
Generating compact MTBDD-representations
from Probmela specifications

Frank Ciesinski1, Christel Baier1, Marcus Größer1,
David Parker2

1Technical University Dresden, Institute for Theoretical Computer Science, Germany
2Oxford University Computing Laboratory, Oxford, UK

Abstract. The purpose of the paper is to provide an automatic trans-
formation of parallel programs of an imperative probabilistic guarded
command language (called Probmela) into probabilistic reactive module
specifications. The latter serve as basis for the input language of the sym-
bolic MTBDD-based probabilistic model checker PRISM, while Probmela
is the modeling language of the model checker LiQuor which relies on an
enumerative approach and supports partial order reduction and other
reduction techniques. By providing the link between the model check-
ers PRISM and LiQuor, our translation supports comparative studies of
different verification paradigms and can serve to use the (more com-
fortable) guarded command language for a MTBDD-based quantitative
analysis. The challenges were (1) to ensure that the translation preserves
the Markov decision process semantics, (2) the efficiency of the transla-
tion and (3) the compactness of the symbolic BDD-representation of the
generated PRISM-language specifications.

1 Introduction
Model checking plays a crucial role in analyzing quantitative behaviour of
a wide range of system types such as randomised distributed algorithms
and randomised communication protocols. One of the key ingredients of
a model checking tool for a randomized system is an appropriate model-
ing language which should be expressive and easy to learn and must be
equipped with a formal semantics that assigns MDPs to the programs of
the modeling language. For efficiency reasons, it is also important that the
MDP-semantics has a formalization by means of rules that support the
automated generation of a compact internal representation of the MDP
from a given program. The modeling languages of most model checkers for
MDPs use probabilistic variants of modeling languages of successful non-
probabilistic model checkers. The MDP-fragment of the model checker
PRISM [9] uses reactive module-like specifications [1] extended by the
feature that statements can have a probabilistic effect. Probabilistic reac-
tive modules rely on a declaration of pre- and postconditions of variables.
Thus, their nature is rather close to symbolic representations which makes
them well suited for the generation of a multiterminal binary decision di-
agram (MTBDD) [6, 20] for the system. On the other hand, probabilistic

reactive modules do not support complex data structures (e.g., arrays
and channels) and require the encoding of conditional or repetitive com-
mands by means of pre- and postconditions. Modeling languages, like
Probmela [2] which is a probabilistic dialect of the prominent (nonprob-
abilistic) modeling language Promela [10], that combine features of im-
perative programming language (such as complex datatypes, conditional
commands, loops) with message passing over channels and communica-
tion over shared variables are much more comfortable. Many protocols
and systems can be formally described within such a high-level modeling
language in a rather elegant and intuitive way. The MDP-semantics of
a given Probmela-program can be obtained as a DFS-based enumeration
of the reachable states (similar to the on-the-fly generation of the tran-
sition system for a given Promela-program as it is realized in SPIN [10]).
However, the generation of a compact symbolic MTBDD-representation is
nontrivial. Although several reduction techniques that rely on an analysis
of the underlying graph of the MDP or the control graphs of Probmela-
programs can be applied to make the quantitative analysis competitive
with the symbolic approach concerning the time required for the quan-
titative analysis [5], the enumerative approach often fails to handle very
large systems with many parallel processes which can still be verified with
the symbolic approach by PRISM.
The purpose of this paper is to combine the advantages of both ap-
proaches by providing an automatic translation from Probmela-programs
into PRISM language and to derive a compact MTBDD representation
from the generated PRISM code. The implementation of this transla-
tion (called Prismela) yields the platform to use the (more comfortable)
modeling language Probmela for the MTBDD-based quantitative analy-
sis of PRISM and supports comparative studies of different verification
paradigms: the symbolic approach realized in PRISM [9] and the enumer-
ative approach of LiQuor [4]. The main challenges are

(1) to ensure that the translation preserves the Markov decision process
semantics, (without introducing extra steps and intermediate pseudo-
states that serve to simulate a single step of the original guarded
command specification),

(2) the efficiency of the translation and
(3) the compactness of the symbolic BDD-representation of the generated

PRISM-module specifications.

Our work is conceptually related to [3], where a translation schema is pre-
sented that allows for the transformation of a core fragment of Promela
to the input format of the (nonprobabilistic) symbolic model checker
SMV[15]. Beside the probabilistic features (probabilistic choice, lossy chan-
nels, random assignments), we treat some more language concepts than
[3] such as message passing via handshaking through synchronous chan-

nels. Furthermore, we describe the translation of atomic regions in more
detail and describe our implemented automated heuristics to calculate
a good variable ordering for a given model. Another symbolic approach
for Promela specifications has been presented in [22] using a nonstandard
decision diagram, called DDD.
After a brief summary of the main concepts of Probmela and the PRISM
input language (Section 2), we present the translation (Section 3), discuss
heuristics that address item (3) and attempt finding good variable order-
ings for the MTBDD-representation and determining the variable ranges
(Section 4). In Section 5, we explain the main features of our implemen-
tation on the top of the model checkers LiQuor and PRISM and report on
experimental results.

2 Preliminaries
We give here brief intuitive explanations on the syntax and semantics
of the (core fragment of the) modeling language Probmela and PRISM’s
language, and suppose that the reader is familiar with the main concepts
of Promela [10] and reactive modules [1].

