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Abstract. We consider turn-based stochastic games whose winning con-
ditions are conjunctions of satisfaction objectives for long-run average re-
wards, and address the problem of finding a strategy that almost surely
maintains the averages above a given multi-dimensional threshold vec-
tor. We show that strategies constructed from Pareto set approximations
of expected energy objectives are ε-optimal for the corresponding aver-
age rewards. We further apply our methods to compositional strategy
synthesis for multi-component stochastic games that leverages compo-
sition rules for probabilistic automata, which we extend for long-run
ratio rewards with fairness. We implement the techniques and illustrate
our methods on a case study of automated compositional synthesis of
controllers for aircraft primary electric power distribution networks that
ensure a given level of reliability.

1 Introduction

Reactive systems must continually interact with the changing environment. Since
it is assumed that they should never terminate, their desirable behaviours are
typically specified over infinite executions. Reactive systems are naturally mod-
elled using games, which distinguish between the controllable and uncontrollable
events. Stochastic games [13], in particular, allow one to specify uncertainty of
outcomes by means of probability distributions. When such models are addition-
ally annotated by rewards that represent, e.g., energy usage and time passage,
quantitative objectives and analysis techniques are needed to ensure their cor-
rectness. Often, not just a single objective is under consideration, but several,
potentially conflicting, objectives must be satisfied, for example maximising both
throughput and latency of a network.

In our previous work [6,7], we formulated multi-objective expected total re-
ward properties for stochastic games with certain terminating conditions and
showed how ε-optimal strategies can be approximated. Expected total rewards,
however, are unable to express long-run average (also called mean-payoff) proper-
ties of reactive systems. Another important class of properties are ratio rewards,
with which one can state, e.g., speed (distance per time unit) or fuel efficiency
(distance per unit of fuel). In this paper we consider controller synthesis for the
general class of turn-based stochastic games whose winning conditions are con-
junctions of satisfaction objectives for long-run average rewards. We represent
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the controllable and uncontrollable actions by Player ♦ and Player �, respec-
tively, and address the problem of finding a strategy to satisfy such long-run
objectives almost surely for Player ♦ against all choices of Player �. These ob-
jectives can be used to specify behaviours that guarantee that the probability
density is above a threshold, in several dimensions, and the executions actually
satisfy the objective we are interested in, which is important for, e.g., reliability
and availability analysis. In contrast, expected rewards average the reward over
different probabilistic outcomes, possibly with arbitrarily high variance, and thus
it may be the case that none of the paths actually satisfy the objective.

Satisfaction Objectives. The specifications we consider are quantitative, in
the sense that they are required to maintain the rewards above a certain thresh-
old, and we are interested in almost sure satisfaction, that is, this condition on
the rewards is satisfied with probability one. The problem we study generalises
the setting of stopping games with multiple satisfaction objectives, which for LTL
specifications can be solved via reduction to expected total rewards [7], while
our methods are applicable to general turn-based stochastic games. In stopping
games, objectives defined using total rewards are appropriate, since existence
of the limits is ensured by termination; however, total rewards may diverge for
reactive systems, and hence we cannot reduce our problem to total rewards.

Strategy Synthesis. Stochastic games with multiple objectives have been stud-
ied in [9], where determinacy under long-run objectives (including ours) is shown
(but without strategy construction). However, in general, the winning strategies
are history-dependent, requiring infinite memory, which is already the case for
Markov decision processes [4]. We restrict to finite memory strategies and utilise
the stochastic memory update representation of [6]. For approximating expected
total rewards in games, one can construct strategies (in particular, their mem-
ory update representation) after finitely many iterations from the difference be-
tween achievable values of successive states [7], but long-run properties erase all
transient behaviours, and so, in general, we cannot use the achievable values
for strategy construction. Inspired by [5], we use expected energy objectives to
compute the strategies. These objectives are meaningful in their own right to
express that, at every step, the average over some resource requirement does
not exceed a certain budget, i.e. some sequences of operations are allowed to
violate the budget constraint, as long as they are balanced by other sequences
of operations. Consider, for example, sequences of stock market transactions: it
is desirable that the expected capital never drops below zero (or some higher
value), which can be balanced by credit for individual transactions below the
threshold. Synthesis via expected energy objectives yields strategies that not
only achieve the required target, but we also obtain a bound on the maximum
expected deviation at any step by virtue of the bounded energy. Then, given an
achievable target v for mean-payoff, the target 0 is ε-achievable by an energy
objective with rewards shifted by −v, and the same strategy achieves v − ε for
the mean-payoff objective under discussion.

Compositional Synthesis. In our previous work [3], we proposed a synchro-
nising parallel composition for stochastic games that enables a compositional
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approach to controller synthesis that significantly outperforms the monolithic
method. The strategy for the composition of games is derived from the strategies
synthesised for the individual components. To apply these methods for a class of
objectives (e.g. total rewards), one must (i) show that the objectives are defined
on traces, i.e. synchronisation of actions is sufficient for information sharing; (ii)
provide compositional verification rules for probabilistic automata (e.g. assume-
guarantee rules); and (iii) provide synthesis methods for single component games.
We address these points for long-run average objectives, extending [10] for (ii),
enabling compositional synthesis for ratio rewards. A key characteristic of the
rules is the use of fairness, which requires that no component is prevented from
making progress. The methods of [3] were presented with total rewards, where
(trivial) fairness was only guaranteed through synchronised termination.

