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Abstract. Dynamic power management (DPM) refers to the use of runtime strategies in order to achieve
a tradeoff between the performance and power consumption of a system and its components. We present an
approach to analysing stochastic DPM strategies using probabilistic model checking as the formal framework.
This is a novel application of probabilistic model checking to the area of system design. This approach
allows us to obtain performance measures of strategies by automated analytical means without expensive
simulations. Moreover, one can formally establish various probabilistically quantified properties pertaining
to buffer sizes, delays, energy usage etc., for each derived strategy.
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1. Introduction

The nature of computing has been changing over the last few years from server, workstation and desktop
based computing to embedded, ubiquitous and pervasive computing. Handheld devices, wireless sensors and
biomedical devices are gaining more and more prominence in all arenas of human life. However, as we move
from the wired to wireless domain, power savings in these computing devices become more crucial. As a result,
much research has been done in the area of low-power design, power management and the balance between
computation and communication power. Each kind of approach to power savings has its own limitations. For
example, circuit-level or architecture-level mechanisms cannot take advantage of application characteristics.
As a result, system-level power management, which is characterised by operating system controlled power
saving measures based on the observation of application characteristics, has gained significant attention in the
last few years. There are two distinct flavours of system-level power management: dynamic voltage/frequency
scaling (DVS/DFS) and dynamic power management (DPM). In this paper, we focus on the latter.

Dynamic power management (DPM) is a way to save energy in devices which, under operating system
control, can be switched either on and off or between several power states of varying power consumption.
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DPM has gained considerable attention over the last few years, a trend evidenced in the research literature
[HAW96, SCB96, BM98, BMM01, SG01, RIG00, CBBM99, ISG02], as well as concerted industry efforts such
as Microsoft’s OnNow [Mic98] and ACPI [ACP]. Due to the importance of the minimising power consumption
in today’s embedded systems, a lot of work has been initiated in both the component manufacturing industry
and the systems design industry.

A survey of most of the techniques developed for DPM before 2000 can be found in [BBM00]. In this
extensive review, the approaches to DPM are classified into predictive schemes and stochastic optimum
control schemes. Predictive schemes attempt to predict a device’s usage behaviour in the future, typically
based on the past history of usage patterns, and decide to change power states of the device accordingly.
Stochastic approaches make probabilistic assumptions (based on observations) about usage patterns and
exploit the nature of the probability distribution to formulate an optimisation problem, the solution to
which drives the DPM strategy.

It has been noted that predictive schemes are mostly based on devices with two power-saving states,
whereas there are many instances of devices in the embedded world which have more than two states. Exam-
ples of such devices may be found in [BBM00, SBM99]. In order to provide DPM strategies for multi-state
systems, the stochastic optimum control approach has been proposed in the literature [BBM00, SBM99,
BBPM99, CBBM99, QP99, QWP01]. However, such stochastic approaches also have their drawbacks, in-
cluding the fact that they make many assumptions about the probabilistic nature of the inputs and may be
more computationally expensive to implement.

Much of the previous work on dynamic power management has been based on ad-hoc techniques, such as
the use of regression equations, interpolation or learning based methods. Stochastic approaches tend to be
more formal in the sense that they are based on mathematical models which make precise assumptions about
the probabilistic characteristics of, for example, when service requests arrive at a device and how long the
device takes to respond to these requests. Validation and analysis of the stochastic DPM schemes, however,
is less formal, evaluation usually being carried out with simulation techniques which are time consuming and
often not completely reliable.

In this paper, we illustrate the applicability of probabilistic model checking , an automatic formal verifi-
cation technique for the analysis of systems which exhibit probabilistic behaviour, to the area of dynamic
power management. We show how the probabilistic model checking tool PRISM [KNP04, Pri] can be used
to automatically provide a detailed comprehensive of stochastic DPM schemes. Furthermore, this analysis
is more accurate than that obtained by simulation which typically yields only average case behaviour. An
earlier version of this work appeared in [NPK+02, NPK+03].

1.1. Organisation

Section 2 introduces the stochastic approach to DPM, with references to the existing literature. Section 3
describes the basics of probabilistic model checking and the PRISM tool. Section 4 shows in detail how
probabilistic model checking and PRISM have been applied to the analysis of DPM strategies and together
with MAPLE [Map] used to generate DPM strategies. Finally, Section 5 concludes the paper.

2. Stochastic Approaches to DPM

The stochastic version of the DPM problem basically requires one to devise a strategy (policy) which may
be probabilistic, in the sense that the actions to be taken by the strategy may have probabilities attached to
them. Unlike deterministic strategies, where a particular state of the system will lead the strategy to take a
deterministic action, here the strategy can choose between multiple actions with pre-designated probabilities.

In recent years, several approaches for designing stochastic DPM strategies have been proposed [PBBM98,
BBPM99, BBM00, CBBM99, QP99, QWP00, QWP01, SBM99]. These methodologies are based on a stochas-
tic model of the DPM problem, which incorporates the probabilistic characteristics of request arrivals to the
device, the device response time distribution, the power consumption by the device in various states and
the energy consumption when the device changes state. From this stochastic model, an exact optimisation
problem is formulated, the solution to which is the required optimal stochastic DPM policy. The strategy
devised must ensure that power savings are not achieved at an undue cost in performance. One approach,
for example, is to construct a policy which optimises the average energy usage while bounding average delay.
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The constructed policies are usually validated by simulation to check for the soundness of the modelling
assumptions, and the effectiveness of the strategies in practice [QP99, PBBM98].