The modeling language Probmela [2] is a probabilistic dialect of SPIN’s
input language Promela [10]. In the core language, programs are com-
posed by a finite number of processes that might communicate over shared
(global) variables or channels. Programs consist of a declaration (types,
initial values) of the global variables and channels, and the code for the
processes. The processes can access the global variables and channels, but
they also can have local variables and channels. We skip these details here
and suppose for simplicity that the names of all (local or global) variables
and channels are pairwise distinct. The channels can be synchronous or
fifo-channels of finite capacity. The fifo channels can declared to be either
perfect or lossy with some failure probability λ ∈]0, 1[. The meaning of λ
is that the send-operation might fail with probability λ. The operational
behavior of the processes is specified in a guarded command language
as in Promela with (deterministic) assignments x = expr, communication
actions c?x (receiving a value for variable x along channel c) and c!expr
(sending the current value of an expression along channel c), the state-
ment skip, conditional and repetitive statements over guarded commands
(if . . . fi and do . . . od), and atomic regions. The probabilisic features of
Probmela are lossy fifo-channels (see above), a probabilistic choice oper-
ator pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip (where π1, . . . , πk are probabil-
ities, i.e., real numbers between 0 and 1 such that π1 + . . . + πk ≤ 1
and cmd1, . . . , cmdk are Probmela commands) and random assignments
x = random(V). The intuitive meaning of the pif . . . fip command is
that with probability πi, command cmdi is executed next. The value
1−(π1+. . .+πk) is the deadlock probability where no further computation

of the process is possible. In a random assignment x = random(V), x is a
variable and V a finite set of possible values for x. The meaning is that x
is assigned to some value in V according to the uniform distribution over
V . In addition, Probmela permits jumps by means of goto-statements.
Probmela also supports the creation, stopping, restarting and destruc-
tion of processes. Since the PRISM language assumes a fixed number of
variables and modules, such dynamic features are not included in the
translation and are therefore irrelevant for the purposes of this paper.

PRISM’s input language [18]. For the purposes of the paper, only the
fragment of PRISM that has an MDP-semantics is relevant. In this frag-
ment, a PRISM program consists of several modules P = Q1‖...‖Qn that
run in parallel. Each module consists of a variable definition and a fi-
nite set of statements. The statements are equipped with a precondition
(guard) on the current variable evaluation. The effect of the statements
on the variables can be probabilistic. A PRISM statement s ∈ Stmt has
the form

[σ] guard → π1 : upd1 + ... + πk : updk

where guard is a Boolean condition on the variables and π1, . . . , πk are
probabilities, i.e., real numbers between 0 and 1 that sum up to 1. (If k = 1
then π1 = 1 and we simply write [σ]guard → upd1 rather than [σ]guard →
1 : upd1.) The terms updi are “updates” that specify how the new values of
the variables are obtained from the current values. Formally, the updates
are conjunctions of formulas of the type x′ = expr where x is a program
variable and its primed version x′ refers to the value of x in the next state
and expr is an expression built by constants and (unprimed) variables. If
an update does not contain a conjunct x′ = . . . then the meaning is that
the value of variable x remains unchanged. (In this way, the updates updi
specify unique next values.) The symbol σ is either ε or a synchronization
label. Statements of different modules with the special symbol ε (simply
written [] rather than [ε]) are executed in an interleaved way, i.e., without
any synchronization. The meaning of statements with a synchronization
label σ is that all modules have to synchronize over a statements labeled
by σ. No other channel-based communication concept is supported by the
PRISM language, i.e., there is no asynchronous message passing over fifo-
channels and no (explicit) operator modeling handshaking between two
modules. Furthermore, PRISM does not support data types like arrays.

Markov decision processes (MDP). Both Probmela programs and PRISM
programs have an operational semantics in terms of a Markov decision
process (MDP) [19]. In this context, the MDP for a program consists of
a finite state space S and a transition relation →⊆ S × Act × Distr(S)

where Act is a set of actions and Distr(S) denotes the set of (sub) distri-
butions over S (i.e., functions µ : S → [0, 1] such that

∑
s∈S µ(s) ≤ 1).

Furthermore, there is a distinguished state that is declared to be initial.
The states in the MDP for a Probmela program consist of local control
states for all processes, valuations for the local and global variables and
a component that specifies the current contents of the fifo-channels. The
transition relation → is formally presented by means of SOS-rules [2].
In our implementation, we slightly departed from [2] and used a MDP-
semantics that relies on a representation of each process by a control
graph, which can then be unfolded into an MDP and put in parallel with
the MDPs for the other processes. (Parallel composition is understood as
ordinary interleaving and synchronization in the handshaking principle
for message passing over synchronous channels.)
In the sequel, let Var be the set of all global variables of the given program
and LocVari the set of local variables of process Qi. For simplicity, we
suppose that Var∩LocVari = ∅. We write Vari for Var∪LocVari, the set of
variables that can appear in the statements of process Qi. If V is a set of
variables then Eval(V) denotes the set of all (type-consistent) valuations
for the variables in V . In the control graph for process Qi, the nodes are
called locations of Qi. They play the role of a program counter and are
obtained by assigning identifiers to each command in the Probmela-code
for Qi. The edges have the form `