Case Study. We implement the methods and demonstrate their scalability and
usefulness via a case study that concerns the control of the electric power dis-
tribution on aircraft [11]. In avionics, the transition to more-electric aircraft
has been brought about by advances in electronics technology, reducing take-
off weight and power consumption. We extend the (non-quantitative) game-
theoretic approach of [16] to the stochastic games setting with multiple long-run
satisfaction objectives, where the behaviour of generators is described stochas-
tically. We demonstrate how our approach yields controllers that ensure given
reliability levels and higher uptimes than those reported in [16].

Contributions. Our main contributions are as follows.

– We show that expected energy objectives enable synthesis of ε-optimal finite-
memory strategies for almost sure satisfaction of average rewards (Theo-
rem 2).

– We propose a semi-algorithm to construct ε-optimal strategies using stochas-
tically updated memory (Theorem 1).

– We extend compositional rules to specifications defined on traces, and hence
show how to utilise ratio rewards in compositional synthesis (Theorem 3).

– We demonstrate compositional synthesis using long-run objectives via a case
study of an aircraft electric power distribution network.

Related Work. For Markov decision processes (MDPs), multi-dimensional long-
run objectives for satisfaction and expectation were studied in [4], and expected
ratio rewards in [15]. Satisfaction for long-run properties in stochastic games is
the subject of [9]; in particular, they present algorithms for combining a single
mean-payoff with a Büchi objective, which rely on the non-quantitative nature
of the Büchi objective, and hence cannot be straightforwardly extended to sev-
eral mean-payoff objectives that we consider. Non-stochastic games with energy
objectives have been considered, for example, in [5], where it is assumed that
Player � plays deterministically, in contrast to our approach that permits the
use of stochasticity. Our almost sure satisfaction objectives are related to the
concept of quantiles in [1], in that they correspond to 1-quantiles, but here we
consider mean-payoff objectives for games. An extended version of this paper,
including proofs, can be found in [2].
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2 Preliminaries

Notation. A discrete probability distribution (or distribution) over a (countable)
set Q is a function µ : Q→ [0, 1] such that

∑
q∈Q µ(q) = 1; its support supp(µ)

is {q ∈ Q |µ(q) > 0}. We denote by D(Q) the set of all distributions over Q with
finite support. A distribution µ ∈ D(Q) is Dirac if µ(q) = 1 for some q ∈ Q, and
if the context is clear we just write q to denote such a distribution µ.

We work with the usual metric-space topology on Rn. The downward closure

of a set X is defined as dwc(X)
def
= {y | ∃x ∈ X .y ≤ x}. A set X ⊆ Rn is

convex if for all x1,x2 ∈ X, and all α ∈ [0, 1], αx1 + (1 − α)x2 ∈ X; its
convex hull conv(X) is the smallest convex set containing X. Given a set X,
α ×X denotes the set {α · x |x ∈ X}. The Minkowski sum of sets X and Y is

X + Y
def
= {x + y |x ∈ X,x ∈ Y }. We refer to the sth component of a vector

v by vs and [v]s. We write ε to denote the vector (ε, ε, . . . , ε). For a vector x
(resp. vector of sets Z) and a scalar ε, define x + ε by [x + ε]s = xs + ε (resp.

[Z + ε]s
def
= Zs + ε) for all components s of x (resp. Z), where, for a set X, let

X + ε
def
= {x+ ε |x ∈ X}. For vectors x and y, x · y denotes their dot-product,

and x • y denotes component-wise multiplication.

Stochastic Games. We consider turn-based action-labelled stochastic two-
player games (henceforth simply called games), which distinguish two types of
nondeterminism, each controlled by a separate player. Player ♦ represents the
controllable part for which we want to synthesise a strategy, while Player �
represents the uncontrollable environment.

Definition 1. A game G is a tuple 〈S, (S♦, S�), ς0,A,−→〉, where S is a finite
set of states partitioned into Player ♦ states S♦ and Player � states S�; ς0 ∈ S
is an initial state; A is a finite set of actions; and −→⊆ S × (A∪ {τ})×D(S)
is a transition relation, such that, for all s, {(s, a, µ) ∈−→} is finite.

We write s
a−→ µ for a transition (s, a, µ) ∈−→. The action labels A on tran-

sitions model observable behaviours, whereas τ can be seen as internal: it can-
not be used in winning conditions and is not synchronised in the composition.

We denote the set of moves (also called stochastic states) by S©
def
= {(a, µ) ∈

A × D(S) | ∃s ∈ S . s a−→ µ}, and let S = S ∪ S©. Let the set of successors of

s ∈ S be succ(s)
def
= {(a, µ) ∈ S© | s

a−→ µ} ∪ {t ∈ S |µ(t) > 0 with s = (a, µ)}.
A probabilistic automaton (PA, [12]) is a game with S♦ = ∅, and a discrete-time
Markov chain (DTMC) is a PA with |succ(s)| = 1 for all s ∈ S.

