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Abstract

The calculus of Mobile Ambients has been introduced for expressing mobility and mobile
computation. In this paper we present a probabilistic version of Mobile Ambients by
augmenting the syntax of the original Ambient Calculus with a (guarded) probabilistic
choice operator. To allow for the representation of both the probabilistic behaviour
introduced through the new probabilistic choice operator and the nondeterminism present
in the original Ambient Calculus we use probabilistic automata as the underpinning
semantic model. The Ambient logic is a logic for Mobile Ambients that contains a novel
treatment of both locations and hidden names. To specifying properties of Probabilistic
Mobile Ambients, we extend this logic to specify probabilistic behaviour. In addition, to
show the utility of our approach we present an example of a virus infecting a network.
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1. Introduction

Computer networks, multiprocessors and parallel algorithms, though quite different,
all provide examples of complex concurrent systems. All benefit from parallelism, yet
require careful design to ensure that they function correctly. Process algebra [1, 2,
3, 4] has proved a useful abstraction in order to model complex concurrent systems,
and has provided formal tools to verify correctness. In cases where the behaviour of
large distributed systems involves random events, for instance electronic coin flipping in
network coordination algorithms and communication protocols (e.g. [5, 6, 7, 8]), link
failures, message loss or the arrival of requests from external users, the introduction of
probabilities is necessary.

Over the last twenty years, significant effort has been directed towards augmenting
process algebra with probabilities in order to obtain formal specifications of randomised
systems in both the discrete-time [9, 10, 11, 12, 13, 14, 15] and continuous-time setting
[16, 17, 18, 19, 20, 21]. In the discrete-time setting, the approach chosen in this paper, we
can roughly divide this work into two categories: those that replace the nondeterministic
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behaviour with probabilistic behaviour, e.g. [9, 14], and those that keep the nonde-
terministic behaviour while enriching the calculus with a probabilistic choice operator,
e.g. [11, 13]. Since asynchronous behaviour introduced through parallel composition is
fundamental to Mobile Ambient behaviour, we take the latter approach and enrich the
Ambient Calculus with a probabilistic choice operator. The semantics for our calculus
is given in terms of probabilistic automata [22] which extend classical labelled transition
systems by allowing both probabilistic and nondeterministic behaviour to be modelled.

The aim of our work is to find a suitable probabilistic model in order to realistically
model the behaviour of distributed and mobile systems. This has led us to Probabilistic
Mobile Ambients (PMA), a probabilistic extension of the Mobile Ambients (MA) [23, 24]
devised to represent mobile computation. In MA, Ambient is the key concept. Ambients
are meant to represent administrative domains as well as physical locations and mobile
devices. Ambients have a tree structure - possibly containing sub-ambients. The main
advantage of MA, with respect to other calculi, is the simple constructs of the language
and the inherent hierarchical structure of the processes. In the community of program-
ming languages, MA has already become very popular [23, 24, 25, 26, 27, 28, 29, 30] to
describe many issues, from access control to security protocols, from systems biology [31]
to implementation of distributed languages [32]. Yet, quantitative aspects of computa-
tion in MA have only been studied in [31, 15] within the boundaries of continuous-time
Markov chains.

We define a probabilistic bisimulation relation over PMA. This definition differs
from the standard probabilistic bisimulation defined on labelled probabilistic transition
systems [33, 11] as, similarly to the Ambient Calculus, the labels have to be second order,
i.e. they are not simple actions but also include processes. It is known from the literature
on process algebra that, in this kind of labelled transition system, it is difficult to define
bisimulation [34, 35] and the Ambient calculus is no exception. Barbed bisimulation
[36], however, takes into account only reductions via synchronisation, and uses a special
predicate that entails the point of view of an observer. For CCS , it has been proved
that labelled and barbed bisimulation are equivalent [36]. We therefore adapt barbed
bisimulation to the probabilistic setting.