The stochastic models which have been used in the literature are discrete-time Markov chains [PBBM98,
BBPM99], continuous-time Markov chains [QP99, QWP00, QWP01] and their variants [SBM99]. The ap-
proaches vary in the modelling of time: in the continuous-time case, mode switching commands can be issued
at any time, and events can happen at any time. In the discrete-time case, all events and actions occur at
certain discrete time points. In practice, such stochastic modelling seems to work well for specific kinds of
applications. Generally, the stochastic matrices for these models are created manually. In [QWP00], stochas-
tic Petri nets are used, which allows automatic generation of the stochastic matrices and formulation of the
optimisation problems.

3. Probabilistic Model Checking

Model checking is a well established and successful technique for the automatic verification of finite state
systems. In recent years, a significant amount of work has gone into probabilistic model checking , which
allows for verification of systems that exhibit probabilistic behaviour. These include randomised algorithms,
which use probabilistic choices or electronic coin flipping, and unreliable or unpredictable processes, such as
fault-tolerant systems or communication networks.

To perform probabilistic model checking one first constructs a probabilistic model of the system under
study. As in the non-probabilistic case, this model is usually a labelled transition system which defines the
set of all possible states that the system can be in and the transitions which can occur between these states.
However, in this case, one must also augment the model with information about the likelihood that each
transition will take place.

Properties of the system which are to be verified are then specified, typically in probabilistic extensions
of temporal logic. These allow specification of properties such as: “shutdown occurs with probability at most
0.01”; or “the video frame will be delivered within 5ms with probability at least 0.97”. A probabilistic model
checker applies algorithmic techniques to analyse the state space of the probabilistic model and determine
whether these specifications are satisfied. Typically, this involves computation of one or more probabilities
or performance measures. The operations required are graph-based analysis and solution of linear equation
systems or linear optimisation problems.

3.1. Probabilistic Models

Models used in probabilistic model checking are commonly variants of Markov chains. The simplest is discrete-
time Markov chains (DTMCs). A DTMC is defined by a set of states S and a probability transition matrix
P : S×S → [0, 1], where

∑
s′∈S P(s, s′) = 1 for all s ∈ S. This gives the probability P(s, s′) that a transition

will take place from state s to state s′.
Continuous-time Markov chains (CTMCs) extend DTMCs by allowing transitions to occur in real-time,

rather than only in discrete steps. A CTMC is defined by a set of states S and a transition rate matrix
R : S × S → IR>0. The rate R(s, s′) defines the delay before which a transition between states s and s′ is
enabled. The delay is sampled from a negative exponential distribution with parameter equal to this rate, i.e.
the probability of the transition being enabled within t time units is 1−e−R(s,s′)·t. When R(s, s′) > 0 for two
target states, a race occurs and the transition which becomes enabled first is the one taken. Exponentially
distributed delays are often suitable for modelling component lifetimes and inter-arrival times. They can also
be used to approximately model more complex probability distributions.

3.2. Analysis of Probabilistic Models

Similarly to the conventional, non-probabilistic case, probabilistic model checking usually constitutes veri-
fying whether or not some temporal logic formula is satisfied by a model. The two most common temporal
logics for this purpose are PCTL [HJ94, BdA95] and CSL [ASSB96, BKH99], both extensions of the logic
CTL. PCTL is used to specify properties for DTMCs and MDPs; CSL is used for CTMCs.

One common feature of the two logics is the probabilistic operator P, which allows one to reason about the
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probability that executions of the system satisfy some property. For example, the formula P>1[♦ terminate]
states that, with probability 1, the system will eventually terminate. On the other hand, the formula
P>0.95[¬repair U6200 terminate] asserts that, with probability 0.95 or greater, the system will terminate
within 200 time units and without requiring any repairs. These properties can be seen as analogues of the
non-probabilistic case, where a formula would typically state that all executions satisfy a particular property,
or that there exists an execution which satisfies it. CSL also provides the S operator to reason about steady-
state (long-run) behaviour. The formula S<0.01[queue size=max], for example, states that, in the long-run,
the probability that a queue is full is less than 0.01.

Strictly speaking, probabilistic specifications in PCTL and CSL (such as the examples above) always
contain a probability bound, so that properties are either true or false for a given system. In practice,
however, this can be relaxed. Model checking algorithms for PCTL and CSL typically proceed by computing
the actual probability and then comparing it to the bound. Hence, in practice, we can write an expression of
the form P=?[♦ terminate], for which the model checker will return the actual probability that the system
terminates. In many cases, the most useful form of analysis is to compute such values for a range of models
or properties. For example, one might determine P=?[♦6t terminate] for a range of values of t in order to
gain insight into the likelihood of the system terminating as time progresses.