A finite (infinite) path λ = s0(a0, µ0)s1(a1, µ1)s2 . . . is a finite (infinite) se-

quence of alternating states and moves, such that for all i ≥ 0, si
ai−→ µi and

µi(si+1) > 0. A finite path λ ends in a state, denoted last(λ). A finite (infi-
nite) trace is a finite (infinite) sequence of actions. Given a path, its trace is

the sequence of actions along λ, with τ projected out. Formally, trace(λ)
def
=

proj{τ}(a0a1 . . .), where, for α ⊆ A ∪ {τ}, projα is the morphism defined by
projα(a) = a if a 6∈ α, and ε (the empty trace) otherwise.

Strategies. Nondeterminism for each player is resolved by a strategy, which
maps finite paths to distributions over moves. For PAs, we do not speak of player
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strategies, and implicitly consider strategies of Player �. Here we use an alter-
native, equivalent formulation of strategies using stochastic memory update [4].

Definition 2. A Player ♦ strategy π is a tuple 〈M, πu, πc, α〉, where M is a
countable set of memory elements; πu : M × S → D(M) is a memory update
function; πc : S♦ ×M→ D(S) is a next move function s.t. πc(s,m)(t) > 0 only
if t ∈ succ(s); and α : S → D(M) defines for each state of G an initial memory
distribution. A Player � strategy σ is defined in an analogous manner.

A strategy is finite-memory if |M| is finite. Applying a strategy pair (π, σ) to
a game G yields an induced DTMC Gπ,σ [7]; an induced DTMC contains only
reachable states and moves, but retains the entire action alphabet of G.

Probability Measures and Expectations. The cylinder set of a finite path
λ (resp. finite trace w ∈ A∗) is the set of infinite paths (resp. traces) with prefix
λ (resp. w). For a finite path λ = s0(a0, µ0)s1(a1, µ1) . . . sn in a DTMC D we

define PrD,s0(λ), the measure of its cylinder set, by PrD,s0(λ)
def
=
∏n−1
i=0 µi(si+1),

and write Prπ,σG,s for PrGπ,σ,s. For a finite trace w, paths(w) denotes the set of
minimal finite paths with trace w, i.e. λ ∈ paths(w) if trace(λ) = w and there
is no path λ′ 6= λ with trace(λ′) = w and λ′ being a prefix of λ. The measure

of the cylinder set of w is P̃rD,s(w)
def
=
∑
λ∈paths(w) PrD,s(λ), and we call P̃rD,s

the trace distribution of D. The measures uniquely extend to infinite paths due
to Carathéodory’s extension theorem. We denote the set of infinite paths of D
starting at s by ΩD,s. The expectation of a function ρ : ΩD,s → Rn±∞ over

infinite paths in a DTMC D is ED,s[ρ]
def
=
∫
λ∈ΩD,s ρ(λ)dPrD,s(λ).

Rewards. A reward structure (with n-dimensions) of a game is a partial function
r : S → R (r : S → Rn). A reward structure r is defined on actions Ar if
r(a, µ) = r(a, µ′) for all moves (a, µ), (a, µ′) ∈ S© such that a ∈ Ar, and r(s) = 0
otherwise; and if the context is clear we consider it as a total function r : Ar → R
for Ar ⊆ A. Given an n-dimensional reward structure r : S 7→ Rn, and a vector

v ∈ Rn, define the reward structure r−v by [r−v]s
def
= r(s)−v for all s ∈ S. For

a path λ = s0s1 . . . and a reward structure r we define rewN (r)(λ)
def
=
∑N
i=0 r(si),

for N ≥ 0; the average reward is mp(r)(λ)
def
= lim infN→∞

1
N+1 rewN (r)(λ); given

a reward structure c such that, for all s ∈ S, c(s) ≥ 0 and, for all bottom strongly
connected components (BSCCs) B of D, there is a state s in B such that c(s) > 0,

the ratio reward is ratio(r/c)(w)
def
= lim infN→∞ rewN (r)(w)/(1+rewN (c)(w)). If

D has finite state space, the lim inf of the above rewards can be replaced by the
true limit in the expectation, as it is almost surely defined. Further, the above
rewards straightforwardly extend to multiple dimensions using vectors.

Specifications and Objectives. A specification ϕ is a predicate on path distri-
butions, and we write D |= ϕ if ϕ(PrD,ς0) holds. We say that a Player ♦ strategy
π wins for a specification ϕ in a game G, written π |= ϕ, if, for all Player �
strategies σ, Gπ,σ |= ϕ, and say that ϕ is achievable if such a winning strategy
exists. A specification ϕ is defined on traces of A if ϕ(P̃rD,ς0) = ϕ(P̃rD′,ς′0) for

all DTMCs D,D′ such that P̃rD,ς0(w) = P̃rD′,ς′0(w) for all traces w ∈ A∗.
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ς0

(0,−1)

(−1, 0)

s1

(6, 4)

(8, 0)

s2

s3 (2, 4)

s4 (4, 2)

ς0

s1(0, 2) s2 (2, 0)

Fig. 1: Example games. Moves and states for Player ♦ and Player � are shown as
◦, ♦ and � resp.; two-dimensional rewards shown where non-zero.

