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Quantitative model checkers for Markov Decision Processes typically use finite-precision arithmetic,
since exact techniques are generally too expensive or limited in scalability. In this paper we propose
a method for obtaining exact results starting from an approximated solution in finite-precision arith-
metic. The input of the method is a description of a scheduler, which can be obtained by a model
checker using finite precision. Given a scheduler, we show how to obtain a corresponding basis in a
linear-programming problem, in such a way that the basis is optimal whenever the scheduler attains
the worst-case probability. This correspondence is already known for discounted MDPs, we show
how to apply it in the undiscounted case provided that some preprocessing is done. Using the corre-
spondence, the linear-programming problem can be solved in exact arithmetic starting from the basis
obtained. As a consequence, the method finds the worst-case probability even if the scheduler pro-
vided by the model checker was not optimal. In our experiments, the calculation of exact solutions
from a candidate scheduler is significantly faster than the calculation using the simplex method under
exact arithmetic starting from a default basis.

1 Introduction

Model checking of Markov Decision Processes (MDPs) has been proven to be a useful tool to verify and
evaluate systems with both probabilistic and non-deterministic choices. Given a model of the system un-
der consideration and a qualitative property concerning probabilities, such as “the system fails to deliver
a message with probability at most 0.05”, a model checker deduces whether the property holds or not for
the model. As different resolutions of the non-deterministic choices lead to different probability values,
verification techniques for MDPs rely on the concept of schedulers (also called policies, or adversaries),
which are defined as functions choosing an option for each of the paths of an MDP. Model-checking
algorithms for MDPs proceed by reducing the model-checking problem to that of finding the maximum
(or minimum) probability to reach a set of states under all schedulers [5].

Different techniques for calculating these extremal probabilities exist: for an up-to-date tutorial,
see [10]. Some of them (for instance, value iteration) are approximate in nature, while a technique using
linear programming (LP) can be used to obtain exact solutions. However, even the linear programming
method is often carried out using finite-precision, and so the results are always approximations. Exact
solutions are hard to get in practice, because linear programming methods for MDPs using exact arith-
metic do not scale well. (To support this claim we performed some experiments showing how costly it
is to compute exact probabilities using LP without our method.) In addition, the native operators in pro-
gramming languages like Java have finite precision: the extension to exact arithmetic involves significant
reworking of the existing code.
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We propose a method for computing exact solutions. Given any approximative algorithm being able
to provide a description of a scheduler, our method shows how to extend the algorithm in order to get
exact solutions. The method exploits the well-known correspondence between model-checking problems
and linear programming problems [5], which allows to compute worst-case probabilities by computing
optimal solutions for LP problems.

The simplex algorithm [6] for linear programming works by iterating over different bases, which are
submatrices of the matrix associated to the LP problem. Each basis defines a solution, that is, a valuation
on the variables of the problem. The simplex method stops when the basis yields a solution with certain
properties, more precisely, a so-called feasible and dual feasible solution. By algebraic properties, such
a solution is guaranteed to be optimal.

The core of our method is the interpretation of the scheduler as a basis for the linear programming
problem. Given a scheduler complying with certain natural conditions, a basis corresponding to the
scheduler can be used as a starting point for the simplex algorithm. We show that, if the scheduler is
optimal, then the solution associated to the corresponding basis is feasible and dual feasible, and so a
simplex solver provided with this basis needs only to check dual feasibility and compute the solution
corresponding to the basis. As our experiments show, these computations can be done in exact arith-
metic without a huge impact in the overall model-checking time. In fact, using the dual variant of the
simplex method, the time to obtain the exact solution is less than the time spent by value iteration. If the
scheduler is not optimal, the solver starts the iterations from the basis. This is useful for two reasons:
we can let the simplex solver finish in order to get the exact solution; or, once we know that we are not
getting the optimal solution, we can perform some tuning in the model checker as, for instance, reduce
the convergence threshold (we also show a case in which the optimal scheduler cannot be found with
thresholds within the 64-bit IEEE 754 floating point precision).

The correspondence between schedulers and bases is already known for discounted MDPs (see, for
instance [8]). We show the correspondence for the undiscounted case in case some states of the system are
eliminated in preprocessing steps. The preprocessing steps we consider are usual in model checking [10]:
given a set of target states, one of the preprocessing algorithms removes the states that cannot reach the
target, while the other one removes the states that can avoid reaching the target. These are qualitative
algorithms based on graphs that do not perform any arithmetical operations.

The next section introduces the preliminary concepts we need along the paper. Section 3 presents our
method and the proof of correctness. The experiments are shown in Section 4. The last section discusses
related results concerning complexity and policy iteration.

2 Preliminaries

We introduce the definitions and known-results used throughout the paper, concerning both Markov
decision process and linear programming.

2.1 Markov decision processes

Definition 1. Let Dist(A) denote the set of discrete probability distributions over the set A. A Markov
Decision Process (MDP) M is a pair (S,T) where S is a finite set of states and T ⊆ S×Dist(S) is a set
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of transitions 1. Given µ = (s,d) ∈ T, the value d(t) is the probability of making a transition to t from
s using µ . We write µ(t) instead of d(t), and write state(µ) for s. We define the set en(s) as the set of
all transitions µ with state(µ) = s. For simplicity, we make the usual assumption that every state has at
least one enabled transition: en(s) �= /0 for all s ∈ S.