MA serves as a model for a spatial logic [24], called Ambient Logic, which expresses,
on top of standard modal logic, predicates regarding location and secret names. A lot
of work has been carried out in the context of Ambient Logic, with particular focus on
decidable fragments and characterisation of equivalence relations induced by the logic
[37, 38, 39]. Our work augments the Ambient Logic with a probabilistic operator [9] to
obtain Probabilistic Ambient Logic. The latter will serve as a tool to express properties
regarding random events in the model. Probabilistic Ambient Logic is conservative with
respect to the original Ambient Logic. It is an open question whether the equivalence
relation induced by the logic over PMA matches structural congruence as in the standard
Ambient Logic [37, 38, 40].

Finally, we shall present an example of a virus infecting a network to demonstrate
the utility of our approach.

Contributions.. This paper makes three main contributions:

1. We extend the syntax and semantics of the original Mobile Ambients [24] to allow
for probabilistic behaviour. In this development we follow the approach taken in
[11, 22] by defining a semantics where probabilities and nondeterminism co-exist.
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2. We define the probabilistic semantics as a rewriting system also known in the liter-
ature as reduction semantics [24, 36, 41]. We show that, as far as internal actions
i.e. τ actions are concerned, the labelled semantics and the reduction semantics
coincide.

3. We extend the Ambient Logic with a probabilistic operator, and define the satis-
faction relation with respect to Probabilistic Mobile Ambients.

Outline of paper.. The remainder of the paper is organised as follows. In Section 2 we give
the background on probability theory and probabilistic automata which is required in the
remainder of the paper, while Section 3 reviews both MA and Ambient Logic. Section 4
introduces the syntax and the semantics of PMA and gives some small examples, and
Section 4.6 demonstrates that the probabilistic extension of asynchronous CCS can be
encoded into PMA. The syntax and semantics of the probabilistic Ambient Logic is given
in Section 5 and Section 6 presents an example concerning a virus spreading through a
network. Section 7 concludes the paper.

2. Preliminaries

In this section we present the preliminary concepts required in the remainder of the
paper, namely probability distributions and probabilistic automata.

Definition 2.1. A probability distribution over a countable set X is a function µ : X →
[0, 1] such that

∑
x∈X µ(x) = 1. We write Distr(X) to denote the set of all probability

distributions over X. For any x ∈ X, the point distribution at x, written ηx, is defined
as ηx(y) = 1 if x=y and ηx(y) = 0 otherwise.

For any countable set X, distribution µ ∈ Distr(X) and subset V ⊆ X, we let
µ(V ) =

∑
x∈V µ(x).

Probabilistic automata [22, 42] extend classical automata by allowing probabilistic as
well as nondeterministic behaviour. They are essentially equivalent to Markov decision
processes [43] and probabilistic-nondeterministic systems [44].

Definition 2.2. A probabilistic automaton is a tuple (S,Act ,→) where

• S is a set of states;

• Act is a set of actions;

• →⊆ S ×Act × Distr(S) is a probabilistic transition relation.

As a special case, one can consider probabilistic automata without actions, i.e. au-
tomata of the form (S,→) where →⊆ S × Distr(S).

We write s
a−→ µ for (s, a, µ) ∈→ and s

a,µ−−→ t if s a−→ µ and µ(t) > 0. A path,
representing a particular resolution of both nondeterminism and probability, is a non-
empty finite or infinite sequence of transitions:

π = s0
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · ·

and we denote by π(i) the ith state appearing in the path π.
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In contrast, an adversary (or scheduler) represents a particular resolution of nonde-
terminism only. More precisely, an adversary A is a function mapping every finite path π
to an over action-distribution pair (a, µ) such that if s is the last state of π, then s a−→ µ.

For any state s and adversary A we denote by PathA(s) the set of infinite paths that
have s as an initial state and correspond to the adversary A, that is, paths π = s0

a0,µ0−−−→
s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · · where s0 = s, A(s0) = (a0, µ0) and A(s0

a0,µ0−−−→ · · · an,µn−−−−→ sn+1) =
(an+1, µn+1) for all n ∈ IN. For each adversary A and state s, using standard techniques
[45, 22], one can construct the probability measure ProbAs over the set of infinite paths
PathA(s).