A DTMC D satisfies an expected energy specification EEs(r) if there exists v0

such that ED,s[rewN (r)] ≥ v0 for all N ≥ 0; D satisfies EE(r) if, for every state
s of D, D satisfies EEs(r). An almost sure average (resp. ratio) reward objective
for target v is Pmps(r)(v) ≡ PrD,s(mp(r) ≥ v) = 1 (resp. Pratios(r)(v) ≡
PrD,s(ratio(r/c) ≥ v) = 1). If the rewards r and c are understood, we omit
them and write just Pmps(v) and Pratios(v). By using n-dimensional reward
structures, we require that a strategy achieves the conjunction of the objectives
defined on the individual dimensions. Minimisation is supported by inverting
signs of rewards. Given an objective ϕ with target vector v, denote by ϕ[x] the
objective ϕ with v substituted by x. A target v ∈ Rn is a Pareto vector if
ϕ[v − ε] is achievable for all ε > 0, and ϕ[v + ε] is not achievable for any ε > 0.
The downward closure of the set of all such vectors is called a Pareto set.

Example. Consider the game in Figure 1 (left), showing a stochastic game with
a two-dimensional reward structure. Player ♦ can achieve Pmpς0(3, 0) if going left
at ς0, and Pmpς0(1, 1) if choosing either move to the right, since then s3 and s4

are almost surely reached. Furthermore, achieving an expected mean-payoff does
not guarantee achieving almost-sure satisfaction in general: the Player ♦ strategy
going up right from ς0 achieves an expected mean-payoff of at least (1, 1.5),
which by the above argument cannot be achieved almost surely. Also, synthesis
in MDPs [4,15] can utilise the fact that the strategy controls reachability of end-
components; e.g., if all states in the game of Figure 1 (left) are controlled by
Player ♦, (3, 2) is almost surely achievable.

3 Strategy Synthesis for Average Rewards

We consider the problem of computing ε-optimal strategies for almost sure
average reward objectives Pmpς0(v). Note that, for any v ≥ 0, the objective
Pmpς0(r)(v) is equivalent to Pmpς0(r − v)(0), i.e. with the rewards shifted by
−v. Hence, from now on we assume w.l.o.g. that the objectives have target 0.

3.1 Expected Energy Objectives

We show how synthesis for almost sure average reward objectives reduces to
synthesis for expected energy objectives. Applying finite-memory strategies to
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games results in finite induced DTMCs. Infinite memory may be required for
winning strategies of Player ♦ [4]; here we synthesise only finite-memory strate-
gies for Player ♦, in which case only finite memory for Player � is sufficient:

Lemma 1. A finite-memory Player ♦ strategy is winning for the objective EE(r)
(resp. Pmpς0(r)(v)) if it wins against all finite-memory Player � strategies.

We now state our key reduction lemma to show that almost sure average reward
objectives can be ε-approximated by considering EE objectives.

Lemma 2. Given a finite-memory strategy π for Player ♦, the following hold:

(i) if π satisfies EE(r), then π satisfies Pmpς0(r)(0); and
(ii) if π satisfies Pmpς0(r)(0), then, for all ε > 0, π satisfies EE(r + ε).

Our method described in Theorem 2 below allows us to compute EE(r + ε),
and hence, by virtue of Lemma 2(i), derive ε-optimal strategies for Pmpς0(0).
Item (ii) of Lemma 2 guarantees completeness of our method, in the sense that,
for any vector v such that Pmpς0(r)(v) is achievable, we compute an ε-optimal
strategy; however, if v is not achievable, our algorithm does not terminate.

3.2 Strategy Construction

We define a value iteration method that in k iterations computes the sets Xk
s

of shortfall vectors at state s, so that for any v0 ∈ Xk
s , Player ♦ can keep the

expected energy above v0 during k steps of the game. Moreover, if successive
sets Xk+1

s and Xk
s satisfy Xk

s v Xk+1
s + ε, where A v B ⇔ dwc(A) ⊆ dwc(B),

then we can construct a finite-memory strategy for EE(r+ ε) using Theorem 1.

Value Iteration. Let BoxM
def
= [−M, 0]n. The M -downward closure of a set

X is BoxM ∩ dwc(X). Let PMc (X) be the set of convex closed M -downward-

closed subsets of X. Let LM
def
= (PMc (BoxM ))|S|, endow it with the partial order

X ⊆ Y ⇔ ∀s ∈ S .Xs ⊆ Ys, and add the top element > def
= Box

|S|
M . For a fixed

M , define the operator FM : LM → LM by [FM (X)]s
def
= BoxM ∩ dwc(Ys), where

Ys
def
= r(s) +


conv(

⋃
t∈succ(s)Xt) if s ∈ S♦⋂

t∈succ(s)Xt if s ∈ S�∑
t∈supp(µ)µ(t)×Xt if s = (a, µ) ∈ S©.

The operator FM reflects what Player ♦ can achieve in the respective state types.
In s ∈ S♦, Player ♦ can achieve the values in successors (union), and can ran-
domise between them (convex hull). In s ∈ S�, Player ♦ can achieve only values
that are in all successors (intersection), since Player � can pick arbitrarily. Lastly,
in s ∈ S©, Player ♦ can achieve values with the prescribed distribution. FM is
closely related to our operator for expected total rewards in [6], but here we cut
off values above zero with BoxM , similarly to the controllable predecessor oper-
ator of [5] for computing energy in non-stochastic games. BoxM ensures that the
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X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(a) Player ♦ state s.