We write s
µ−→ t to denote µ ∈ en(s)∧ µ(t) > 0. A path in an MDP is a (possibly infinite) sequence

ρ = s0.µ1.s1. · · · ..µn.sn, where µ i ∈ en(si−1) and µ i(si) > 0 for all i. If ρ is finite, the last state of ρ is
denoted by last(ρ), and the length is denoted by len(ρ) (a path having a single state has length 0). Given
a set of states U , we define reach(U) to be the set of all infinite paths ρ = s0.µ1.s1. · · · such that si ∈U
for some i.

The semantics of MDPs is given by schedulers. A scheduler η for an MDP M is a function η : S→T
such that η(s) ∈ en(s) for all s. In words, the scheduler chooses an enabled transition based on the
current state. For all schedulers η , t ∈ S, the set Paths(t,η) contains all the paths s0.µ1.s1. · · · .µn.sn such

that s0 = t, µ i = η(si−1) and si−1 µ i

−→ si for all i. The reader familiar with MDPs might note that we are
restricting to Markovian non-randomized schedulers (that is, they map states to transitions, instead of
the more general schedulers mapping paths to distributions on transitions). As explained later on, these
schedulers suffice for our purposes.

The probability Prt,η
M (ρ) of the path ρ under η starting from t is ∏len(ρ)

i=1 µ i(si) if ρ ∈ Paths(t,η). If
ρ �∈ Paths(t,η), then the probability is 0. We often omit the subindices M and/or t if they are clear from
the context.

We are interested on the probability of (sets of) infinite paths. Given a finite path ρ , the probability
of the set ρ↑ comprising all the infinite paths that have ρ as a prefix is defined by Prη(ρ↑) = Prη(ρ).
In the usual way (that is, by resorting to the Carathéodory extension theorem) it can be shown that the
definition on the sets of the form ρ↑ can be extended to σ -algebra generated by the sets ρ↑.

The verification of PCTL∗ [5] and ω-regular formulae [7] (for example LTL) can be reduced to the
problem of calculating maxs,η Prs,η

M� (reach(U)) (or mins,η Prs,η
M� (reach(U))) for MDPs M�, states s and sets

U obtained from the formula.
In consequence, in the rest of the paper we concentrate on the following problems.

Definition 2. Given an MDP M, an initial state s and set of target states U , a reachability problem
consists of computing maxs,η Prs,η

M (reach(U)) (or minη Prs,η
M (reach(U))).

From classic results in MDP theory (for these results applied to model checking see, for instance, [2,
Chapter 3]) there exists a scheduler η∗ such that

η∗ = argmax
η

Prs,η
M (reach(U)) (1)

for all s ∈ S. That is, η∗ attains the maximum probability for all states.
An analogous result holds for the the case of minimum probabilities. There exists η∗ such that

η∗ = argmin
η

Prs,η
M (reach(U)) (2)

for all s ∈ S.
Even in a more general setting allowing for non-Markovian and randomized schedulers, it can be

proven that we can assume η∗ to be Markovian and non-randomized. The existence of η∗ justifies our
restriction to Markovian and non-randomized schedulers.

1Defining transitions as pairs helps to deal with the case in which the same distribution is enabled in several states
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Markov chains A Markov chain (MC) is an MDP such that |en(s)| = 1 for all s ∈ S. Note that a
Markov chain has exactly one scheduler, namely the one that chooses the only transition enabled in each
state. Hence, for Markov chains, we often disregard the scheduler and denote the probability of reaching
U as Prs

M(reach(U)).

Definition 3. Given an MDP M = (S,T) and a scheduler η , we define the Markov chain M ↓ η = (S,T�)
where µ ∈ T� iff η(state(µ)) = µ .

A simple application of the definitions yields

Prs,η
M (reach(U)) = Prs

M↓η(reach(U)) . (3)

2.2 Linear programming

We use a particular canonical form of linear programs suitable for our needs. It is based on [6, Appendix
B], which is also a good reference for all the concepts and results given in this subsection.

A linear programming problem consists in computing

min
x
{cx | Ax = b∧x ≥ 0} , (4)

given a constraint matrix A, a constraint vector b and a cost vector c. In the following, we assume that
A has m rows and m+ n columns, for some m > 0 and n ≥ 0. Hence, c is a row vector with m+ n
components, and b is a column vector with m components.

A solution is any vector x of size m+ n. The i-th component of x is denoted by xi. We say that
that a solution is feasible if Ax = b and x ≥ 0; it is optimal if is feasible and cx is minimum over all
feasible x. A problem is feasible if it has a feasible solution, and bounded if it has an optimal solution.
A non-singular m×m submatrix of A is called a basis. We overload the letter B to denote both the basis
and the set of indices of the corresponding columns in A. A variable xk is basic if k ∈ B. Note that, given
our assumptions on the dimension of the constraint matrix, for all bases there are m basic variables and
n non-basic variables. Given a basis B, and any vector t, let tB be the subvector of t having only the
components in B. When B is clear from the context, we use N to denote the set of columns not in B, and
use tN accordingly. For a matrix A, let AN be submatrix of A having only the columns that are not in B.
The solution x induced by the basis B is defined as xk = 0 for all k �∈ B, while the values for k ∈ B are
given by the vectorial equation xB = B−1b. A solution x is basic if there is a basis that induces x. Given
B and k ∈ N, the reduced cost ck of a variable xk is defined as ck −cBB−1Ak, where Ak is the k-th column
of A. A solution is dual feasible if it correspond to a basis such that ck ≥ 0 for all k ∈ N.