Further properties can be analysed by introducing the notion of costs (or, conversely, rewards). If each
state of the probabilistic model is assigned a real-valued cost, we can compute properties such as the expected
cost to reach a certain states, the expected accumulated cost over some time period, or the expected cost at
a particular time instant. As in the previous paragraph, such properties can also be expressed concisely and
unambiguously in temporal logic [dA97, BHHK00].

3.3. PRISM: A Probabilistic Model Checker

PRISM [KNP04, Pri] is a probabilistic model checker developed at the University of Birmingham. It supports
analysis of the two types of probabilistic models discussed previously: discrete-time Markov chains (DTMCs)
and continuous-time Markov chains (CTMCs), and also Markov decision processes (MDPs) which we do not
use here. It verifies properties specified in the temporal logics PCTL (for DTMCs and MDPs) and CSL (for
CTMCs). Other probabilistic model checkers include ProbVerus [HGCC99] for DTMCs, E TMC2 [HKMKS00]
for CTMCs and DTMCs, and RAPTURE [JDL02] for MDPs.

PRISM has been used to analyse a wide range of case studies, including probabilistic algorithms for
problems such as anonymity, contract signing, leader election and consensus; and performance analysis of
various queueing systems, communication networks and manufacturing systems. See [Pri] for further details.
Figure 1 shows a screenshot of the tool running.

Probabilistic models to be analysed in PRISM are specified in the PRISM language, which is based on
the Reactive Modules formalism of Alur and Henzinger [AH99]. The basic components of this language are
modules and variables. A system is constructed as the parallel composition of a set of modules. A module
contains a number of variables which express the state of the module. Its behaviour is given by a set of
guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over all the variables of the system and the command describes a transition which
the module can make if the guard is true. A command is specified by defining the new values of the variables
of that module. This means that a module can read all of the variables in the system but only write to its
own local variables. In general, the behaviour of a module is probabilistic, in which case a command takes
the form:

<prob> : <action> + · · · + <prob> : <action>

where <prob> is a probability when the model is a DTMC or MDP and a non-negative, real value (taken to
be the parameter of an exponential distribution) when it is a CTMC. In addition, the pair of square brackets
at the start of a guarded command can contain a label. Actions from different modules with the same label
take place synchronously. See [Pri, Par02] for more details.

The overall functionality of the PRISM tool is as follows. First, it reads and parses a model description
in the PRISM language. It then constructs the corresponding DTMC, CTMC or MDP, computes the set of
all reachable states, and identifies any deadlock states (i.e. reachable states with no outgoing transitions).
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Fig. 1. Screenshot of the PRISM graphical user interface

If required, the transition matrix of the probabilistic model constructed can be exported for use in another
tool. Typically, though, PRISM then parses one or more properties in PCTL or CSL and performs model
checking, determining whether the model satisfies each property. A prototype version of PRISM has also
been developed which supports model checking of cost and reward related properties, as described in the
previous section.

4. Probabilistic Model Checking and DPM

In this section, we describe how probabilistic model checking and, in particular, PRISM can be applied to the
analysis of DPM strategies obtained using the approaches of [QP99, PBBM98]. These approaches are based
on constructing a probabilistic model of the dynamic power management system from which, for a given
constraint, an optimisation problem is constructed. The solution to this problem is the optimum randomised
power management strategy satisfying this constraint.

We show how PRISM can be used to construct a probabilistic model of dynamic power management.
The corresponding optimisation problem (as described in [QP99, PBBM98]) is then solved with the symbolic
solver MAPLE [Map]. Finally, we again use PRISM to automatically validate and analyse the derived policies.
Note that we use MAPLE to solve the optimisation problem because PRISM does not currently support
methods for solving problems of this type.1

1 PRISM does support the solution of the optimisation problems generated when verifying MDPs. However, these problems
are specific instances of the Stochastic Shortest Path Problem [BT91, Ber95] and, since the solution techniques employed by
PRISM rely on this fact, these methods cannot be applied to general optimisation problems.
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Table 1. Average power consumption (W) and service times (ms) for each power state

sleep standby idlelp idle active

power (W) 0.1 0.3 0.8 1.5 2.5
service time (ms) 0 0 0 0 1

Table 2. Average transition times (ms) between power states

active idle idlelp standby sleep

active – 1 5 220 600
idle 1 – 5 220 600
idlelp 5 – – 220 600
standby 220 – – – 600
sleep 600 – – – –

This approach differs from the previously employed techniques for the validation and analysis of DPM
strategies, which rely on simulation or the actual implementation of the schemes in device drivers. The
advantage of the probabilistic model checking approach is that it avoids the higher cost of simulation and
benefits of detailed analysis before deployment in hardware. Furthermore, the analysis is more accurate than
that obtained by simulation which typically yields only average case behaviour.

4.1. Modelling DPM in PRISM

We have applied probabilistic model checking to two stochastic DPM approaches: that of Benini et al.
[PBBM98, BBPM99], based on discrete-time Markov chains, and that of Qiu et al. [QP99, QWP00, QWP01],
based on continuous-time Markov chains. In this section we describe the DTMC approach in detail.