X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(b) Player � state s.

X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(c) Move s ∈ S©.

Fig. 2: Value iteration and strategy construction, for state s with successors t1,
t2, and reward r1(s) = 0.5, r2(s) = 0. The Pareto set under-approximation Xk

s is
computed from Xk−1

t1 and Xk−1
t2 . To achieve a point p ∈ Cks , the strategy updates

its memory as follows: for s ∈ S�, for all t ∈ succ(s), p − r(s) ∈ conv(Ck−1
t );

for s ∈ S♦ ∪ S©, there exist successors t ∈ succ(s) and a distribution α s.t.
p− r(s) ∈

∑
t α(t)× conv(Ckt ), where, for s = (a, µ) ∈ S©, we fix α = µ. As F

is order preserving, it is sufficient to use X l
t instead of Xk

t for any l ≥ k.

strategy we construct in Theorem 1 below never allows the energy to diverge in
any reachable state. For example, in Figure 1 (right), for v = ( 1

2 ,
1
2 ), EEς0(r−v)

is achievable while, for the states s ∈ {s1, s2}, EEs(r − v) is not. Since one of
s1 or s2 must be reached, EE(r − v) is not achievable, disallowing the use of
Lemma 2(i); and indeed, Pmpς0(v) is not achievable. Bounding with M allows
us to use a geometric argument in Lemma 3 below, replacing the finite lattice
arguments of [5], since our theory is more involved as it reflects the continuous
essence of randomisation.

We show in the following proposition that FM defines a monotonic fixpoint
computation and that it converges to the greatest fixpoint of FM . Its proof relies
on Scott-continuity of FM , and invokes the Kleene fixpoint theorem.

Proposition 1. FM is order-preserving, > ⊇ FM (>) ⊇ F 2
M (>) ⊇ · · · , and the

greatest fixpoint fix(FM ) exists and is equal to limk→∞ F kM (>) = ∩k≥0F
k
M (>).

Further, we use FM to compute the set of shortfall vectors required for Player ♦ to
win for EEs(r) via a value iteration with relative stopping criterion defined using

ε, see Lemma 3 below. Denote Xk def
= F kM (>). The value iteration is illustrated in

Figure 2: at iteration k, the set Xk
s of possible shortfalls until k steps is computed

from the corresponding sets Xk−1
t for successors t ∈ succ(s) of s at iteration k−1.

The values are restricted to be within BoxM , so that obtaining an empty set at
a state s in the value iteration is an indicator of divergence at s. Any state that
must be avoided by Player ♦ yields an empty set. For instance, in Figure 1 (left),
with target (1, 1) the value iteration diverges at s1 for any M ≥ 0, but at ς0,
Player ♦ can go to the right to avoid accessing s1. The following proposition
ensures completeness of our method, stated in Theorem 2 below.

Proposition 2. If EE(r) is achievable then [fix(FM )]ς0 6= ∅ for some M ≥ 0.
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Proof (Sketch). First, we consider the expected enrgy of finite DTMCs, where,
at every step, we cut off the positive values. This entails that the sequence of
the resulting truncated non-positive expected energies decreases and converges
toward a limit vector u whose coordinates are finite if EE(r) is satisfied. We
show that, when EE(r) is satisfied by a strategy π, there is a global lower bound
−M on every coordinate of the limit vector u for the DTMC Gπ,σ induced by
any Player � strategy σ. We show that, for this choice of M , the fixpoint of FM
for the game G is non-empty in every state reachable under π. We conclude that
[fix(FM )]ς0 6= ∅ for some M ≥ 0 whenever EE(r) is achievable.

Lemma 3. Given M and ε, for every non-increasing sequence (Xi) of elements

of LM there exists k ≤ k∗∗ def
=
[
2n((dMε e+ 2)2 + 2)

]|S|
such that Xk v Xk+1 +ε.

Proof (Sketch). We first consider a single state s, and construct a graph with
vertices from the sequence of sets (Xi), and edges indicating dimensions where
the distance is at least ε. Interpreting each dimension as a colour, we use a

Ramseyan argument to find the bound k∗
def
= n · ((dMε e + 2)2 + 2) for a single

state. To find the bound k∗∗
def
= (2k∗)|S|, which is for all states, we extract

successive subsequences of {1, 2, . . . , k∗∗} def
= I0 ⊇ I1 ⊇ · · · ⊇ I|S|, where going

from Ii to Ii+1 means that one additional state has the desired property, and
such that the invariant |Ii+1| ≥ |Ii|/(2k∗) is satisfied. At the end I|S| contains
at least one index k ≤ k∗∗ for which all states have the desired property.

Strategy Construction. The strategies are constructed so that their memory
corresponds to the extreme points of the sets computed by F kM (>). The strategies
stochastically update their memory, and so the expectation of their memory
elements corresponds to an expectation over such extreme points.

Let Cks be the set of extreme points of dwc(Xk
s ), for all k ≥ 0 (since Xk ∈ LM ,

the sets Xk
s are closed). For any point p ∈ Xk

s , there is some q ≥ p that can
be obtained by a convex combination of points in Cks , and so the strategy we
construct uses Cks as memory, randomising to attain the convex combination q.
Note that the sets Cks are finite, yielding finite-memory strategies.