In our proofs we make use of the following lemma, which is particular to our canonical form.

Lemma 1.
Ax = b if x is basic .

Proof. By splitting A into basic and non-basic columns we get Ax = BxB +ANxN = BB−1b+AN0 =
Ib = b . (Note that x might not be feasible as it could be x �≥ 0.)

Correctness of the simplex method relies on the following well-known facts about LP problems:
• Every solution that is both feasible and dual feasible is optimal
• If there exists an optimal solution, then there exists a basic solution that is feasible and dual feasible

(and hence optimal)
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As the problems we deal with are ensured to be bounded and feasible, we assume that there exists
an optimal solution. In this context, the simplex algorithm explores different bases until it finds a basis
whose corresponding solution is feasible and dual feasible.

In several implementations of the algorithm the starting basis can be specified (when it is not, a de-
fault one is used). The initial basis does not need to be feasible nor dual feasible. In case the starting
basis complies with both feasibilities, the simplex algorithm finishes after checking that these feasibil-
ities are met, without any further exploration. In Subsection 2.3, we show how reachability problems
correspond to LP problems. In Section 3 we show that, under a certain assumption on the model checker
(Assumption 1), a basis can be obtained from the scheduler provided by the model checker. In particular,
optimal schedulers yield feasible bases (Theorem 3). Under our assumption, all the bases obtained from
schedulers are dual feasible (Theorem 4).

Among the different variants of the simplex method, in our experiments (Section 4) we use the dual
simplex, which first looks for a dual-feasible basis (in the so-called first phase) and next tries to find a
feasible one while keeping dual feasibility (in the second phase). This is appropriate in our case since,
under our assumptions, the first phase is not needed (as formalized in Theorem 4). In contrast to the
dual simplex, the primal simplex (or, simply, simplex) looks for a feasible basis in the first phase. As
a consequence, if iterations are required (according to our results in Section 3, this is case in which the
model checker fails to provide the optimal scheduler), then the primal simplex performs both phases.
However, both variants can be used and, as our experiments show, the starting basis obtained from the
scheduler is useful to save iterations. In the few cases in which PRISM did not provide the optimal
schedulers, the dual simplex required less iterations than the primal one; both of them perform far better
when starting from a basis corresponding to a near-optimal scheduler than when starting from the default
basis (see Section 4).

2.3 Linear programming for Markov decision processes

Linear programming can be used to compute optimal probabilities for some of the states in the system.
The set of states whose maximum (minimum, resp.) probability is 0 is first calculated using graph-
based techniques [10, Sec. 4.1]. This qualitative calculation is often considered as a preprocessing
step before the proper quantitative model checking. Given a set of target states U , let Smax0 be the
set of states S such that maxη Prs,η

M (reach(U)) = 0. Similarly, let Smin0 be the set of states such that
minη Prs,η

M (reach(U)) = 0. When focusing on maximum probabilities, we write the set S \ (Smax0 ∪U)
as S? (called the set of maybe states), while for minimum probabilities S? is S\ (Smin0 ∪U).

The maximum probabilities for s ∈ Smax0 are 0 by definition of Smax0. For s ∈ U the probabilities
are 1, since when starting from a state in U , the set U is reached in the initial state, regardless of the
scheduler. The minimum probabilities for sSmin0 are 0 by definition of Smin0, and the probabilities for
s ∈U are again 1. Next we show how to obtain the probabilities for the states in S?, thus covering all the
states in the system.

In order to avoid order issues, we assume that the states are S? = s1, · · · ,sn and the transitions are:

T= µ1, · · · ,µm (5)

in such a way that if si = state(µ j), si� = state(µ j�) and i < i�, then j < j� (from Def. 1, recall that state(µi)
is the state in which µi is enabled). Roughly speaking, the transitions are ordered with respect to the states
in which they are enabled. From now on, we use this orderings consistently throughout the paper.
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In the following theorem, the matrix A|I associated to a reachability problem maxPrs,η
M (reach(U)) is

a m× (n+m) matrix whose last m columns form the identity matrix. We define of Ai, j for the column
j ≤ n as: Ai, j = µi(s j) if s j �= state(µi), or Ai, j = µi(s j)−1 if s j = state(µi). The vector b is defined as
bi =−∑s∈U µi(s).

Theorem 1. For all states si ∈ S?, the value maxη Prsi,η
M (reach(U)) is the value of the variable xi in an

optimal solution of the following LP problem:

min (

n� �� �
1, · · · ,1,

m� �� �
0, · · · ,0)x

(A | Im×m)x = b
x ≥ 0 .

(6)

Analogously, the value minη Prsi,η
M (reach(U)) is the value of the variable xi in an optimal solution of

the following LP problem.

min −(

n� �� �
1, · · · ,1,

m� �� �
0, · · · ,0)x

(−A | Im×m)x =−b
x ≥ 0 .

(7)

(Note that, in the constraint, the matrix A is negated, while I is not.)

This theorem is just the well-known correspondence between reachability problems and LP prob-
lems [12],[10, Section 4.2], written in our LP setting.

The variables that multiply the columns in the identity matrix are called slack variables in the LP

literature. They are also the variables xµ in the following notation.

Notation 1. From now on, we identify each column 1 ≤ j ≤ n of (A|I) with the state s j, and each column
n < j ≤ n+m with the transition µ j. Each row i is identified with µi. In consequence, we write Aµ,s for
the elements of the matrix, and xs or xµ for the components of the solution x.