g:α
 ν where ` is a location, g is a

guard (Boolean condition on the variables in Vari) and α an action which
can be viewed as a function α : Eval(Vari) → Distr(Eval(Vari)) and ν a
distribution over the locations of Qi. If ν assigns probability 1 to some
location `′ (and probability 0 to all other locations) then we simply write
`

g:α
 `′. Furthermore, the trivial guard g = true is omitted and we simply

write `
α
 ν rather than `

true:α
 ν. For instance, the location ` assigned to

the command pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip has just one outgoing

edge `
id
 ν where id is the identity1. Let `j be the location representing

the command cmdj then distribution ν is given by ν(`j) = πj and ν(`′) =
0 for all other locations `′. If location ` stands for a nondeterministic
choice if[g1] ⇒ cmd1 . . . [gk] ⇒ cmdkfi, then there are k outgoing edges

`
gj :id
 `j . Similarly, for a loop do[g1] ⇒ cmd1 . . . [gk] ⇒ cmdkod, there

are k outgoing edges `
gj :id
 `j for 1 ≤ j ≤ k where `j is the location

representing cmdj .2

1 i.e., id(η)(η) = 1 and id(η)(η′) = 0 if η 6= η′
2 As in Promela loops are terminated by a special command break. Its control seman-

tics is given by a control edge from the location of the break-command to the next
location after the loop.

If ` represents an assignment x = expr, then ` has a single outgoing edge
`

true:α
 `′ with the trivial guard true and the action α that modifies x

according to expr and keeps all other variables unchanged. Again, location
`′ stands for the command after the command represented by ` in the
Probmela code for Qi. The effect of an atomic regions is modeled in the
control graph by a single edge that represents the cumulative effect of all
activities inside the atomic region.
For a given PRISM program, the MDP is obtained as follows. The states
are the evaluations of the program variables. Given a state s, then for
each statement stmt = []guard → π1 : upd1 + . . . + πk : updk (in some
module) where s |= guard there is a transition s

stmt→ ν with ν(s′) =
∑

j πj

where j ranges over all indices in {1, . . . , k} such that updj evaluates to
true when the unprimed variables are interpreted accoding to s, while the
values of the primed variables are given by s′. Furthermore, s and s′ must
agree on all variables x where x′ does not appear in updj .

3 From Probmela to PRISM
We now suppose that we are given a Probmela program P (of the core
language without dynamic features). The goal is to generate automati-
cally a PRISM program P̃ that has the same MDP-semantics and a com-
pact MTBDD-representation. The general workflow of the translation
(see Fig. 1) starts with a Probmela program P consisting of n processes
Q1, . . . , Qn and derives a PRISM program P̃ with n modules Q̃1, . . . , Q̃n.
The global variables of P are also global in P̃. Furthermore, P̃ contains
additional global variables that serve to mimic the arrays and channels
in P and other features of Probmela that have no direct translation. The
last two steps attempt to minimize the MTBDD-representation and rely
on heuristics to determine a good variable ordering and algorithms that
fix appropriate bit-sizes (ranges) of variables (Section 4).

PRISM
modules

Probmela
specification
(.probmela)

trans-
lation

PRISM
modules and

variable ordering
variable
ranges

variable
ordering

step1 step 2 step 3

vars:
1.
2.
3....

PRISM
modules and

variable ordering
and ranges

vars:
1.
2.
3....

Fig. 1. Translation scheme from Probmela to PRISM

In the first step, each Probmela process is translated into an equivalent
PRISM module. It relies on the control graph semantics of Probmela and

translates each control edge into one or more PRISM statements. Given a
Probmela process Qi, the corresponding PRISM module Q̃i has the same
local variables LocVari and an additional integer variable pci that serves
as a program counter for Qi. Intuitively, the possible values of pci encode
the locations of the control graph of Qi. The rough idea is to replace each
edge `

g:α
 ν in the control graph of Qi with the PRISM statement

[](g̃ ∧ pci = `) → ν(`1) : (α̃)∧ (pci = `1) + . . . + ν(`k) : (α̃)∧ (pci = `k)

where g̃ and α̃ are the translations of g and α to PRISM code with primed
and unprimed variables and `1, . . . , `k are the locations that have positive
probability under distribution ν.
This basic translation schema is directly applicable for deterministic or
randomized assignments. For instance, if α stands for the assignment x =
y+z then α̃ is the update (x′ = y+z). Since PRISM and Probmela support
the same operations on basic types, the translation of Boolean conditions
and actions representing simple assignments is straightforward, even when
they involve more complex operations like multiplication, division, etc.
Thus, a deterministic assignment given by an edge `

α
 `′ in the control

graph where α is given by the command x = expr is translated into the
PRISM statement []pci = ` → (x′ = expr)∧ (pc′i = `′). For a randomized
assignment, given by an edge `

α
 `′ where α is given by the command

x = random(0, 1), the translation schema yields the PRISM statement

[]pci = ` → 1
2 : (x′ = 0) ∧ (pc′i = `′) + 1

2 : (x′ = 1) ∧ (pc′i = `′).