If Xk+1
ς0 6= ∅ and Xk v Xk+1 + ε for some k ∈ N and ε ≥ 0, we can construct

a Player ♦ strategy π for EE(r + ε). Denote by T ⊆ S the set of states s for

which Xk+1
s 6= ∅. For l ≥ 1, define the standard l-simplex by ∆l def

= {B ∈
[0, 1]l |

∑
β∈B β = 1}. The memory M

def
=
⋃
s∈T {(s,p) |p ∈ Cks } is initialised

according to α, defined by α(s)
def
= [(s, qs0) 7→ βs0, . . . , (s, q

s
n) 7→ βsn], where βs ∈

∆n, and, for all 1 ≤ i ≤ n, qsi ∈ Cks . The update πu and next move function πc
are defined as follows: at state s with memory (s,p), for all t ∈ succ(s), pick n
vectors qti ∈ Ckt for 1 ≤ i ≤ n, with coefficients βt ∈ ∆n, such that

– for s ∈ S♦, there is γ ∈ ∆|succ(s)∩T |, such that
∑
t γt ·

∑
i β

t
i ·qti ≥ p−r(s)−ε;

– for s ∈ S�, for all t ∈ succ(s),
∑
i β

t
i · qti ≥ p− r(s)− ε; and

– for s = (a, µ) ∈ S©, we have
∑
t∈supp(µ) µ(t) ·

∑
i β

t
i · qti ≥ p− r(s)− ε;
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Algorithm 1 PMP Strategy Synthesis

1: function SynthPMP(G, r, v, ε)
2: Set the reward structure to r − v + ε

2
; let k ← 0; M ← 2; X0 ← >;

3: while true do
4: while Xk 6v Xk+1 + ε

2
do

5: k ← k + 1; Xk+1 ← FM (Xk);

6: if Xk
ς0 6= ∅ then

7: Construct π for ε
2

and any v0 ∈ Ck
ς0 using Theorem 1; return π

8: else
9: k ← 0; M ←M2;

and, for all t ∈ succ(s), let πu((s,p), t)(t, qti)
def
= βti for all i, and πc(s, (s,p))(t)

def
=

γt if s ∈ S♦.

Theorem 1. If Xk+1
ς0 6= ∅ and Xk v Xk+1 + ε for some k ∈ N and ε ≥ 0, then

the Player ♦ strategy constructed above is finite-memory and wins for EE(r+ε).

Proof (Sketch). We show the strategy is well-defined, i.e. the relevant extreme
points and coefficients exist, which is a consequence of Xk v Xk+1 + ε. We then
show that, when entering a state so with a memory po, the expected memory
from this state after N steps is above po−ED,so [rewN (r)]−Nε. As the memory
is always non-positive, this implies that ED,so [rewN (r + ε)] ≥ po ≥ −M for
every state so with memory po, for every N . We conclude that EE(r+ ε) holds.

3.3 Strategy Synthesis Algorithm

Given a game G, a reward structure r with target vector v, and ε > 0, the semi-
algorithm given in Algorithm 1 computes a strategy winning for Pmpς0(r)(v−ε).

Theorem 2. Whenever v is in the Pareto set of Pmpς0(r), then Algorithm 1
terminates with a finite-memory ε-optimal strategy.

Proof (Sketch). Since v is in the Pareto set of the almost sure average reward
objective, by Lemma 2(ii) the objective EE(r−v + ε

2 ) is achievable, and, by
Proposition 2, there exists an M such that fix(FM ) is nonempty. The condition
in Line 6 is then satisfied as ∅ 6= [fix(FM )]ς0 ⊆ Xk

ς0 . Further, due to the bound
M on the size of the box BoxM in the value iteration, the inner loop terminates
after a finite number of steps, as shown in Lemma 3. Then, by Theorem 1, the
strategy constructed in Line 7 (with degradation factor ε

2 for the reward r−v+ ε
2 )

satisfies EE(r−v + ε), and hence, using Lemma 2(i), Pmpς0(r)(v − ε).

4 Compositional Synthesis

In order to synthesise strategies compositionally, we introduced in [3] a composi-
tion of games, and showed that assume-guarantee rules for PAs can be applied in
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synthesis for games: whenever there is a PA verification rule, the corresponding
game synthesis rule has the same form and side-conditions (Theorem 1 of [3]).
We present a PA assume-guarantee rule for ratio rewards. The PA rules in [10]
only support total expected rewards, while our rule works with any specification
defined on traces, and in particular with ratio rewards (Proposition 4).

Ratio Rewards. Ratio rewards ratio(r/c) generalise average rewards mp(r),
since, to express the latter, we let c(s) = 1 for all s ∈ S. The following proposition
states that to solve Pratioς0(r/c)(v) it suffices to solve Pmpς0(r)(v • c).

Proposition 3. A finite-memory Player ♦ strategy π satisfies Pratioς0(r/c)(v)
if and only if it satisfies Pmpς0(r)(v • c).

Fairness. Given a composed PA M = ‖i∈I M i, a strategy σ is fair if at least
one action of each component Mi is chosen infinitely often with probability 1.
We write M |=f ϕ if, for all fair strategies σ, Mσ |= ϕ.