3 A method for exact solutions

Our method serves as a complement to a model checker being able to:
• calculate the set S?, and
• give a description of a scheduler, that the model checker considers optimal based on finite precision

calculations
We only require a weak “optimality” condition on the scheduler returned by the model checker, which we
refer to as apt: we say that a scheduler η is apt iff Prs,η

M (reach(U))> 0 for all s ∈ S?. In order words, we
only require the scheduler to reach U for all states that can reach it (no matter with which probability). In
the case of minimum probabilities, every scheduler is apt, since if we have Prs,η

M (reach(U)) = 0 for some
η , then s �∈ S? (by definition of Smin0). For the case of the maximum, the existence of an apt scheduler
follows from the definition of S?, the scheduler η∗ in (1) being a suitable witness.

Assumption 1. We assume that the model checker is able to provide an apt scheduler, in the sense that
our method is not guaranteed to return a value in case the scheduler is not apt.
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input : An MDP M and a set of states U
output: x such that xs = maxη Prs,η

M (reach(U)) (minη Prs,η
M (reach(U)), resp.) for all s ∈ S?

1 // Use model checker to get the set S?
and a scheduler

2 (S?,η)← reach analysis (M, U);
3 L ← construct problem (M, S?);
4 Bη ← construct basis (L , η);
5 start simplex solver (L , Bη ) ;
6 if the exact simplex solver finishes in one iteration then
7 return argminx L , obtained from the solver;
8 else if the solver performs several iterations then // η is not optimal

9 return argminx L , obtained from the solver once it finishes;
10 // Or interrupt the solver and change the model checker parameters

11 else if the solver reports that the basis is singular then
12 // For the minimum, this case cannot happen

13 error η is not apt;
14 end

Algorithm 1: Method to get exact solutions

Our method is described in the Algorithm 1. The function construct problem constructs the LP

problems (6) and (7). Given η , the basis Bη obtained by construct basis is defined as

s ∈ Bη , for all s ∈ S? xµ ∈ Bη ⇐⇒ η(state(µ)) �= µ . (8)

Roughly speaking, the basis contains all states, and all the transitions that are not chosen by η . Some-
times (particularly in the proof of Theorem 4) we write BM�,η to make it clear that the basis belongs to
an MDP M�.

The rest of this section is devoted to prove the correctness of the algorithm, in the sense made precise
by the following theorem (which is proven later).

Theorem 2. If the algorithm returns a value, then the value corresponds to the output specification.
Moreover, if the scheduler η provided by the model checker is apt, then the matrix defined by (8) is a
basis, and the algorithm returns optimum values from the LP solver. If the scheduler provided by the
model checker is optimum as in (1), then the basis in (8) is both feasible and dual feasible.

Recall from Subsection 2.2 that the simplex algorithm stops as soon as it finds a solution that is
feasible and dual feasible. Hence, the fact that an optimal scheduler yields a basic, feasible and dual
feasible solution causes the simplex solver to stop as soon as the feasibility checks are finished.

The rest of this section is devoted to prove Theorem 2. In our proofs we resort to the following
definitions and lemmata. The first definition uses indices as explained in Notation 1.

Definition 4. Given a scheduler η , we write the set of transitions complying with η(state(µ)) = µ as
Tη = {µ1, · · · ,µn}, and we assume that this ordering respects the ordering in (5). We define Cη to be
the n×n matrix whose elements are as Cη

i, j = µ i(s j). Consider the matrix A in (6). We define (A↓η) to
be the n×n submatrix of A comprising all the rows µ ∈ Tη and the columns s for all s ∈ S?.

Lemma 2. The transitions µ i ∈Tη comply with state(µ i) = si for all si ∈ S?. In consequence, η(si) = µ i.
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Proof. Note that since the order in Tη respects the order in (5), we have that the sequence state(µ1), · · · ,
state(µn) is a sequence of states s j1 , · · · ,s jn with j1 ≤ · · ·≤ jn. Since there are n states, and for each state
s we have exactly one transition µ such that η(s) = µ , it must be s j1 = s1, · · · ,s jn = sn. This implies
state(µ i) = s ji = si as desired. Using this equality and µ i ∈ Tη we have η(si) = η(state(µ i)) = µ i.

Lemma 3. For all η , we have (A↓η) =Cη − I.

Proof. By definition of (A ↓η) and the definition of the matrix A in (6) we have (A ↓η)i, j = Aµ i,s j =
µ i(s j)−Qi, j, where Qi, j = 1 if state(µ i) = s j, or otherwise Qi, j = 0. By Lemma 2, we have state(µ i) = s j

iff i = j. Hence Qi, j is the identity matrix and (A↓η)i, j = µ i(s j)− Ii, j =Cη
i, j − Ii, j, which completes the

proof.

The matrix (A ↓η) happens to be very important in our proofs. We profit from the fact that it is
non-singular provided that η is apt.

Lemma 4. For all apt η , the matrix (A↓η) is non-singular.