Arrays are very useful to model, e.g. memory slots or network packages.
Probmela uses a C-like syntax to define arrays (e.g., int[3]a defines an
integer array with 3 cells). Access to the array cells is possible either
using a variable, a constant or an arithmetical expression as an index, e.g.
a[i + j]. Arrays are also supported in classical reactive modules [1], but
they are difficult to implement if a reactive module specification has to be
transfered into symbolic representation and are therefore not supported
in PRISM. For an action α which contains an array access of the form
a[expr] the corresponding condition α̃ is obtained by introducing fresh
PRISM variables aj for all array cells a[j] and replacing a[j] by aj or
a′j (depending on whether a[j] appears on the left or right hand side of
an assignment). A more complex case occurs if the array index to which
is referenced is an array access itself. For instance, if action α in the
control edge `

α
 `′ is the assignment a[j[k]] = 7 then the corresponding

PRISM code consists of several statements that represent the possible
combinations of values for k and j[k]:

[](pci = `) ∧ (k = 0) ∧ (j0 = 0) → (a′0 = 7) ∧ (pc′i = `′)
[](pci = `) ∧ (k = 0) ∧ (j0 = 1) → (a′1 = 7) ∧ (pc′i = `′)
[](pci = `) ∧ (k = 0) ∧ (j0 = 2) → (a′2 = 7) ∧ (pc′i = `′)
...
[](pci = `) ∧ (k = 1) ∧ (j1 = 0) → (a′0 = 7) ∧ (pc′i = `′)
[](pci = `) ∧ (k = 1) ∧ (j1 = 1) → (a′1 = 7) ∧ (pc′i = `′)
[](pci = `) ∧ (k = 1) ∧ (j1 = 2) → (a′2 = 7) ∧ (pc′i = `′)
...

The case where multiple arrays are connected via arithmetical operations,
e.g. a[j[k] + l[m]] = 42, can be treated in a similar way.

Remark 1. The treatment of probabilistic choices (pif . . . fip), nonde-
terministic choices (if . . . fi), loops (do . . . od) and jumps is inherent in
our translation schema which operates on the control graph semantics
of Probmela (and where the meaning of probabilistic, nondeterminstic
choices and loops is already encoded). However, it is worth noting that
our translation yields a rather natural and intuitive encoding in PRISM
for these language concepts. The translation of a probabilistic choice
pif[π1] ⇒ cmd1 . . . [πk] ⇒ cmdkfip, specified by an edge `

id
 ν (where

ν(`j) = πj and `j is the location for cmdj) yields the PRISM statement

[](pci = `) → π1 : (pc′i = `1) + . . . + πk : (pc′i = `k).

For a nondeterministic choice if :: g1 ⇒ cmd1 . . . :: gk ⇒ cmdkfi or loop

do :: g1 ⇒ cmd1 . . . :: gk ⇒ cmdkod specified by k control edges `
gj :id
 `j

we get k PRISM statements [](g̃j)∧ (pci = `) → (pc′j = `j) for 1 ≤ j ≤ k.
Similarly, the basic translation schema can directly be applied to treat
Probmela’s goto-command, formalized by control edges of the form `

g
 `′

for a conditional jump. The corresponding PRISM statement has the form
[](g̃) ∧ (pci = `) → (pc′i = `′). �

Perfect asynchronous channels can be regarded as arrays with restricted
access according to the fifo principles. In the internal representation of
our model checker LiQuor, asynchronous channels are realized as arrays
with an additional variable cfill that keeps track of the number data items
currently stored inside the channel. That is, cfill = k iff channel c contains
k messages. A send operation c!v is enabled iff cfill is strictly smaller than
the capacity of c (which is defined in the channel declaration), while a
receive operation c?x requires cfill > 0. When executing a send or receive
operation, variable cfill is incremented or decremented, respectively. The
translation of send and receive operations into PRISM statements can
therefore be realized in a similar way as array access. E.g., the control

edge `
g:c!v
 `′ where c is a perfect channel of capacity m and v a constant

value is translated into the PRISM statements:

[](pci = `) ∧ (g̃ ∧ cfill = j − 1) →
(pc′i = `′) ∧ (c′fill = j) ∧ (c′j = cj−1) ∧ . . . (c′2 = c1) ∧ (c′1 = v),

while control edges `
g:c?x
 `′ representing a receive operation are realized

in PRISM by the statements

[](pci = `) ∧ (g̃) ∧ (cfill = j) → (pc′i = `′) ∧ (c′fill = j − 1) ∧ (x′ = cj)

where 1 ≤ j ≤ m. The shift operation that is inherent in the PRISM code
for the send operation serves to avoid that the same channel configuration
is presented by several states.