The approach is described through the example of [PBBM98, BBPM99], an IBM TravelStar VP disk-
drive [IBM]. The device has 5 power states, labelled sleep, standby, idle, idlelp and active. It is only in the
state active that the drive can perform data read and write operations. In state idle, the disk is spinning
while some of the electronic components of the disk drive have been switched off. The state idlelp (idle low
power) is similar except that it has a lower power dissipation. The states standby and sleep correspond to
the disk being spun down. Tables 1 and 2 show actual data for these power states. Table 1 gives the average
power consumption (W) and the service time (ms) for each state. Table 2 shows the average time (ms) to
transition between each pair of states.

We now describe how the system is modelled in the PRISM language. Following the approach of [PBBM98,
BBPM99], the model constructed is a discrete-time Markov chain (DTMC). Based on the fastest possible
transition performed by system, we choose a time resolution of 1ms for the model, i.e. each discrete-time
step of the DTMC will correspond to 1ms.

The basic structure of the DPM model can be seen in Figure 2. The model consists of: a Service Provider
(SP), which represents the device under power management control; a Service Requester (SR), which issues
requests to the device; a Service Request Queue (SRQ), which stores requests that are not serviced immedi-
ately; and the Power Manager (PM), which issues commands to the SP, based on observations of the system
and a stochastic DPM policy. Each component is represented by an individual PRISM module, which we
now consider in turn.

4.1.1. Modelling the power manager (PM).

The PM decides to which state the SP should move at each time step. To model this, we split each step into
two parts: in the first, the PM (instantaneously) decides what the SP should do next (based on the current
state); and in the second, the system makes a transition (with the SP’s move based on the choice made by
the PM). To achieve this, we introduce the CLOCK module, given in Figure 3. Transitions of this module
are labelled alternately with tick and tock. The PM is then constructed to synchronise with the CLOCK on
tick, while the remaining components are constructed to synchronise with the CLOCK on tock. A generic
PM has the form given in Figure 4. For example, if the state of the system satisfies cond1, then the PM
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Fig. 2. The System Model

module CLOCK

c : [0..1] init 0;

[tick] c = 0 → (c′ = 1);
[tock] c = 1 → (c′ = 0);

endmodule

Fig. 3. PRISM module for the clock

decides that with probability prob active1 the SP will move to active, with probability prob idle1 the SP
will move to idle, with prob idlelp1 to idlelp, prob standby1 to standby, and prob sleep1 to sleep.

4.1.2. Modelling the service provider (SP).

As mentioned above, the SP (the disk drive) has 5 power states (active, idle, idlelp, standby and sleep). These
states and the possible transitions between them are shown in Table 2. The actual PRISM code is shown in
Figure 5. Recall that the SP synchronises with the clock on tock. Hence, all of its guarded commands are
labelled with this action. Note also that the behaviour of the SP depends on the PM, so the guards reference
the variable pm.

Since a time resolution of 1ms has been chosen, in order to correctly model transitions with delays longer
than this time resolution transient states are introduced. For example, the transient state active idlelp is used
to model the non-unitary time transition from active to idlelp. The transition probabilities in the transient

module PM

pm : [0..4]; // 0− go to active, 1− go to idle, 2− go to idlelp, 3− go to standby, 4− go to sleep

[tick] cond1 → prob active1 : (pm′=0)
+ prob idle1 : (pm′=1)
+ prob idlelp1 : (pm′=2)
+ prob standby1 : (pm′=3)
+ prob sleep1 : (pm′=4);

[tick] cond2 → prob active2 : (pm′=0)
+ prob idle2 : (pm′=1)
+ prob idlelp2 : (pm′=2)
+ prob standby2 : (pm′=3)
+ prob sleep2 : (pm′=4);

...
endmodule

Fig. 4. PRISM module for the power manager
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module SP

sp : [0..10] init 9;
// 0=active, 1=idle, 2=active idlelp, 3=idlelp, 4=idlelp active, 5=active standby
// 6=standby, 7=standby active, 8=active sleep, 9=sleep, 10=sleep active

// states where PM has no control (transient states)
[tock] sp=2 → 0.75 : (sp′=sp) + 0.25 : (sp′=3);
[tock] sp=4 → 0.75 : (sp′=sp) + 0.25 : (sp′=0);
[tock] sp=5 → 0.995 : (sp′=sp) + 0.005 : (sp′=6);
[tock] sp=7 → 0.995 : (sp′=sp) + 0.005 : (sp′=0);
[tock] sp=8 → 0.9983 : (sp′=sp) + 0.0017 : (sp′=9);
[tock] sp=10 → 0.9983 : (sp′=sp) + 0.0017 : (sp′=0);
// PM: goto active
[tock] pm=0 ∧ (sp=0 ∨ sp=1) → (sp′=0);
[tock] pm=0 ∧ sp=3 → (sp′=4);
[tock] pm=0 ∧ sp=6 → (sp′=7);
[tock] pm=0 ∧ sp=9 → (sp′=10);
// PM: goto idle
[tock] pm=1 ∧ (sp=0 ∨ sp=1) → (sp′=1);
[tock] pm=1 ∧ (sp=3 ∨ sp=6 ∨ sp=9) → (sp′=sp);
// PM: goto idlelp
[tock] pm=2 ∧ (sp=0 ∨ sp=1) → (sp′=2);
[tock] pm=2 ∧ sp=3 → (sp′=sp);
// PM: goto standby
[tock] pm=3 ∧ (sp=0 ∨ sp=1 ∨ sp=3) → (sp′=5);
[tock] pm=3 ∧ sp=6 → (sp′=sp);
// PM: goto sleep
[tock] pm=4 ∧ (sp=0 ∨ sp=1 ∨ sp=3 ∨ sp=6) → (sp′=8);
[tock] pm=4 ∧ sp=9 → (sp′=9);