Proof. Suppose, towards a contradiction, that there exists x �= 0 such that (A ↓ η)x = 0. Then, by
Lemma 3, we have (Cη − I)x = 0, which implies Cηx = x and hence (Cη)zx = x for all z ≥ 0. We
arrive to a contradiction by showing that for all j there exists z such that

|((Cη)zx) j|< max
s�

|xs� | . (9)

In particular, for q = argmaxs� |xs� | this yields |((Cη)zx)q|< |xq|, which contradicts (Cη)zx = x.
Now we prove (9). Since η is apt, from every s j ∈ S? there exists a path ρ ∈ Paths(s j,η) with

last(ρ) ∈U , such that all the states previous to last(ρ) are not in U . We prove that z can be taken to be
len(ρ). We proceed by induction on the length of ρ . If len(ρ) = 1, by Lemma 2 we have η(s j)(u) =
µ j(u)> 0 for some u ∈U , and hence2 ∑t∈S? µ j(t)< 1. Taking z = 1 we obtain

|(Cηx) j|= |∑
t∈S?

µ j(t)xt |≤ ∑
t∈S?

µ j(t)|xt |≤ ∑
t∈S?

µ j(t)max
s�

|xs� |< max
s�

|xs� | ,

which proves that we can take z = 1 = len(ρ). The last strict inequality holds only if maxs� |xs� | > 0,
which follows from x �= 0.

If len(ρ) = l +1, there exists sq ∈ S? such that µ j(sq)> 0 and q reaches U in l steps. The inductive
hypothesis holds for q, and hence |((Cη)lx)q|< maxs� |xs� |, from which we obtain:

|((Cη)l+1x) j|= |(Cη(Cη)lx) j|≤ ∑
t∈S?\{sq}

µ j(t) |((Cη)lx)t | + µ j(sq) |((Cη)lx)q|

= ∑
t∈S?\{sq}

µ j(t) |xt | + µ j(sq) |((Cη)lx)q|≤ ∑
t∈S?\{sq}

µ j(t)max
s�

|xs� | + µ j(sq) |((Cη)lx)q|

< ∑
t∈S?\{sq}

µ j(t)max
s�

|xs� | + µ j(sq)max
s�

|xs� |≤ max
s�

|xs� |

This finishes the proof of (9). Assuming that (A ↓ η)x = 0 for some x �= 0, we derived (9), which
contradicts (Cη)zx = x for all z ≥ 0, thus finishing the proof.

2The result for discounted MDPs does not use S? as the analogous of this sum is always less than 1 due to the discounts
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Lemma 5. For all apt schedulers η , the basis defined in (8) is non-singular.

Proof. We show that the equation Bηx = 0 holds only if x = 0. Note that the vector x has one component
for each column of the basis, that is, one component for each state in S? (called xs), and one component
for each transition such that η(state(µ)) �= µ (called xµ ). The matrix equation Bηx = 0 corresponds to
m equations, one for each transition. If µ ∈ Bη , since t ∈ Bη for all t ∈ S?, the equation corresponding to
µ is

∑
t∈S?

Aµ,txt + xµ = 0 . (10)

If µ �∈ Bη , the corresponding equation is

∑
t∈S?

Aµ,txt = 0 . (11)

(Note that the sum term xµ has disappeared. This corresponds to the fact that the column corresponding
to xµ is not in the basis.) Since the transitions µ �∈ Bη are those such that η(state(µ)) = µ , the set of
equations (11) is equivalent to (A↓η)s = 0, where s is the subvector of x having only the components
corresponding to states. In consequence, if Bηx = 0 holds, then in particular (A↓η)s = 0 and, since η is
apt, by Lemma 4 it must be s = 0, that is, xt = 0 for all t ∈ S?. Using this in (10) we have xµ = 0 for all
µ ∈ Bη . We have proven x j = 0 for every component j of x, thus showing x = 0.

Theorem 3. If a scheduler is optimal as in (1) (or (2), resp.) then the solution induced by the basis Bη
is feasible.

Proof. Let x be the solution induced by Bη for some optimal η . By Lemma 1, we need to prove x ≥ 0.
We prove this inequality by showing that xs = Prs,η

M (reach(U))≥ 0 for all s and xµ ≥ 0 for all µ .
Since in Bη the variables xµ ∈ Tη are non basic, in the solution xη induced by Bη we have xµ = 0

for all µ ∈ Tη . Then, using Lemma 1 for our particular constraint matrix A|I, we obtain

xs = ∑
t∈S?

η(s)(t) xt + ∑
t∈U

η(s)(t) . (12)

This is equivalent to (A↓η)x = q for some vector q. By Lemma 4, there exists exactly one x satisfy-
ing (12). Let vη

s be Prs,η
M (reach(U)). A classic result for MDPs (see, for instance, [10, Section 4.2], [2,

Theorem 3.10]) states that, for an optimal scheduler η , it holds

vη
s = max

µ∈en(s)
∑

t∈S?

µ(t)vη
t + ∑

t∈U
µ(t) (13)

and
η(s) ∈ arg max

µ∈en(s)
∑

t∈S?

µ(t)vη
t + ∑

t∈U
µ(t) .

for all states s. From the last two equations:

vη
s = ∑

t∈S?

η(s)(t) vη
t + ∑

t∈U
η(s)(t) .
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This is equivalent to (A↓η)vη = q as before. After (12) we have seen that this equation has a unique
solution, and so xs = vη

s for all s ∈ S?. By (13) we have

xs ≥ ∑
t∈S?

µ(t) xt + ∑
t∈U

µ(t) (14)

for all s ∈ S?, µ ∈ en(s). Applying Lemma 1 to our particular constraint matrix A|I, we have

xµ = xs − ∑
t∈S?

µ(t)xt − ∑
t∈U

µ(t) .