Lossy asynchronous channels In Probmela, asynchronous channels can be
declared to be lossy, i.e. the enqueueing process loses the message with
some predefined probability. For such lossy channels, we modify the trans-
lation for perfect asynchronous channels by dealing with a probabilistic
choice for the PRISM statement modeling the send operation. Suppose
that the send operation of process Qi is modeled by the control edge
`

c!v
 `′ and that the failure probability of c is 0.3. The corresponding

PRISM statements are:

[](pci = `) ∧ (cfill = 2) → 0.7 : (cfill = 3) ∧ (c′2 = c1) ∧ (c′1 = c0) ∧ (c′0 = v) ∧ (pc′ = `′)+
0.3 : (pc′ = `)

[](pci = `) ∧ (cfill = 1) → 0.7 : (cfill = 2) ∧ (c′1 = c0) ∧ (c′0 = v) ∧ (pc′ = `′)+
0.3 : (pc′ = `)

[](pci = `) ∧ (cfill = 0) → 0.7 : (cfill = 1) ∧ (c′0 = v) ∧ (pc′ = `′) + 0.3 : (pc′ = `)

Synchronous channels are syntactically defined in Probmela (as well in
Promela) as channels with capacity 0. They require pairwise message pass-
ing by handshaking between processes. If c is a synchronous channel then
the send operation c!v can only be performed if there is another pro-
cess ready to immediately execute a receive operation c?x, where x is
an arbitrary program variable. The PRISM language also supports syn-
chronization, but without message passing and not in a pairwise manner.
Instead, synchronization in PRISM language modules is over the synchro-
nization labels and requires the participation of all modules. To trans-
late Probmela’s communication actions for a synchronous channel c into
PRISM code, we generate appropriate synchronization labels all poten-
tial handshakings along channel c. That is, for each pair of control edges

e1 = `i
c?x
 `′i in the control graph of process Qi and e2 = `j

c!expr
 `′j in the

control graph of another process Qj with matching handshaking actions

we introduce a fresh synchronization label σ(e1, e2) and use the following
PRISM statements:

[σ(e1, e2)] (pci = `i) → (pc′i = `′i) ∧ (x′ = expr) (in module Q̃i)

[σ(e1, e2)] (pcj = `j) → (pc′j = `′j) (in module Q̃j)

[σ(e1, e2)] (pck = `k) → (pc′k = `k) (in module Q̃k, k /∈ {i, j})

Note that the use of synchronization labels ci,j that just indicate the chan-
nel and synchronization partners would not be sufficient since a process
might request a synchronous communication actions at several locations.

Atomic regions collapse several commands to one single step. They can
be used to effectively shrink the state space if it is known that certain cal-
culations need not (or must not) to be carried out interleaved. To the user
this language element appears as a builtin mutual exclusion protocol that
can be used to execute certain calculations exclusively without actually
implementing a mutual exclusion mechanism as part of the specification.
In the simple case, the atomic region consists of a sequential composition
of independent assigments, e.g., a = 1; b = 2; c = 3, which corresponds to
the PRISM statement []true → (a′ = 1) ∧ (b′ = 2) ∧ (c′ = 3). However,
more complicated types of atomic regions that are allowed in Probmela
that require a more involved translation into PRISM. First, atomic regions
can write a single variable more than once. Consider for instance the
atomic region atomic{i++; i++} which would (according to the simple
translation scheme) lead to an update ...− > (i′ = i+1)∧(i′ = i+1). Such
statements, however, are not allowed in PRISM. Instead, such commands
must either be subsumed to one expression (i.e. i′ = i + 2) or encoded
in two separate transitions. Second, atomic regions may contain (nested)
probabilistic or nondeterministic choices that can hardly be accumulated
into a single step. To provide the PRISM code for complex atomic regions,
an additional global variable proc is added to the PRISM program P̃.
We set proc to an initial value of −1 and extend the guards of PRISM
statements in each module Q̃i by the condition proc = −1∨proc = i. This
ensures that for proc = −1 all modules can potentionally perform steps,
while for proc = i the transitions of all module Q̃j with j 6= i are disabled.
Furthermore, we extend the PRISM code for module Q̃i to ensure that
when an atomic region of process Qi is entered then the current value of
proc is set to i and that proc is reset to −1 when Qi leaves the atomic
region.

Soundness of the translation. The reachable fragments of the MDPs
for a given Probmela program P without atomic regions and the gener-
ated PRISM program P̃ are isomorphic. The isomorphism is obtained by
identifying the state s = 〈`1, . . . , `n, η〉 in the MDP for P with the state

s′ = 〈pc1 = `1, . . . ,pcn = `n, η̃〉 in the MDP for P̃. Here, `i is a location in
the control graph for process Qi and η a variable and channel valuation.
η̃ stands for the unique valuation of the variables in P̃ that is consistent
with η (i.e., agrees on all variables of P and maps, e.g., the index-variables
aj for an array a in P to the value of the j-th array cell a[j] under η).
To show that each outgoing transition has a matching transition from
s′, and vice versa, we can make use of the fact that the outgoing tran-
sition from both s and s′ arise by the control edges from the locations
`i and that the PRISM statements are defined exactly in the way such
that the enabledness and the effect of the control edges is preserved. This
strong soundness result still holds if P contains simple atomic regions.
In case that P contains complex atomic regions then we can establish a
divergence-sensitive branching bisimulation [21, 7] between the (reachable
fragments of the) MDPs for P and P̃ which identifies all (intermediate)
states where the location of some process is inside an atomic regions.
Thus, P and P̃ are still equivalent for all stutter-insensitive properties,
e.g., specified by nextfree LTL or PCTL formulae.