endmodule

Fig. 5. PRISM module for the service provider

module SR

sr : [0..1] init 0; // 0 - idle and 1 - req

[tock] sr=0 → 0.898 : (sr′=0) + 0.102 : (sr′=1);
[tock] sr=1 → 0.454 : (sr′=0) + 0.546 : (sr′=1);

endmodule

Fig. 6. PRISM module for the service requester

states, taken directly from the data of [PBBM98, BBPM99], are chosen such that the mean times to move
between power states are as given in Table 2. Note that we suppose that the power dissipation in these
transient states is high (2.5W).

4.1.3. Modelling the service requester (SR) and queue (SRQ).

Similarly to the SP, both the SR and the SRQ synchronise with the clock on tock. The SR has two states:
idle where no requests are generated and req where one request is generated per time step (1ms). The
probabilities associated with the transitions between these states are based on time-stamped traces of disk
access measured on real machines [BBPM99]. The module for the SR is given in Figure 6.

The SRQ models a queue of service requests. It responds to the arrival of requests from the SR and the
service of requests by the SP. The queue size will only decrease when the SR and SP are in states idle and
active, respectively. On the other hand, it will only increase when the SR is in state req and the SP is not
active. The PRISM code is given in Figure 7.
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const QMAX = 2; //maximum size of the queue

module SRQ

q : [0..QMAX] init 0; // size of queue

// SP is active
[tock] sr = 0 ∧ sp = 0 → (q′ = max(q− 1, 0));
[tock] sr = 1 ∧ sp = 0 → (q′ = q);
// SP is not active
[tock] sr = 0 ∧ sp > 0 → (q′ = q);
[tock] sr = 1 ∧ sp > 0 → (q′ = min(q + 1, QMAX));

endmodule

Fig. 7. PRISM module for the service request queue

module BATTERY

bat : [0..1] init 1; // 0 - battery off and 1 - battery on

[tock] bat = 1 → 0.999999 : (bat′=1) + 0.000001 : (bat′=0);

endmodule

Fig. 8. PRISM module for the battery

4.1.4. Modelling a Finite Time Horizon.

We suppose that there is a time horizon of one million time steps. To model this horizon, an additional
module representing a battery with an expected life span of 1 million time steps is added (see Figure 8).
Note that, once the battery reaches state 0, it cannot perform the action tock which prevents any other
modules in the system from performing this action. Hence, the rest of the system can no longer continue
(i.e. the states where bat = 0 act as sink states).

4.2. Policy Construction

Using the PRISM language description detailed in the previous sections, the PRISM model checking tool can
be used to construct a generic model of the power management system. From the transition matrix of this
system, the linear optimisation problem whose solution is the optimal policy can be formulated, as described
in [PBBM98, BBPM99]. This optimisation problem is then passed to the MAPLE symbolic solver. Table 3
shows policies constructed in this way for a range of constraints on the average size of the service request
queue. The first column lists the constraint; the second column summarises the corresponding policy.

4.3. Policy Analysis

Once a policy has been constructed, its performance can be automatically analysed through probabilistic
model checking, as described in Section 3. The generic power manager PRISM module is modified to represent
a specific policy. Figure 9 shows an example of this for the constraint “queue size is less than 0.05”. This can
be seen to correspond to the policy in the 5th row of the table in Table 3. PRISM is then used to construct
and analyse the DTMC for this policy.

We now present a representative set of results obtained through probabilistic model checking that demon-
strate the utility and power of this approach. The policies analysed are those constructed from a range of
constraints on the average queue length. In Table 4, the following properties have been computed: “average
power consumption”, “average queue size” and “average number of lost requests”. Using PRISM, we asso-
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Table 3. Optimum policies under varying constraints on the average queue size

constraint optimum policy

6 1.5 if the SP is active and the SRQ is not full then
with probability 1 goto idle

elseif the SR is idle, the SP is in sleep and the SRQ is full then
with probability 0.00000047 goto active

elseif the SR is in req and the SP is idle then
with probability 1 goto active

end

6 1 if the SP is active and the SRQ is not full then
with probability 1 goto idle

elseif the SR is idle, the SP is in sleep and the SRQ is full then
with probability 0.00000150 goto active

elseif the SR is in req and the SP is idle then
with probability 1 goto active

end

6 0.5 if the SP is active and the SRQ is not full then
with probability 1 goto idle

elseif the SR is idle, the SP is in sleep and the SRQ is full then
with probability 0.00000582 goto active

elseif the SR is in req and the SP is idle then
with probability 1 goto active

end

6 0.1 if the SP is active and the SRQ is not full then
with probability 1 goto idle

elseif the SR is idle and the SP is idle then
with probability 0.95197200 goto active

elseif the SR is in req and the SP is idle then
with probability 1 goto active

elseif the SP is in sleep then
with probability 1 goto active

end

6 0.05 if the SP is active, the SR is idle and the SRQ is empty then
with probability 0.36316067 goto idle

elseif the SP is idle then
with probability 1 goto active

elseif the SP is in sleep then
with probability 1 goto active

end

6 0.001 if the SP is active, the SR is idle and the SRQ is empty then
with probability 0.05068717 goto idle

elseif the SP is idle then
with probability 1 goto active

elseif the SP is in sleep then
with probability 1 goto active

end

ciate a cost with each state and then compute the expected accumulated cost of the system until it reaches
a state where the battery has run out. For example, to determine the average power consumption, the cost
associated with each state is determined by the state of the SP and the data given in Table 1.