Hence, xµ ≥ 0 for all µ by (14). In conclusion, xs = vη
s ≥ 0 for all s ∈ S? and xµ ≥ 0 for all µ . Then, the

solution x induced by Bη is feasible.
For the case of the minimum, the analogue of (13) is:

vη
s = min

µ∈en(s)
∑

t∈S?

µ(t)vη
t + ∑

t∈U
µ(t) (15)

The fact that the equation (A↓η)vη = q has a unique solution again yields xs = vη . For xµ , using the
constraint matrix −A|I for the minimum and (15) we obtain

xµ =−xs + ∑
t∈S?

µ(t)xt + ∑
t∈U

µ(t) = ∑
t∈U

µ(t)+ ∑
t∈S?

µ(t)− xt ≥ 0 .

Theorem 4. Given an apt scheduler η , the solution induced by the basis Bη is dual feasible. (For the
definition of dual feasible see Subsection 2.2.)

Proof. First we find a matrix expression for B−1
η . Suppose we reorder the rows of Bη so that the rows

corresponding to transitions in the basis occur first. The resulting matrix is

B�
η =

�
A� I(m−n)×(m−n)

(A↓η) 0

�

where A� is a submatrix of Bη . We can write

B�
η = PBη (16)

where P is a permutation matrix. In order to find the inverse of B�
η we pose the following matrix equation:

�
A� I(m−n)×(m−n)

(A↓η) 0

��
A11 A12

A21 A22

�

=

�
A�A11 +A21 A�A12 +A22

(A↓η)A11 (A↓η)A12

�
= I =

�
In×n 0

0 I(m−n)×(m−n)

�

These equations, suggest that we can take A11 = 0, and hence A21 = I. Moreover, it must be A12 = (A↓
η)−1 (which exists by Lemma 5) and hence A22 = −A�(A ↓η)−1. The equation below can be easily
checked by verifying that B�−1

η B�
η = I

B�−1
η =

�
0n×(m−n) (A↓η)−1

I(m−n)×(m−n) −A�(A↓η)−1

�
(17)
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Next, we use (17) to show that the reduced costs depend only on the constraint coefficients of the
transitions chosen by the scheduler.

We consider first the case of the maximum. Recall that our constraint matrix is A|I and the costs cµ
associated to the transitions variables are 0 for all µ (see (6)). According to the definition of reduced cost
(see Subsection 2.2), to prove dual feasibility we need to show −cBη B−1

η Iµ ≥ 0 for all µ �∈ Bη , where Iµ
is the column of the identity matrix corresponding to µ . From (16), we have B−1

η = B�−1
η P, and hence

our inequality is −cBη B�−1
η PIµ ≥ 0. Since P is a permutation matrix, we know that PIµ is a column of

the identity matrix, say Ik(µ). Given our costs in (6), and given the definition of Bη , we have that cBη

is the vector (
n� �� �

1, · · · ,1,
m−n� �� �

0, · · · ,0), and hence from (17) we get cBη B�−1
η = (01×(m−n), 11×n(A ↓η)−1). In

conclusion, we have proven

−cBη B−1
η Iµ =−(01×(m−n), 11×n(A↓η)−1) Ik(µ) , (18)

and we must prove that this number is greater than or equal to 0 for all µ �∈ Bη .
Whenever k(µ)≤ m−n, the result holds since (18) is 0.
In case k(µ)> m−n, we prove the result using the fact that these values depend only on the transi-

tions chosen by η . In fact, given the MDP M and the scheduler η , if we write (18) for the Markov chain
M ↓ η (see Def. 3), we obtain

−cB(M↓η),η B−1
(M↓η),η Iµ = −11×n(A↓η)−1 Iµ (19)

for all µ �∈ B(M↓η),η . Note that for M ↓ η there is no need to reorder (as there are no transitions in the
basis) and so µ = k(µ). Given that all the transitions M ↓ η are chosen by η , the basis B(M↓η),η contains
all the states and no transitions. In this equation, Iµ can be any column of In×n (again, due to the fact that
there are no transitions in the basis).

Suppose, towards a contradiction, that (18) is less than 0 for some k(µ) > m−n. This is equivalent
to −11×n(A ↓η)−1 Ik(µ)−(m−n) < 0. By (19) we have −11×n(A ↓η)−1 Iµ � < 0 for some µ � in M ↓ η .
Then, the solution induced by the basis is not dual feasible for the problem associated to M ↓ η . As
there is at least one optimal basic and dual feasible solution (the one found by simplex method), there
exists an optimal solution xC such that the corresponding basis BC is not B(M↓η),η . As in M ↓ η there
exists only one basis containing all states (namely B(M↓η),η ), there exists s �∈ BC. In consequence, we
have xC

s = 0. Since xC is optimal, by Theorem 1, we obtain Prs,η
M↓η(reach(U)) = 0, from which (3) yields

Prs,η
M (reach(U)) = 0. This contradicts the fact that η is apt.

The proof for the case of the minimum is completely analogous: despite the differences in the con-
straints and the cost vector, the reduced costs in (18) are the same as before:

−cBη B−1
η Iµ =−(−01×(m−n), −11×n(−(A↓η)−1)) Ik(µ) =−(01×(m−n), 11×n(A↓η)−1) Ik(µ) .

These values again coincide with the ones in a system having only the transitions chosen by η .