4 Optimizations of the MTBDD representation
The translation presented in the previous section combined with the
PRISM tool yields an automatic way to generate a symbolic represen-
tation of the MDP for a Probmela program as a multiterminal binary
decision diagram (MTBDD) [6, 20]. In this section, we discuss techniques
to obtain a compact MTBDD representation. First, we present a heuristic
to find a good variable ordering for the MTBDD of a given PRISM pro-
gram. Second, we address the problem of finding appropriate and small
ranges for the variables in a PRISM program.

Determining good variable orderings automatically Throughout this sec-
tion, we assume some familiarity with (MT)BDDs. (Details can be found,
e.g., in [16, 23].) It is well-known that the size of an (MT)BDD for a dis-
crete function can crucially depend on the underlying variable ordering
and that the problem of finding the optimal variable ordering is NP-
complete. There are several heuristic approaches to find fairly good vari-
able orderings. Some of them improve the variable ordering of a given
(MT)BDD, while others attempt to derive a good initial variable order-
ing from the syntactic description of the function to be represented [8, 17].
We follow here the second approach and aim to determine a reasonable
variable ordering from the PRISM code.
Given a PRISM program we abstract away from the precise meaning of
Boolean or arithmetic operations and analyze the dependencies of vari-
ables. For this, we treat the PRISM statements as statements that access
variables by means of uninterpreted guards and operations. This leads to
an abstract syntax tree (AST) presenting the syntactic structure of the

given PRISM program P̃. For this, we regard the PRISM statements as
terms over the signature that contains constant symbols and the primed
and unprimed versions of the program variables as atoms and uses sym-
bols like +, ∗,=, <,→ as function symbols. (The probabilities attached
to updates are irrelevant and can simply be ignored). The node set in the
AST for P̃ consists of all statements in P̃ and their subterms the primed
and unprimed versions of the variables of P̃ and nodes for all function
symbols that appear in the statements of P̃ (like comparison operators,
arithmetic operators, the arrows between the guard and sum of updates
in statements). Furthermore, the AST contains a special root node δ that
serves to link all statements. The edge relation in the AST is given by the
“subterm relation”. That is, the leaves stand for the primed or unprimed
variables or constants.3 The children of each inner node v represent the
maximal proper subterms of the term represented by node v. The children
of the root note are the nodes representing the statements.

PRISM statements (example)

constants

primed and
unprimed
variables

function
symbols

a

b

3

1

<

+

δ

[]a < 3 -> a'= a + 1
[]b < 3 -> b'= b + 1
[]b ==3 -> b'= b - 1

<

+

==

−

a
′

=

b
′

=

=

Fig. 2. Example AST.

We now apply simple graph algorithms to the AST of P̃ to derive a
reasonable variable ordering for the MTBDD for P̃. For this, we adapt
heuristics that have been suggested for gate-level circuit representations
of switching functions. We considered the fanin-heuristic [14] and the
weight-heuristic [11] and adapted them for our purposes. The rough idea
behind these heuristics is to determine a variable ordering such that (1)
variables that affect the program at most should appear at the top levels,
and (2) variables that are near to one another in the dataflow should be
grouped together.
The fanin-heuristic is based on the assumption that input variables that
are connected to the output variables via longer paths are more mean-

3 At the bottom level, leaves representing the same variable or constant are collapsed.
So, in fact, the AST is a directed acyclic graph, and possibly not a proper tree.

ingful to the function and should be ordered first. For this a breadth-
first-search is performed (starting from the leaves in the AST, i.e., the
variables and constant symbols) which labels all nodes of the graph with
the maximum distance to an input node, i.e., we compute the values d(v)
for all nodes in the AST where d(v) = 0 for the leaves and

d(w) = 1 + max{d(v) : v is a child of w}

for all inner nodes w. The second step of the heuristic performs a depth-
first-search starting at the root node with the additional property that
the depth-first-search order in each node w that is visited is according to a
descending ordering of the values d(v). The visiting order of the variables
then yields a promising variable ordering for the MTBDD for P̃.
The weight-heuristic relies on an iterative approach that assigns weights
to all nodes of the AST and in each iteration the variable with the high-
est weight is the next in the variable ordering. This variable as well as
any node that cannot reach any other variable is then removed from the
AST and the next iteration yields the next variable in the ordering. (We
suppose here that initially the leaves representing constants are removed
from the AST.) In each iteration the weights are obtained as follows. We
start with the root node and assign weight 1 to it and then propagate the
weight to the leaves by means of the formula:

weight(v) =
weight(father(v))

|number of children of father(v)|

Determining variable ranges Besides the variable ordering, the bitsizes
(and hence the value ranges) of the variables in a specification have great
influence on the size of the MTBDD. This is unfortunately even the case
if it turns out during model construction that in the reachable part of
the model a particular variable does not fully exploit its defined range.
Thus, it is highly desirable that the variable ranges in the PRISM model
are as “tight” as possible. Often the user does this by applying her/his
knowledge about the model and choosing just a reasonable range for each
variable. Our tool also provides the possibility to determine reasonable
variable ranges automatically. The idea of the algorithm for some program
variable x is to perform a binary search in the interval [1, k], where k is
an upper bound for the bit size of x until an element i has been found
such that |MDP(P̃ , x, i)| = |MDP(P̃ , x, k)|. Here, |MDP(P̃ , x, i)| denotes
the number of states in the MDP for P̃ when the bitsize of x is i. For
efficiency purposes we implemented a modfied version of this algorithm
that starts with bitsize 1 and then increase it to the next 8 bit-border. If
the model size changes we decrease by 4 bit to see if the lower size suffices
as well, and so on.