Theorem 3. Given compatible PAs M1 and M2, specifications ϕG1 and ϕG2

defined on traces of AGi ⊆ Ai for i ∈ {1, 2}, then the following is sound:

M1 |=f ϕG1 M2 |=f ϕG2

M1 ‖ M2 |=f ϕG1 ∧ ϕG2
.

To use Theorem 3, we show that objectives using total or ratio rewards are
defined on traces over some subset of actions.

Proposition 4. If n-dimensional reward structures r and c are defined on ac-
tions Ar and Ac, respectively, then objectives using ratio rewards ratio(r/c) are
defined on traces of Ar ∪ Ac.

Note that average rewards are not defined over traces in general, since its di-
visor counts the transitions, irrespective of whether the specification takes them
into account. In particular, when composing systems, the additional transitions
in between those originally counted skew the value of the average rewards. More-
over, τ -transitions are counted, but do not appear in the traces.

5 A Case Study: Aircraft Power Distribution

We demonstrate our synthesis methods on a case study for the control of the
electrical power system of a more-electric aircraft [11], see Figure 3(a). Power is to
be routed from generators to buses (and loads attached to them) by controlling
the contactors (i.e. controllable switches) connecting the network nodes. Our
models are based on a game-theoretic study of the same control problem in [16],
where the control objective is to ensure the buses are powered, while avoiding
unsafe configurations. The controllers have to take into account that contactors
have delays, and the generators available in the system may be reconfigured, or
even exhibit failures. We show that, by incorporating stochasticity in the models
derived from the reliability statistics of the generators, controllers synthesised
from ratio rewards achieve better uptimes compared to those reported in [16].
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(a) Single-line diagram.
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w.p. pg .

. . .
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every Nth iteration

s2

Set contactor inten-
tion. If cint4 = 1 (in-
terface opens), enforce
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τ
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. . .
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1 , cint
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3 , cint
4 )

cdel
i :=0 if cint

i changed

s4
Actions indicating sta-
tus of buses. Interface
delivers power from
right (Ionr ) w.p. ion.

ci:=c
int
i

cdel
i ++

if cdel
i < delmax

s5 s′5 Shared actions for in-
terface; y ∈ {on, off}.

status status

s′1 s′′1

Ion
r &Iy` Ioff

r &Iy`

(b) HVAC Left (G`).

Fig. 3: Aircraft electric power system, adapted from a Honeywell, Inc. patent [11].
The single-line diagram of the full power system (a) shows how power from the
generators (Gi) can be routed to the buses (Bi) through the contactors (ci). The
left HVAC subsystem model G` is shown in (b), and Gr is symmetric. Ix` and Iyr
is the interface status on the left and right side, resp., where x, y stand for either
“on” or “off”. One iteration of the reactive loop goes from s1 to s5 and starts
again at s1, potentially with some variables changed, indicated as s′1 or s′′1 .

5.1 Model

The system comprises several components, each consisting of buses and gener-
ators, and we consider the high-voltage AC (HVAC) subsystem, shown in Fig-
ure 3(a), where the dashed boxes represent the components set out in [11]. These
components are physically separated for reliability, and hence allow limited in-
teraction and communication. Since the system is reactive, i.e. the aircraft is to
be controlled continually, we use long-run properties to specify correctness.

The game models and control objectives in [16] are specified using LTL prop-
erties. We extend their models to stochastic games with quantitative specifica-
tions, where the contactors are controlled by Player ♦ and the contactor dynamics
and the interfaces are controlled by Player �, and compose them by means of
the synchronising parallel composition of [3]. The advantage of stochasticity is
that the reliability specifications desired in [16] can be faithfully encoded. Fur-
ther, games allow us to model truly adversarial behaviour (e.g. uncontrollable
contactor dynamics), as well as nondeterministic interleaving in the composition.

Contactors, Buses and Generators. We derive the models based on the
LTL description of [16]: the status of the buses and generators are kept in
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Boolean variables B1, . . . , B4 and G1, . . . , G4 resp., and their truth value rep-
resents whether the bus or generator is powered; the contactor status is kept in
Boolean variables c1, . . . , c8, and their truth value represents if the correspond-
ing contactor lets the current flow. For instance, if in G` the generator G1 is
on but G2 is off, the controller needs to switch the contactors c1 and c3 on, in
order to power both buses B1 and B2. At the same time, short circuits from con-
necting generators to each other must be avoided, e.g. contactors c1, c2 and c3
cannot be on at the same time, as this configuration connects G1 and G2. The
contactors are, for example, solid state power controllers [14], which typically
have non-negligible reaction times with respect to the times the buses should be
powered. Hence, as in [16], we model that Player ♦ can only set the intent cint

i

of contactor i, and only after some delay is the contactor status ci set to this
intent. For the purposes of this demonstration, we only model a delayed turn-off
time, as it is typically larger than the turn-on time (e.g. 40 ms, the turn-off time
reported in [8]). Whether or not a contactor is delayed is controlled by Player �.