Proof (of Theorem 2). If the algorithm returns a value, then it is argminx L , where L is the problem (6)
(or (7) for the minimum). Hence, by Theorem 1, the returned value coincides with the output speci-
fication. We have that if η is apt, then Bη is a basis by Lemma 5. As a consequence, the algorithm
never enters the branch in line 11, and so the result is returned. The termination in a single iteration
is a consequence of the fact that the solution corresponding to an optimal scheduler η is both feasible
(Theorem 3) and dual feasible (Theorem 4).
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4 Experimental results

Implementation. We implemented our method by extending the model checker PRISM [11], using the
LP library glpk [3]. We compiled glpk using the library for arbitrary precision gmp. We needed to
modify the code of glpk: although there is a solver function that uses exact arithmetic internally, this
function does not allow us to retrieve the exact value. Aside from these changes to glpk and some
additional code scattered around the PRISM code (in order to gather information about the scheduler),
the specific code for implementing our method is less than 300 lines long. With these modifications,
PRISM is able to print the numerator and the denominator of the probabilities calculated.

Our implementation works as follows: in the first step, we use the value iteration already imple-
mented in PRISM to calculate a candidate scheduler. In the next step, the LP problem is constructed by
iterating over each state: for each transition enabled, the corresponding probabilities are inserted in the
matrix. The basis is constructed along this process: when a transition is considered, the description of
the scheduler (implemented as an array) is queried about whether this transition is the one chosen by the
scheduler. Next we solve the LP problem. For the reasons explained in Subsection 2.2, in Algorithm 1
we use the dual simplex method, except when we compare it to the primal one. The reader familiar with
glpk might notice that the dual variant is not implemented under exact arithmetic on glpk: to overcome
this, instead of providing glpk with the original problem, we provided the dual problem and retrieved
the values of the dual variables (the dual problem is obtained by providing the transpose of the constraint
matrix and by negating the cost coefficients, and so it does not affect the running time).

The experiments were carried out on an Intel i7 @3.40Ghz with 8Gb RAM, running Windows 7.

Case studies. We studied three known models available from the PRISM benchmark suite [1], where
the reader can look for matters not explained here (for instance, details about the parameters of each
model). For the parameters whose values are not specified here, we use the default values. In the IEEE
802.11 Wireless LAN model, two stations use a randomised exponential backoff rule to minimise the
likelihood of transmission collision. The parameter N is the number of maximum backoffs. We compute
the maximum probability that the backoff counters of both stations reach their maximum value. The
second model concerns the consensus algorithm for N processes of Aspnes & Herlihy [4], which uses
shared coins. We calculate the maximum probability that the protocol finishes without an agreement.
The parameter K is used to bound a shared counter. Our third case study is the IEEE 1394 FireWire
Root Contention Protocol (using the PRISM model which is based on [13]). We calculate the minimum
probability that a leader is elected before a deadline of D time units.

Linear programming versus Algorithm 1. Table 1 allows us to compare (primal and dual) simplex
starting from a default basis, against Algorithm 1, which provides a starting basis from a candidate
scheduler. Aside from the construction of the MDP from the PRISM language description (which is
the same either using LP or Algorithm 1, and is thus disregarded in our comparisons), the steps in our
implementation are: (1) perform value iteration to obtain a candidate scheduler; (2) construct the LP

problem; (3) solve the problem in exact arithmetic in zero or more iterations (the latter is the case in
which the scheduler is not optimal). All these times are shown in Table 1, as well as its sum, expressed
in seconds. The experiments for LP were run with a time-out of one hour (represented with a dash).

Our method always outperforms the naive application of LP. The case with the lowest advantage is
Consensus (3,5), and still our method takes less than 1/6 of the time required by dual simplex.

With respect to the time devoted to exact arithmetic in Algorithm 1, in all cases the simplex under
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Time (seconds)
LP without Alg. 1 Algorithm 1

Model Para-
meters

n = |S?| m Primal Dual Value
iter.

LP
constr.

Dual
simplex Total

Wlan 3 2529 96302 19.53 11.76 0.36 0.05 0.03 0.44
(N) 4 5781 345000 110.32 61.83 2.30 0.21 0.06 2.57

5 12309 1295218 535.76 326.64 14.93 1.32 0.15 16.40
Consensus 3,3 3607 3968 251.74 35.32 2.93 0.04 0.15 3.12
(N, K) 3,4 4783 5216 488.84 64.00 6.47 0.06 0.58 7.11

3,5 5959 6464 1085.70 105.36 12.74 0.06 1.87 14.67
4,1 11450 12416 - 432.98 2.88 0.11 0.19 3.18
4,2 21690 22656 - 1951.91 20.41 0.23 0.37 21.01
4,3 31930 32896 - - 59.73 0.49 0.58 60.80
4,4 42170 43136 - - 134.62 0.64 0.78 136.04
4,5 52410 53376 - - 246.90 0.91 0.96 248.77

Firewire 200 1071 80980 4.50 2.65 0.28 0.04 0.01 0.33
(D) 300 23782 213805 - 1314.32 2.89 1.04 0.24 4.17

400 81943 434364 - - 11.05 8.74 0.88 20.67

Table 1: Comparison of primal and dual simplex starting from a default basis against Algorithm 1

exact arithmetic takes a fraction of the time spent by the other operations of the algorithm (namely, to
perform value iteration and to construct the LP problem). In Consensus (3,5), the simplex algorithm
takes less than 1/6 of the time devoted to the other operations. In all other cases the ratio is even lower.