5 Implementation and results
The translation described in Section 3 and the heuristics of the previous
section have been implemented on the top of our model checker LiQuor
[4] and linked to the PRISM model checker. We called the resulting tool
Prismela. It runs under the operating system Microsoft Windows. Using
a graphical user interface (see Fig. 3) the user is able to load a Prob-
mela model, control the translation process regarding variable orderings,
variable ranges and start PRISM to build the model. It is also possible
to combine user knowledge and automated procedures, for instance when
the user already knows the value domain of particular variables or wants
to fix the position of certain variables in the variable ordering. Then these
variables can be excluded from the heuristics and variable range finding
process. Furthermore the user has the option for manual changes on gen-
erated PRISM code that can then be exported for furthergoing use in
PRISM. The relevant parts of LiQuor (The Probmela-compiler, PASM as-
sembler, the virtual machine that generates the PRISM lanuage model
from the assembler code) were linked to Prismela so that the application
runs independently from LiQuor.
Our model checker LiQuor [4] uses an intermediate representation of the
Probmela program rather than the textual representation of the Probmela
program itself. This intermediate representation is the result of a compil-
ing process done by a compiler that was designed to translate Probmela
into an assembler like formalism, called probabilistic assembler language
(PASM), which is executed on a stack-based virtual processor during the
model checking procedure. The virtual machine is connected to a storage
module that can save and restore encountered the states of the MDP.
The PASM-based approach has several advantages. One of them is that
the correctness of the Probmela compiler can be easily be established by
checking that the generated PASM code is consistent with the control
graph semantics of Probmela. The crucial point for the purposes of this
paper is that the generation of the PRISM language model can start from
the PASM code rather than the Probmela specification. The generation of
the PRISM modules is obtained by realizing the above translation steps
for control edges on the level of PASM micro-commands. As a side effect,
our translation is not affected by future extensions of Probmela (as long
as they yield PASM code with a semantics based on control graphs as
above) and is applicable to any other formalism with a PASM-translator.

Figure 4 shows some experimental results of the translation scheme.
Among the case studies is one industrial motivated model (UMTS) that
involves examining certain rare errors that occur when UMTS phones
register to the network provider. This model involves complex storage be-
haviour in internal buffers of an UMTS end user device and uses almost
every language element of Probmela discussed in this paper. Values given

Load Probmela file

Variable Ordering
area

apply ordering heuristics
and make manual adjustments

Variable Range
detection

determine variable ranges
automatically and user driven

PRISM model
start PRISM from here, make
adjustments to modules,
export to PRISM for further use.

Fig. 3. Graphical user interface and functionality.

in parantheses are parameters for sizes and other characteristics and are
not explained in detail. Larger numbers here indicate larger buffer tables
and a larger number of potential entries in these tables, thus resulting in
a larger model. Furthermore the table contains results from a randomized
variant of the Dining Philosophers [13] (number of processes in parenthe-
sis) and results from a randomized version of the Leader Election protocol
[12] (number of processes in parenthesis). The results show that there ex-
ist models where one tool experiences great difficulties where the other
may succeed rather quick, and vice versa. As expected for smaller models
the explicit approach of LiQuor outperforms PRISM’s symbolic approach
while the state explosion problem is more severe for the explicit approach
of LiQuor.
Figure 5 illustrates the efficiency of our translation algorithm. The fanin-
heuristic (as well as randomly chosen orderings) leads to very large MTB-
DDs. The amount of time to build the MTBDDs was always significantly
lower when the weight heuristic was applied to calculate a variable order-
ing.

model MDP states MDP trans. time(LiQuor) time(PRISM) MTBBD-nodes
UMTS(10/3/20) 17.952 18.539 < 1s 17s 132.895
UMTS(30/5/60) 177.416 186.063 2s 1166s 1.4 · 106

Din.Phil. (3) 635 2.220 < 1s < 1s 2.011
Din.Phil. (6) 411255 2.8 · 106 92s < 1s 9645
Din.Phil. (10) 2.2 · 109 26 · 109 – 3s 41.953
Leader El.(3) 1.562 4.413 < 1s < 1s 3410
Leader El.(6) 4.2 · 106 23 · 106 664s 6s 69.515
Leader El.(10) 1.9 · 1011 1.7 · 1012 – – 926.585

Fig. 4. Some results with case studies

6 Conclusion and future work
We presented an approach for the automatic translation of Probmela into
the PRISM language. We thus can obtain an MTBDD representation for
the Probmela program using PRISM. The translation process presented
here is independent of the input language Probmela as it works on control
graphs. It is therefore flexible for extensions of the input language and is,
in principle, applicable to other modeling languages with a control graph
semantics.
We also presented heuristics that serve to optimize the generation of the
MTBDD from PRISM programs. These heuristics operate only on PRISM
level and can therefore be applied to any PRISM program.
Future work on the presented topics include exhaustive comparisons be-
tween the symbolic and explicit model checking approach for probabilistic
systems. Further improvements of the translation include language ele-
ments that were not covered yet. Probmela (as well as Promela) allows for
dynamic creation of processes that would also be a desirable feature for
Prismela.
Another target of future work will be the impact of static partial order
reduction of Probmela programs on the use with symbolic model checkers.