From the table, we can see that the average power consumption of a policy decreases as the constraint
on queue size is relaxed (i.e. the requested average queue size is increased). We can also validate the policy
by confirming that the expected size of the queue matches the value in the constraint which was used to
construct it. Finally, we see that a side-effect of this is that the average number of requests lost also increases.

In Figure 10, we show graphical results for a range of policies. Using the same assignments of model
states to costs as discussed above, we (automatically in PRISM) compute and plot, for a range of values of
T : “expected power consumption by time T”, “expected queue size at time T”, and “expected number of lost
requests by time T”. The first and third properties are determined by computing expected cost cumulated
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module PM

// policy when constraint on queue size equals 0.05
pm : [0..4]; // 0− go to active, 1− go to idle, 2− go to idlelp, 3− go to standby, 4− go to sleep

[tick] sr=0 ∧ sp=0 ∧ q=0 → 0.63683933 : (pm′=0) // go to active
+ 0.36316067 : (pm′=1); // go to idle

[tick] sp=1 ∨ sp=9 → (pm′=0); // go to active
[tick] ¬(sp=9 ∨ sp=1 ∨ (sr=0 ∧ sp=0 ∧ q=0)) → (pm′=pm);

endmodule

Fig. 9. PRISM module for the power manager under performance constraint 0.05

Table 4. DTMC case study: Power versus performance

policy average power average queue average number
constraint consumption size of lost requests

0.001 2.460629 0.001000 0.000106
0.05 2.282590 0.050000 0.000106
0.1 2.060040 0.100000 0.000106
0.2 1.670410 0.200000 0.001671
0.3 1.583163 0.300000 0.011770
0.4 1.495917 0.400000 0.021869
0.5 1.408671 0.500000 0.031968
0.6 1.321424 0.600000 0.042067
0.7 1.234178 0.700000 0.052166
0.8 1.146932 0.800000 0.062265
0.9 1.059686 0.900000 0.072364
1.0 0.972439 1.000000 0.082463
1.1 0.885193 1.100000 0.092562
1.2 0.797947 1.200000 0.102661
1.3 0.710700 1.300000 0.112760
1.4 0.623454 1.400000 0.122859
1.5 0.536208 1.500000 0.132958
1.6 0.448962 1.600000 0.143057
1.7 0.361715 1.700000 0.153156
1.8 0.274469 1.800000 0.163255
1.9 0.187223 1.900000 0.173354
2.0 0.100000 2.000000 0.183450

up until time T ; the second by computing the instantaneous cost at time T . Again, we see that policies which
consume less power have larger queue sizes and are more likely to lose requests. Here, though, we can get a
much clearer view of how these properties change over time. We see, for example, that the expected queue
size at time T initially increases and then decreases. This follows from the fact that the strategies wait for
the queue to become full before switching the SP on.

Further properties that we can analyse using probabilistic model checking include:

1. the probability that the queue becomes full before time T (P=?[♦62T q=QMAX]);
2. the probability that a request is served by time T , given that it arrived into a certain position in the

queue (P=?[♦62T served ]);

3. the probability that N requests get lost by time T (P=?[♦62T lost=N ]).

Note that, in the formulae, we use time-bounds of 2T , as opposed to T , since two steps in the model (a ‘tick’
followed by a ‘tock’) correspond to one time-unit in the system. To verify the second and third properties,
we must add variables to the PRISM model which record the current position of the request under analysis
and to count the number of lost requests (up to a maximum on N), respectively. In Figure 11 we present
these results for a range of policies and for a range of values of T . The graphs show that:
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Fig. 10. DTMC case study: power and performance by time T (ms) for optimal policies under different
constraints
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Fig. 11. DTMC case study: analysis of optimal policies for different performance constraints

1. the probability of the queue becoming full within a time bound increases as the constraint on the per-
formance is relaxed (i.e. the requested average queue size is increased);

2. the probability that requests get served increases for policies with stricter performance constraints;
3. the probability of requests being lost within a certain time bound increases more quickly for the strategies

with weaker performance constraints.

These results confirm that the policies behave as you would expect. In order to reduce power, the strategies
with less strict performance constraints (i.e. with higher values for average queue constraint) can allow the
service provider to spend more time in low power states in which service requests cannot be dealt with, e.g.
in sleep and standby. For further details on the results obtained, see the PRISM web page [Pri].

