j < B. These
products are accumulated by line 10 of the Compute process in a local array.
The index of the matrix and vector blocks used in the products is determined
using the lines 3 − 4 along with the lines 11 − 12. The next approximation
for the block Πi is calculated by dividing the accumulated products by the
diagonal vector block (Di).

The Compute process starts with a Wait(·) operation. After a signal op-
eration from the Disk-IO process, it issues a signal on S2 and proceeds to the
matrix-vector block multiplication. This process is repeated until all the re-
quired matrix-vector block products have been accumulated for the calculation
of a vector block. The Compute process then updates the vector block and
tests for convergence. The extraction of matrix entries from the MTBDDs, as
required for this process, is described in the next section.

5.1.3 Matrix-Vector Block Multiplication using MTBDDs.

It has been mentioned in §2 that an MTBDD is a rooted, directed acyclic
graph. The entries of a matrix stored in an MTBDD can be extracted by
traversing the data structure from the root node. Since we store the whole
CTMC matrix in a single offset-labelled MTBDD data structure (in-core),
the näıve approach to the matrix-vector block multiplication (QijΠj), which
is required in each iteration of the inner loop (line 10 of the Compute process),
is to traverse the whole data structure from the root node. The problem with
this approach is that, during the traversal, only those matrix entries which are
required for this particular block multiplication are used, while the remaining
matrix elements have to be ignored.

Therefore, as in our earlier out-of-core algorithm [17], we would like to
store the equally sized square matrix blocks separately, as shown in Figure
2. However, if we took this approach, the structure of the matrix (which is
exploited by the MTBDD data structure and results in a compact represen-
tation) would be lost. Hence, we decide to keep the complete matrix in one
data structure and, to make our symbolic out-of-core algorithm time efficient,
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we store pointers to the edges in the MTBDD taken for each matrix-vector
block multiplication. The extra memory required to keep this additional in-
formation varies with the number of blocks and is independent of the number
of states. For up to 64 × 64 matrix blocks, this memory does not exceed 2
MB.

5.2 Results

We have implemented our symbolic out-of-core algorithm on two worksta-
tions: an AMD Athlon[tm] 1600MHz dual processor machine running Linux
with 900MB RAM (machine1), and an UltraSPARC-II 440MHz CPU machine
running UNIX with 512MB RAM (machine2). The implementation has been
tested on two large benchmark models available in the literature, a Kanban
System [6] and a Flexible Manufacturing System (FMS) [7].

Table 2 presents performance measures of the algorithm for FMS and Kan-
ban CTMC matrices, implemented and executed on machine1. The parameter
l in column 2 of the table denotes the number of tokens in the FMS or Kan-
ban system; column 3 and 4 list the resulting number of reachable states and
off-diagonal nonzero elements in the CTMC matrices. The number of blocks
each matrix is partitioned into and the resulting total amount of memory used
are listed in column 5 and 6 respectively. The figure for RAM listed in column
6 includes the memory required for all the vector blocks, for keeping matrix
in offset-labelled MTBDD format, memory for file buffering and for keeping
additional block information.

We note that increasing the number of blocks reduces the size of the shared
memory segments and hence the memory requirement of the solution process,
while on the other hand increasing the solution time. The number of blocks for
a CTMC matrix is chosen based on the size of the CTMC and the assumption
that n mod B = 0. For small CTMCs, we divide the vector into 4 to 8 blocks.
As the size of the CTMC increases, we divide into a larger number of blocks

Model l States Off-diagonal Blocks RAM Time (sec/it) Iter. MB

(n) non-zeros (a) (MB) incore outcore per π

Kanban 5 2,546,432 24,460,016 4 21 0.81 2.39 565 20

6 11,261,376 115,708,992 4 91 3.92 12.7 767 86

7 41,644,800 450,455,040 4 359 292 57.4 1003 317

8 133,865,325 1,507,898,700 55 79 – 1110 1044 1004

FMS 8 4,459,455 38,533,968 5 29 1.95 5.98 1255 34

9 11,058,190 99,075,405 5 75 8.23 26.7 1424 84

10 25,397,658 234,523,289 6 138 23.5 73.3 1605 194

11 54,682,992 518,030,370 8 230 832 257 1784 417

12 111,414,940 1,078,917,632 17 224 – 6734 > 100 850

Table 2
Numerical solution times for the FMS and the Kanban models on machine1
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Model l States Off-diagonal Blocks RAM Time (sec/it) Iter. MB