3. Mobile Ambients and the Ambient Logic

Mobile Ambients (MA) [46, 24] aim to represent, in a general way, process mobility.
The calculus introduces an abstract framework which allows one to describe both mobile
computing (i.e. mobile hardware) and mobile computation (i.e. mobile software). The
advantage of MA is the simple underlying, unifying concept of ambients, which are meant
to represent bounded places for computation such as concrete locations, concrete domains
or abstract domains. The main features of mobile ambients can be summarised as follows.

• An ambient defines a perimeter (boundary) that establishes what is inside the
ambient and what is outside.

• An ambient has a name.

• Ambients can move around: they can enter or exit other ambients.

• An ambient is a collection of local agents, i.e. processes, which run directly inside
the ambient. The syntax n[P ] denotes process P running inside an ambient with
name n .

• An ambient may have other ambients inside, creating a hierarchy of nested ambi-
ents, which could be represented as a tree. Each sub-ambient has its own name
and behaves as an independent ambient.

• When an ambient moves, all the sub-ambients and processes inside move with it.

3.1. Syntax and semantics of MA
We assume the existence of a set of names N and set of identifiers Id. The definition

of the syntax of the calculus, given below, includes two syntactic categories: processes
(including both agents and ambients themselves) and capabilities (which enable ambients
and agents to perform operations). Note that we replace replication as used in the original
Ambient Calculus with recursion [47].

Definition 3.1. The set of process terms of MA is given by the syntax:

M ::= in n
∣∣ out n

∣∣ open n (capabilities)

P,Q ::= 0
∣∣ n[P ]

∣∣ P | Q ∣∣ (new n)P
∣∣ A

∣∣ fixAP
∣∣ M.P (processes)

where n ∈ N and A ∈ Id.
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Nil, written 0, represents the inactive process, i.e. the process that does not reduce. An
ambient, written n[P ], is composed of two parts: n is the name of the ambient and P
is the active process inside. The square brackets around P indicate the perimeter of the
ambient. If the ambient moves, everything inside moves with it. Parallel composition,
written P | Q, means that P and Q are running in parallel and can compute indepen-
dently from each other. Restriction, written (new n)P , of the name n makes that name
private and unique to P . No other process can use this name for interacting with P .
Restriction is a binder and P is its scope. Given a process P , a name n appears bound
within P if it appears within a subexpression of the form (new n)Q. Names that are
not bound are said to appear free in P and we denote the set of bound and free names
by bn(P ) and fn(P ) respectively. Recursion is introduced through identifiers A and the
recursion operator fixAP . An identifier A is bound in a process P if it appears within
a subexpression of the form fixAQ. Prefix, written M.P , represents a process where P
is enabled only if the prefix M has been consumed. Capabilities can be thought of as
terms that enable the ambients to perform some actions. An ambient gains the ability to
go inside another ambient whose name is n with the ‘in n’ capability. An ambient gains
the ability to leave a parent ambient whose name is n with the ‘out n’ capability. An
ambient named n can be dissolved by means of the ‘open n’ capability.

The operational semantics of MA is defined through a structural congruence be-
tween processes and a reduction relation. Structural congruence equates processes that
are equivalent up to a simple syntactic rearrangement without any computational signifi-
cance. This relation was developed from the metaphor present in the ‘Chemical Abstract
Machine’ [41].