4.4. The Continuous-Time Case

We have also applied probabilistic model checking to the stochastic optimum control approach of [QP99,
QWP00, QWP01], which is based on CTMCs rather than DTMCs. The key differences between these two
choices of model were given in Section 2. From the point of view of modelling in PRISM, the two are
relatively similar. The model has the same basic structure: each component (PM, SP, SRQ and SR) is a
separate module and the system is constructed as the parallel composition of these modules. However, in
this case we no longer require the CLOCK module to control synchronisation. Since the model is a CTMC,
components change state according to exponentially distributed delays and the PM acts when such a state
transition occurs.

The construction of optimum policies from the PRISM model now follows the approach of [QP99, QWP00,
QWP01]. We again use MAPLE to perform the solution of optimisation problems for this purpose. For the
analysis of policies, we can consider similar properties to the DTMC case. As in the DTMC case, there is
a power consumption associated with each power state of the SP (per unit of time); however, there is also
a power usage associated with a change in the SP’s state. The main differences are that we use the logic
CSL as opposed to the logic PCTL, and that the time bound T used in the properties is now a real value as
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opposed to a number of discrete steps. For details on the results obtained using CSL on this case study see
the PRISM web page [Pri].

Furthermore, in this case, we can also analyse the policies for alternative, more general, inter-arrival
time distributions, to give a more realistic model of the arrival of service requests (e.g. Pareto). This can be
achieved by modelling the DPM system, for a fixed policy, as a time-homogeneous Markov renewal process
[Çin75, Kul95] where the renewal point corresponds to the arrival of a new request from the SR. More
precisely, we can represent the system as a stochastic process (X, T ) = {Xn, Tn |n ∈ N}, where Xn ∈ S is a
random variable corresponding to the state of the system (i.e the state of SP, SR, SRQ and PM) just before
the arrival of the nth request and Tn ∈ R>0 is a random variable corresponding to the time of the arrival of
the nth request.

For the process (X, T ) to be a time-homogeneous Markov renewal process, it must satisfy the following
two conditions:

Markovian: for any n ∈ N, s1, . . . , sn+1 ∈ S and t, t1, . . . , tn ∈ R>0:

P(Xn+1=sn+1, Tn+1−Tn 6 t |X0=s0, . . . , Xn=sn;T1=t1, . . . , Tn=tn)
= P(Xn+1=sn+1, Tn+1−Tn 6 t |Xn=sn) , (1)

i.e. the probability of state change is history-independent.
Time homogeneity: there exists Q : S×S×R>0 → [0, 1] such that for any n ∈ N, s, s′ ∈ S and t ∈ R>0:

P(Xn+1=s′, Tn+1−Tn 6 t |Xn=s) = Q(s, s′, t) , (2)

i.e. the probability of state change is time-independent.

The satisfaction of (1) and (2) for the process (X, T ) considered here follows from the fact that the inter-
arrival time distribution is the only non-exponential distribution in the system (and therefore the only
distribution which is non-Markovian) and that the time between the arrival of nth and (n+1)th request is
given by the inter-arrival time distribution (and is therefore independent of the time between the arrivals of
previous requests).

For a time-homogeneous Markov renewal process (X, T ), the family {Q(s, s′, t) | s, s′ ∈ S, t ∈ R>0} is
called a semi-Markov kernel over S and can be used to construct the embedded DTMC (S,P) of the process,
where for any s, s′ ∈ S:

P(s, s′) = lim
t→∞

Q(s, s′, t) . (3)

More precisely, in the embedded DTMC, the probability of making a transition from state s to s′ is given
by the probability, in the actual process, of being in state s′ just before the arrival of a request given that
the state of the system was s immediately before the arrival of the previous request.

Now, by considering our model as a time-homogeneous Markov renewal process, we can use the theory of
Markov renewal processes [Çin75, Kul95] to compute performance metrics of the system. For example, under
certain restrictions, including that the process is aperiodic and irreducible (which hold for the processes we
consider), letting:

C(s, s′) = E(time spent in state s′ during (0, T1) |X0=s) (4)

i.e. the expected time the process spends in state s′ between two renewal points, given that it started in
state s after the last renewal, and letting u be the steady state vector of the embedded DTMC, then the
limiting state probabilities vector π of the Markov renewal process are given by:

π =
u ·C

u ·C · 1
. (5)

The following procedure describes how we have combined probabilistic model checking (in particular the
methods given in [KNP02a, KNP02b]) and the theory of Markov renewal processes to analyse the power
management policies under general inter-arrival time distributions.

1. Construct a restricted model of the system in which transitions corresponding to new requests are re-
moved. Note that, in this restricted model, all transitions have exponential delay, that is, it is a CTMC.