(n) non-zeros (a) (MB) incore outcore per π

Kanban 5 2,546,432 24,460,016 4 21 3.07 11.5 565 20

6 11,261,376 115,708,992 4 91 15.2 49.4 767 86

7 41,644,800 450,455,040 8 180 772 215 1003 317

FMS 8 4,459,455 38,533,968 5 29 8.61 25.41 1255 34

9 11,058,190 99,075,405 5 75 39.9 107.8 1424 84

10 25,397,658 234,523,289 18 46 580 380 1594 194

Table 3
Numerical solution times for the FMS and the Kanban models on machine2

such that each block can fit within the available RAM. For example, Kanban
(l = 8) was solved using both 25 and 55 blocks. The solution time in both
cases was almost the same, and we reported the result with 55 blocks in the
table. For large models, an increase in the number of blocks may lead to a
decrease in the solution time due to a caching effect. Figure 3(b) demonstrates
such behaviour for FMS (l = 11).

The run times of our symbolic out-of-core solution are recorded in column
8 under outcore. In order to measure the relative performance of our out-
of-core algorithm, we ran PRISM on the same models and machines using
the in-core hybrid MTBDD engine and the resulting run times are listed in
column 7 under incore; Figure 3(d) represents this relative performance. All
the solution times reported are real times. The last column indicates the
amount of memory required to store the probability vector (n doubles). The
run time for FMS (l = 12) was taken after running 100 iterations; we were
not able to wait for its convergence, and hence the total number of iterations
is not reported in the table.

The symbolic out-of-core algorithm has also been tested on machine2, a
single processor machine with a relatively slower CPU and smaller RAM than
machine1. This is to demonstrate the effectiveness of the algorithm on average
capacity workstations, and in particular on a single CPU machine. Table
3 lists the performance measures of the algorithm on machine2, which are
identical to the measures reported in Table 2. We observe that the ratio
between the outcore run times listed in Table 2 and Table 3 reflects the ratio
(1600MHz/440MHz) between the speeds of the two processors.

The symbolic out-of-core algorithm has been extensively tested and anal-
ysed; Figure 3 displays various performance characteristics of the algorithm.
Figures 3(a), 3(b) and 3(e) depict the effect of increasing the number of blocks
that the probability vector is divided into on the total solution times for Kan-
ban and FMS system respectively. This solution time effect versus the number
of blocks has been plotted for various sizes of CTMC matrices and a consis-
tent pattern has been observed. For example, in Figure 3(b), the proportional
increase in solution time for FMS (l = 11) is 2.4, although the proportional
increase in the number of vector blocks is 12. We also observe that the pro-
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Fig. 3. Performance graphs of the symbolic out-of-core solution
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portional increase in total time decreases as the size of the matrix increases
(for example, 5.1 for FMS (l = 8) reduces to 2.4 for FMS (l = 11) ). Figure
3(c) displays the relationship between the memory requirement of the solution
for various numbers of blocks. As expected, the memory requirement of the
out-of-core solution decreases with an increase in the number of blocks.

In Figure 3(d) we have plotted the ratio of the in-core and out-of-core run
times listed in Table 2 (on machine1), against the number of states for both
models. The dashed horizontal line in this plot indicates the ideal behaviour
(incore = outcore) desirable for out-of-core solution, and the vertical dotted
line indicates the number of states where the out-of-core solution supposedly
(because of thrashing for in-core solution) reaches the ideal behaviour. We
note that the maximum slow-down is 3.24, and that the performance of the
algorithm improves with the increase in the number of states. Figure 3(f)
plots the same information but this time for machine2 (Table 3).

6 Conclusion

A new symbolic out-of-core algorithm has been introduced in this paper along
with its implementation and a detailed analysis. The effectiveness of the algo-
rithm has been demonstrated by testing it on two large models, and by solving
models with up to 133 million states. It is evident that even larger systems
can be solved by dividing the probability vector into a larger number of blocks.
The paper has extended the limits on the size of models that are solvable on a
single workstation by relaxing the limitations of the hybrid MTBDD approach
of [19], which was caused by the need to store probability vectors explicitly.
This approach is equally applicable to other symbolic methods such as Matrix
Diagrams as well as the Kronecker methods, which have also been hindered
by the same limitations.

Although it has been demonstrated in this paper that very large models can
be solved on a modern workstation using our symbolic out-of-core approach,
the solution process for large models is quite slow. In future we will extend
this approach by employing parallelisation.
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