Definition 3.2. The structural congruence relation ≡ is the smallest congruence (equiv-
alence relation preserved by all algebraic contexts) over MA terms that satisfies the equa-
tions:

P ≡ P | 0 (struc par zero)
P | Q ≡ Q | P (struc par com)
(P | Q) | R ≡ P | (Q | R) (struc par assoc)
(new n) 0 ≡ 0 (struc zero res)
(newm) (new n)P ≡ (new n) (newm)P (struc res res)
(new n) (P | Q) ≡ P | (new n)Q if n /∈ fn(P ) (struc res par)
(newm) n[P ] ≡ n[ (newm)P ] if n 6= m (struc res amb)
fixAP ≡ P{fixAP/A} (struc rec)

where, for any identifier A and processes P,Q ∈ MA, the process P{Q/A} is obtained by
substituting each free occurrence of A in P with Q and changing the bound identifiers of
P to avoid clashes.

The meaning of a computation in MA is given by the basic movement that ambi-
ents are able to make: entering, exiting and dissolving an ambient. Formally, steps of
computation are represented by the reduction relation defined below.

Definition 3.3. The reduction relation →⊆ MA ×MA is the smallest binary relation
over MA terms satisfying the set of rules:
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m[ in n.P | Q ] | n[R ] → n[ m[P | Q ] | R ] (red in)
n[ m[ out n.P | Q ] | R ] → m[P | Q ] | n[R ] (red out)
open n.P | n[Q ] → P | Q (red open)

P → P ′

P | R→ P ′ | R
(red par)

P → P ′

(new n)P → (new n)P ′
(red restr)

P → P ′

n[P ]→ n[P ′ ]
(red amb)

Q ≡ P → P ′ ≡ Q′

Q→ Q′
(red cong)

Furthermore, let →∗ be the reflexive and transitive closure of →.

The observational predicate (↓) expresses what can be observed during computation.
In the case of MA the name of a top level ambient has traditionally been chosen as a
basic observation. Formally we have the following definitions.

Definition 3.4. A process P exhibits a barb n, written P ⇓ n, if and only if

P ≡ (new k1) . . . (new kn) (n[Q ] | R)

for some processes Q,R ∈ MA and name n ∈ N \ {k1 . . . kn}. Furthermore, a process P
eventually exhibits a barb n, written as P ⇓∗ n, if and only if P →∗ Q and Q ⇓ n.

Definition 3.5. Let P ∈ MA. The process Q is a step away from P , written P ↓ Q,
if and only if there exists a name n ∈ N and process R ∈ MA such that P ≡ n[Q ] | R.
Furthermore, let ↓∗ be the reflexive and transitive closure of ↓.

A context C is a process containing one occurrence of a ‘hole’ (·). We write C(P ) for
the process given by replacing the hole in C by P . Formally, we define MA contexts as
follows.

Definition 3.6. The set of MA process contexts is given by the syntax:

C ::= (·)
∣∣ C | P ∣∣ P | C ∣∣ n[ C ]

∣∣ (new n) C

where P ∈ MA and n ∈ N.

Definition 3.7. Barbed bisimulation is the largest symmetric relation '⊆ MA × MA
such that P ' Q implies:

• for each n ∈ N, P ⇓∗ n if and only if Q ⇓∗ n;

• for any context C, if C(P )→∗ P ′, then there exists Q′ ∈ MA such that C(Q)→∗ Q′
and P ′ ' Q′.

3.2. Ambient Logic
We introduce the standard Ambient Logic of Cardelli and Gordon [24, 48]. The kinds

of properties that can be expressed are of the form: ‘is process P located at the ambient
named n?’ or ‘is there a secret name shared between two processes P and Q?’ The
syntax of the Ambient Logic is given below where Var denotes a set of variables.
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Definition 3.8. The Ambient Logic, written AL, is given by the syntax:

φ, ψ ::= T true
| ¬φ negation
| φ ∨ φ disjunction
| 0 void
| η[φ] location
| φ | ψ composition
| ◊φ some where
| 3φ some time
| φ@η location adjunct
| φ . ψ composition adjunct
| ∀x. φ universal quantification
| ηrφ revelation
| φ� η revelation adjunct

where x ∈ Var and η ∈ N ∪ Var.