Interface. The components can deliver power to each other via the interface
I, see Figure 3(a), which is bidirectional, i.e. power can flow both ways. The
original design in [11] does not include connector c8, and so c4 has to ensure
that no short circuits occur over the interface: if B3 is powered, c4 may only
connect if B2 is unpowered, and vice versa; hence, c4 can only be on if both B2

and B3 are unpowered. By adding c8, we break this cyclic dependence.
Actions shared between components model transmission of power. The ac-

tions Ixr and Iy` for x, y ∈ {on, off} model whether power is delivered via the
interface from the right or left, respectively, or not. Hence, power flows from left
to right via c8, and from right to left via c4; and we ensure via the contactors
that power cannot flow in the other direction, preventing short circuits.

Reactive Loop. We model each component as an infinite loop of Player � and
Player ♦ actions. One iteration of the loop, called time step, represents one time
unit T , and the system steps through several stages, corresponding to the states
in G` (and Gr): in s1 the status of the generators is set every Nth time step; in s2

the controller sets the contactors; in s3 the delay is chosen nondeterministically;
in s4 actions specify whether both buses are powered, and whether a failure
occurs; and in s5 information is transmitted over the interface. The τ -labelled
Dirac transitions precede all Player ♦ states to enable composition [3].

Generator Assumptions. We assume that the generator status remains the
same for N time steps, i.e. after 0, N , 2N , . . . steps the status may change, with
the generators each powered with probability pg, independently from each other.
N and pg can be obtained from the mean-time-to-failure of the generators. This
is in contrast to [16], where, due to non-probabilistic modelling, the strongest
assumption is that generators do not fail at the same time.

5.2 Specifications and Results

The main objective is to maximise uptime of the buses, while avoiding failures
due to short circuits, as in [16]. Hence, the controller has to react to the gener-
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Table 1: Performance statistics, for various choices of b (bus uptime), f (failure
rate), ion (interface uptime), and model and algorithm parameters. A minus (−)
for ion means the interface is not used. The Pareto and Strategy columns show
the times for EE Pareto set computation and strategy construction, respectively.

Target Model Params. Algorithm Params. Runtime [s]
b f ion N delmax pg |S| ε k Pareto Strategy

0.90 0.01 − 0 0 0.8 1152 0.001 20 25 0.29
0.85 0.01 − 3 1 0.8 15200 0.001 65 1100 2.9
0.90 0.01 − 3 1 0.8 15200 0.001 118 2100 2.1

0.90 0.01 0.6 0 0 0.8 2432 0.01 15 52 0.53
0.95 0.01 0.6 0 0 0.8 2432 0.01 15 49 0.46
0.90 0.01 0.6 2 1 0.8 24744 0.01 80 4300 4.80

ator status, and cannot just leave all contactors connected. The properties are
specified as ratio rewards, since we are interested in the proportion of time the
buses are powered. To use Theorem 3, we attach all rewards to the status actions
or the synchronised actions Ix` and Iyr . Moreover, every time step, the reward
structure t attaches T to these actions to measure the progress of time.

The reward structure “buses`” (resp. “busesr”) assigns T for each time unit
both buses of G` (resp. Gr) are powered; and the reward structure “fail`” (resp.
“failr”) assigns 1 for every time unit a short circuit occurs in G` (resp. Gr).
Since the synchronised actions Ion

r and Ion
` are taken whenever power is de-

livered over the interface, we attach reward structures, with the same name,
assigning T whenever the corresponding action is taken. For each component
x ∈ {`, r}, the objectives are to keep the uptime of the buses above b, i.e.
P bus
x ≡ Pratioς0(busesx/t)(b); to keep the failure rate below f , i.e. P safe

x ≡
Pratioς0(−failx/t)(−f), where minimisation is expressed using negation; and, if
used, to keep the interface uptime above ion, i.e. P int

x ≡ Pratioς0(Ion
x /t)(ion). We

hence consider the specification P bus
x ∧P safe

x ∧P int
x , for x ∈ {`, r}. Using the rule

from Theorem 3 in Theorem 1 of [3], we obtain the strategy composed of the in-
dividual strategies to control the full system, satisfying P bus

` ∧P safe
` ∧P bus

r ∧P safe
r ,

i.e. both components are safe and the buses are powered.

Strategy Synthesis. We implement the algorithms of this paper as an ex-
tension of our multi-objective strategy synthesis tool of [7], using a compact
representation of the polyhedra F kM (>). Table 1 shows, for several parameter
choices, the experimental results, which were obtained on a 2.8 GHz PC with 32
GB RAM. In [16], the uptime objective was encoded in LTL by requiring that
buses are powered at least every Kth time step, yielding an uptime for the buses
of 1/K, which translates to an uptime of 20% (by letting K = 5). In contrast, us-
ing stochastic games we can utilise the statistics of the generator reliability, and
obtain bus uptimes of up to 95% for generator health pg = 0.8. For the models
without delay, the synthesised strategies approximate memoryless deterministic
strategies but when adding delay, randomisation is introduced in the memory
updates. The model will be included in a forthcoming release of our tool.
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6 Conclusion

We synthesise strategies for almost sure satisfaction of multi-dimensional aver-
age and ratio objectives, and demonstrate their application to assume-guarantee
controller synthesis. It would be interesting to study the complexity class of the
problem considered here. Satisfaction for arbitrary thresholds is subject to fur-
ther research. Solutions involving an oracle computing the almost-sure winning
region [9] would need to be adapted to handle our ε-approximations. Moreover,
we are interested in strategies for disjunctions of satisfaction objectives.
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