References

1. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System
Design: An International Journal, 15(1):7–48, July 1999.

2. C. Baier, F. Ciesinski, and M. Größer. Probmela: a modeling language for com-
municating probabilistic systems. In Proceeding MEMOCODE, 2004.

3. Michael Baldamus and Jochen Schröder-Babo. p2b: a translation utility for linking
promela and symbolic model checking (tool paper). In SPIN ’01: Proceedings of the
8th international SPIN workshop on Model checking of software, pages 183–191,
New York, NY, USA, 2001. Springer-Verlag New York, Inc.

4. F. Ciesinski and C. Baier. LiQuor: a tool for qualitative and quantitative linear
time analysis of reactive systems. In Proc. QEST, pages 131–132. IEEE CS Press,
2007.

7 Dining Philosophers,
3.3 · 106 states, 26 · 106 transitions.

15 PRISM variables (42 bits), 144 PRISM actions.
heuristic MTBDD nodes time
weight 9766 0.6s
fanin 51766 6s
random ordering (mean value) 61617 7s

10 Dining Philosophers,
1.9 · 109 states, 22 · 109 transitions.

21 PRISM variables (51 bits), 202 PRISM actions.
heuristic MTBDD nodes time
weight 19684 2,2s
fanin 891604 359s
random ordering (mean value) 356627 171

Leader Election, 7 instances,
62 · 106 states, 398 · 106 transitions.

28 PRISM variables (56 bits), 112 PRISM actions.
heuristic MTBDD nodes time
weight 1, 4 · 105 35s
fanin 2, 4 · 106 818s
random ordering (mean value) 2, 4 · 106 438s

Leader Election, 10 instances,
194 · 109 states, 17 · 1011 transitions.

28 PRISM variables (80 bits), 142 PRISM actions.
heuristic MTBDD nodes time
weight 886510 1081s
fanin — —
random ordering (mean value) — —

UMTS, 10/3/30,
35202 states, 36413 transitions.

23 PRISM variables (57 bits), 136 PRISM actions.
heuristic MTBDD nodes time
weight 218662 38s
fanin 233484 64s
random ordering (mean value) 252813 90s

Fig. 5. Influence of variable ordering heuristics on model generation with PRISM.

5. Frank Ciesinski, Christel Baier, Marcus Groesser, and Joachim Klein. Reduction
techniques for model checking markov decision processes. submitted for publication,
2008.

6. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation. In Inter-
national Workshop on Logic Synthesis, Tahoe City, 1993.

7. M. Größer, G. Norman, C. Baier, F. Ciesinski, , M. Kwiatkoswka, and D. Parker.
On reduction criteria for probabilistic reward models. In Proc. FSTTCS, volume
4337 of LNCS, pages 309–320, 2006.

8. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the
use of MTBDDs for performability analysis and verification of stochastic systems.
Journal of Logic and Algebraic Programming: Special Issue on Probabilistic Tech-
niques for the Design and Analysis of Systems, 56(1-2):23–67, 2003.

9. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for au-
tomatic verification of probabilistic systems. In H. Hermanns and J. Palsberg,
editors, Proc. 12th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’06), volume 3920 of LNCS, pages 441–
444. Springer, 2006.

10. G.J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

11. Shin ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision dia-
gram with attributed edges for efficient boolean function manipulation. In DAC
’90: Proceedings of the 27th ACM/IEEE conference on Design automation, pages
52–57, New York, NY, USA, 1990. ACM Press.

12. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information
and Computation, 88(1), 1990.

13. D. Lehmann and M. O. Rabin. On the advantage of free choice: A symmetric and
fully distributed solution to the Dining Philosophers problem (extended abstract).
In Proc. Eighth Ann. ACM Symp. on Principles of Programming Languages, pages
133–138, 1981. A classic paper in the area of randomized distributed algorithms.
They show there is no deterministic, deadlock-free, truly distributed and symmetric
solution to the Dining Philosophers problem, and describe a simple probabilistic
alternative.

14. S. Malik, A.R. Wang, and R.K. Brayton. Logic verification using binary deci-
sion diagrams in a logic synthesis environment. In ICCAD-88: Digest of technical
papers, pages 6–9. IEEE Press, 1988.

15. K. L. McMillan. The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

16. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design:
OBDD-Foundations and Applications. Springer-Verlag, 1998.

17. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

18. PRISM web site. www.prismmodelchecker.org.
19. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., New York, NY, 1994.
20. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F.

Somenzi. Algebraic Decision Diagrams and Their Applications. In IEEE /ACM
International Conference on CAD, pages 188–191, Santa Clara, California, Novem-
ber 1993. ACM/IEEE, IEEE Computer Society Press.

21. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

22. V.Beaudenon, E. Encrenaz, and S.Taktak. Data decision diagrams for promela sys-
tems analysis. Software Tools and Technology Transfert (accepted for publication),
2008.

23. I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. Monographs on Discrete Mathematics and Applications. SIAM, 2000.