The greatest number found was 28821938103543398400, the denominator in the solution of Firewire
400. It needs 65 bits to be stored. The computations were performed using 32 bit libraries, and so the
exact arithmetic computations used around 3 words in the worst case (which is not really a challenge for
an arbitrary precision library). We can conclude that, even for systems with more than 10000 states (up
to 80000, in our experiments), the overhead introduced by exact arithmetic is manageable.

Suboptimal schedulers as suboptimal bases. Other than measuring whether the calculation is reason-
ably quick in case the scheduler from PRISM is optimal, a secondary measuring concerns how close is
the basis to an optimal one in case the scheduler provided by PRISM is not optimal.

Except in cases Consensus (3,·), simplex stopped after 0 iterations, thus indicating that PRISM was
able to find the optimal scheduler. For optimal schedulers there is no difference between using primal
or dual simplex in Algorithm 1 (we ran the experiments and the running time of the simplex variants
differed by at most 0.05 seconds).

The probabilities obtained in each step of the value iteration converge to those of an optimal sched-
uler. Given a threshold ε , value iteration stops only after |xs − x�s| ≤ ε for all s, where x and x� are the
vectors obtained in the last two iterations.

In Table 2 we compare the amount of iterations and the time spent by primal and dual simplex for
schedulers obtained using different thresholds. We considered only the cases Consensus (3,·), as in other
cases the scheduler returned by PRISM was optimum except for gross thresholds above 0.05, which are
rarely used in practice (the default ε in PRISM is 10−6). In addition to the default value, we considered
representatives the value 10−7 (since 10−8 already yields the exact solution for (3,3) in the dual case:
a value smaller than 10−7 would have yielded uninteresting numbers for this case) and the value 10−16,
since in (3,5) the scheduler does not improve beyond such threshold. In fact, for 10−16 the result is
the same as for 10−323, and 10−324 is not a valid double. In Java, the type double corresponds to a
IEEE 754 64-bit floating point.

In consequence, we have one case (namely, Consensus (3,5)), where PRISM cannot find the worst-
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Primal Dual
Iterations Time (seconds) Iterations Time (seconds)

ε (10−n) 6 7 16 6 7 16 6 7 16 6 7 16
Consensus (3,3) 187 134 0 3.43 2.43 0.10 10 6 0 0.19 0.15 0.10
Consensus (3,4) 2497 6278 0 74.42 202.58 0.14 37 28 0 0.63 0.51 0.13
Consensus (3,5) 4990 4340 1239 190.53 160.44 49.487 94 61 6 1.93 1.24 0.25

Table 2: Time spent when the starting basis is not optimal

case scheduler for any double threshold (and thus should be recoded to use another arithmetic primitives
to get exact results), while our method is able to calculate exact results using less than two seconds after
value iteration, as shown in Table 1.

For Consensus (3,·) we see that dual simplex performs betters than primal simplex. Consensus (3,4)
shows that the primal simplex can behave worse when starting from Bη than the dual simplex starting
from the default basis (compare with the corresponding row in Table 1). Moreover, it can be the case that
it takes more time as the threshold decreases (note that, in contrast, in Consensus (3,5) the time decreases
with the threshold, as expected). This suggests that the dual variant should be preferred over the primal.

Comparing against Table 1, we see that, for each variant of the simplex method, starting from the
basis Bη results in a quicker calculation than starting from the default basis.

5 Discussion and further work

Linear programming versus policy iteration. It is known that the dual simplex method applied for dis-
counted MDPs is just the same as policy iteration (for an introduction to this method see [10]) seen from
a different perspective. Indeed, this has been used to obtain complexity bounds (see [14]). Theorems 3
and 4 establish for undiscounted MDPs the same correspondence between basis and schedulers as known
for the discounted case, and as a consequence the dual simplex is policy iteration disguised, also in the
undiscounted case.

Even without considering the results in this paper at all, exact solutions can also be calculated by
implementing policy iteration with exact arithmetic as, in each iteration, the method calculates the prob-
abilities corresponding to a scheduler and checks whether they can be improved by another scheduler.
Roughly speaking, if the calculation and the check are performed using exact arithmetic, then the result
is also exact.

Despite this existing alternative, the correspondence between bases and schedulers we presented in
this paper allows to obtain an exact solution by using LP solvers, thus profiting from all the knowledge
concerning LP problems (and from existing implementations such as glpk).

Complexity. To the best of our knowledge, the precise complexity of the simplex method in our case is
unknown. There are recent results for the simplex applied to similar problems. For instance, in [14] it is
proven that simplex is strongly polynomial for discounted MDPs. Nevertheless, [9] shows an exponential
lower bound to calculate rewards in the undiscounted case. Unfortunately (or not, as there is still hope
that we can prove the time to be polynomial in our case), the construction used in [9] cannot be carried
out easily to our setting, as some of the rewards in the construction are negative (and the equivalent to
the rewards in our setting are the sums ∑t∈U µ(t)).
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Further work. In the comparison of our method against LP, we considered only the simplex method, as
glpk only implements this method in exact arithmetic. The feasibility/applicability of other algorithms
to solve LP problems using exact arithmetic is yet to be studied.

The fact that the probabilities obtained are exact allows to prove additional facts about the system
under consideration. For instance, the exact values can be used in correctness certificates, or be the input
of automatic theorem provers, if they require exact values to prove some other properties of the system.
We plan to concentrate on these uses of exact probabilities.

Acknowledgements. The author is grateful to David Parker, Vojtech Forejt and Marta Kwiatkowska for
useful comments and proofreading.
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