2. Construct the embedded DTMC of the Markov renewal process described above, that is compute the
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Table 5. CTMC case study: Power versus performance

performance constraint inter-arrival time distribution
measure deterministic exponential Erlang uniform Pareto

average 0.1 0.95607 0.95732 0.95624 0.95675 0.96085
power 1 0.88649 0.89635 0.88776 0.89168 0.93099

consumption 5 0.64712 0.63498 0.64577 0.64265 0.43536

average 0.1 0.12454 0.10000 0.12124 0.11101 0.028132
queue 1 1.2140 1.0000 1.1866 1.0999 0.20238
size 5 5.1573 5.0000 5.1399 5.1021 1.6534

average 0.1 2.3677e-06 1.1865e-05 2.9357e-06 4.8316e-06 3.5617e-03
number of 1 2.5110e-05 1.3217e-04 3.1335e-05 5.2690e-05 4.4060e-02

lost requests 5 1.9618e-04 1.0033e-03 2.4324e-04 4.1157e-04 3.3341e-01

probabilities given in (3). These are determined by calculating the probability of satisfying random time-
bounded until formulae [KNP02a] on the restricted CTMC model where the random time bound T is set
equal to the inter-arrival time distribution of requests. More precisely, for any pair s, s′ of states, P(s, s′)
is given by the probability, in the restricted CTMC model, of being in state s′ at the random time T ,
having started in state s̃, where the only difference2 between s and s̃ is that in s̃ there is one more request
in the queue (SRQ). In the case where the queue is full, s and s̃ are the same. Note that an alternative
approach to the construction of the embedded DTMC is to following the methodology of [Ger00].

3. In the restricted CTMC model, calculate, using the techniques developed in [KNP02b], the expected
reward cumulated until the random time T for the following rewards: time spent in a state, power
consumption, queue size and number of lost requests. For example, when the reward is equal to the time
spent in state s′, the expected cumulated reward, starting from state s̃, gives the the values C(s, s′) of (4),
where the difference between s and s̃ is as in step 2. When the reward is equal to the power consumption,
the expected cumulated reward gives the expected power consumption between renewal points.

4. Using the theory of Markov renewal processes, calculate performance and power metrics of the system,
through the analysis of the embedded DTMC constructed in step 2 and the expected reward values
computed in step 3. For example, the long-run average power consumption can be computed by combining
the limiting state probabilities and the expected power consumption between two renewal points of the
renewal process. The limiting state probabilities are computed using (5) (i.e. combining the steady state
probabilities of the DTMC constructed in step 2 and the values C(s, s′) computed in step 3) and the
expected expected power consumption between two renewal points is calculated in step 3.

We now present a selection of results to illustrate the utility of the procedure described above. Table 5
shows average power consumption, average queue size and average number of lost requests for optimum
policies under five different inter-arrival distributions. The distributions chosen all have the same mean and
it can be seen that, with the exception of the Pareto distribution, the long-run performance and costs are
reasonably close to those of the exponential arrival process. For the Pareto distribution, the average queue
size is generally much smaller. This is a result of the Pareto distribution’s heavy tail , which means that,
in the long run, many requests will not arrive for a very long time, and hence, in these cases, the service
provider (SP) will serve all pending requests, and then the system will spend a long time with the queue
empty and the SP in its sleep state consuming very little power. Moreover, more requests are blocked for
the Pareto distribution than with the other distributions.

In Figure 12, we present the power and performance results up until the arrival of the Nth request as the
inter-arrival time distribution varies for the optimum policies for the cases when the constraint on the queue
size is 5, 1 and 0.1. Note that, since the distributions we consider have the same mean, the expected arrival
time of the Nth request is the same for all the distributions considered. Again, we see that the results are
very similar in all cases except when the inter-arrival time has a Pareto distribution. Comparing the results
we see that, as for the DTMC case study, for larger constraints the power consumption decreases while the
expected queue size and expected number of lost requests increases.

2 Recall that Xn corresponds to the state of the system immediately before the arrival of the nth request.
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(a) performance constraint of 5
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(b) performance constraint of 1
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(c) performance constraint of 0.1

Fig. 12. CTMC case study: Power and performance results by the time the Nth request arrives

In Figure 13, we plot the probability that the queue size becomes greater than 10 before the arrival of the
Nth request and the probability that a request is lost before the arrival of the Nth request. The results show
that, as the constraint on the performance is relaxed (increased), the probability that there are more than
10 requests waiting in the queue, or that a request is lost before the arrival of the Nth request, increases.
The rationale is the same as for the DTMC case study: the strategies with low performance constraints (i.e.
the higher values on the constraint) can allow the service provider to spend more time in low power states
which cannot service requests while still meeting the constraint.

Finally, in all the results, we note the similarity between the cases for requests arriving with a deterministic
or Erlang distribution; this is to be expected since the Erlang distribution is often used as a continuous
approximation of a (discrete) deterministic distribution [Tri01].

5. Conclusions

We have shown that probabilistic model checking allows for the automatic generation of a wide range of
performance measures for the analysis of DPM policies. Statistics such as power consumption, service queue
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Fig. 13. CTMC case study: analysis of optimal policies for different performance constraints

length and the number of requests lost can be computed, both in the average case and for particular time
instances over a given range. The fact that a constructed policy is only known to be optimal in the average
case makes this information particularly interesting. Furthermore, the policies’ behaviour can be examined
under alternative, more realistic, service request inter-arrival time distributions such as Erlang and Pareto.

An inherent advantage of the model checking approach is that the analysis of the state-space is exhaustive,
in contrast to, say, simulation. This means that the answers computed are guaranteed to be accurate with
respect to the probabilistic model used, and that all behaviour, including corner-case scenarios, is considered.
We are presently extending this work by building an analytical framework that derives and analyses strategies
for more general probabilistic assumptions. We are also considering applying our methodology to DPM
schemes with multiple power-managed devices.
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