The first three connectives are standard in propositional logic. The remaining con-
nectives are tailored to express properties about ambient processes relative to both time
and space. For example:

• n[φ] expresses that here and now there is an ambient called n inside which φ holds;

• ◊φ expresses that some where, i.e. after traversing down through a number of
ambients, φ holds;

• 3φ expresses that some time, i.e. after a finite number of reductions, φ holds;

• φ@n expresses that in context n, i.e. after being placed inside the ambient n, φ
holds;

• φ . ψ expresses that ψ holds in in any context satisfying φ.

The set of free variables fv(φ) is defined in the standard manner, bearing in mind that
the only binding operator is ∀xφ. Furthermore, a formula is closed if all the variables
appearing in the formula are bound.

The Ambient Calculus serves as a model for the Ambient Logic. The relationship
between the calculus and the language is expressed by the following satisfaction relation.

Definition 3.9. The satisfaction relation |=⊆ MA × AL, written P |= φ is defined as
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follows:

P |= T for all P ∈ MA

P |= ¬φ ⇔ P 6|= φ

P |= φ∨ψ ⇔ P |= φ ∨ P |= ψ

P |= 0 ⇔ P ≡ 0

P |= n[φ] ⇔ ∃Q ∈ MA. (P ≡ n[Q ]) ∧ (Q |= φ)
P |= φ | ψ ⇔ ∃Q,R ∈ MA. (P ≡ (Q | R)) ∧ (Q |= φ) ∧ (R |= ψ)
P |= ◊φ ⇔ ∃Q ∈ MA. (P ↓∗ Q) ∧ (Q |= φ)
P |= 3φ ⇔ ∃Q ∈ MA. (P→∗Q) ∧ (Q |= φ)
P |= φ@n ⇔ n[P ] |= φ

P |= φ . ψ ⇔ ∀Q ∈ MA. (Q |= φ)⇒ (P | Q |= ψ)
P |= ∀x. φ ⇔ ∀n ∈ N. P |= φ{n/x}
P |= nrφ ⇔ ∃Q ∈ MA. (P ≡ (new n)Q) ∧ (Q |= φ)
P |= φ� n ⇔ (new n)P |= φ

where φ{n/x} denotes the standard substitution of every free occurrence of x in φ by n.

The equivalence relation over MA induced by this logic is given by the following
definition.

Definition 3.10. For any P,Q ∈ MA, we write P =AL Q when, for any closed formula
φ ∈ AL, we have P |= φ if and only if Q |= φ.

One interesting question is whether or not the equivalence relation =AL coincides
with any of the known relations, such as structural congruence (Definition 3.2) or barbed
bisimulation (Definition 3.7). In the Ambient Logic, the relation induced by the logic
coincides with structural congruence, at least for finite processes (the fragment of MA
without recursion or replication).

Theorem 3.11 ([39]). Let P,Q be Mobile Ambient processes.

1. If P ≡ Q, then P =AL Q.
2. If P and Q are finite processes and P =AL Q, then P ≡ Q.

3.3. Example: Agent Crossing a Firewall
To show which kind of situations are naturally modelled in MA, we present the

example of an agent crossing a firewall [24]. The idea is that a client requesting services
over a network has to authenticate using security measures such as passwords, which are
represented here as the secret names k, k′, k′′. Formally, the processes representing the
firewall and agent are given by:

Firewall def= (neww) (w [ k [ out w .in k ′.in w .0 ] | open k ′.open k ′′.P ])
Agent def= k ′[ open k .k ′′[Q ] ]
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Using the structural congruence and reduction rules given in Definition 3.2 and Defini-
tion 3.3 respectively we have that:

Firewall | Agent
= (neww) (w [ k [ out w .in k ′.in w .0 ] | open k ′.open k ′′.P ]) | k ′[ open k .k ′′[Q ] ]
≡ (neww) (w [ k [ out w .in k ′.in w .0 ] | open k ′.open k ′′.P ] | k ′[ open k .k ′′[Q ] ])
→ (neww) (w [ open k ′.open k ′′.P ] | k [ in k ′.in w .0 ] | k ′[ open k .k ′′[Q ] ])
→ (neww) (w [ open k ′.open k ′′.P ] | k ′[ k [ in w .0 ] | open k .k ′′[Q ] ])
→ (neww) (w [ open k ′.open k ′′.P ] | k ′[ in w .0 | k ′′[Q ] ])
→ (neww) (w [ open k ′.open k ′′.P | k ′[ 0 | k ′′[Q ] ] ])
≡ (neww) (w [ open k ′.open k ′′.P | k ′[ k ′′[Q ] ] ])
→ (neww) (w [ open k ′′.P | k ′′[Q ] ])
→ (neww) (w [P | Q ]) .

which can be interpreted as the agent Q, who knew the passwords k, k′, k′′, successfully
crossed the firewall.

4. Probabilistic Mobile Ambients (PMA)

In this section we define the Probabilistic Ambient Calculus which extends the classi-
cal ambient calculus to allow for probabilistic behaviour. Following the spirit of the Am-
bient Calculus where there is no choice operator, instead of adding a separate probabilis-
tic choice operator we modify the prefix operator to incorporate probabilistic behaviour.
More precisely, with respect to the syntax of the Mobile Ambients given in Definition 3.1,
we replace the prefix operator M.P with the (guarded) probabilistic choice operator [11]:

M.
∑
i∈Ipi.Pi

where I is an indexing set and pi is a real number in the interval (0, 1] denoting the
probability that after the action corresponding to the capability M is performed the
process becomes Pi. In the case when the indexing set is finite, that is I = {i1, . . . , in}
for some n ∈ IN, then we also write this operator as:

M. (pi1 .Pi1 + pi2 .Pi2 + · · ·+ pin .Pin) .

The definition of the syntax of the Probabilistic Ambient Calculus is given below. Note
that the other operators are the same as for the Ambient Calculus and are discussed in
Section 3.1.

Definition 4.1. The set of process terms, PMA, of PMA is given by the syntax:

M ::= in n
∣∣ out n

∣∣ open n
P,Q ::= 0

∣∣ n[P ]
∣∣ P | Q ∣∣ (new n)P

∣∣ A
∣∣ fixAP

∣∣ M.
∑
i∈Ipi.Pi

where n ∈ N, A ∈ Id and
∑
i∈I pi is a summation over a countable indexing set I such

that pi ∈ (0, 1] for all i ∈ I and
∑
i∈I pi = 1.
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For example, the following process of PMA represents a system that, after entering
an ambient m, will with probability 0.25 become the process P while with probability
0.75 become the process Q:

open m.
(

1
4 .P + 3

4 .Q
)
.

We now introduce some notation that is required in the remainder of the paper.

• For any summation
∑
i∈I pi.Pi over a countable indexing set I such that pi ∈ (0, 1],∑

i∈I pi=1 and Pi ∈ PMA, let [[
∑
i∈I pi.Pi]] denote the distribution over PMA where

for any T ∈ PMA: [[
∑
i∈I pi.Pi]](T ) =

∑
i∈I∧Pi=T

pi.

• For any µ, ν ∈ Distr(PMA) and Q ∈ PMA, let (µ | Q), (Q | µ) and (µ | ν) denote
the distributions over PMA where for any T ∈ PMA:

(µ | Q)(T ) =
{
µ(T ′) if T = T ′ | Q

0 otherwise (Q | µ)(T ) =
{
µ(T ′) if T = Q | T ′

0 otherwise

and (µ | ν)(T ) =
{
µ(T1) · ν(T2) if T = T1 | T2

0 otherwise.

• For any µ ∈ Distr(PMA) and n ∈ N, let (new n)µ and n[µ ] denote the distributions
over PMA such that for any T ∈ PMA:

((new n)µ)(T ) =
{
µ(T ′) if T=(new n)T ′

0 otherwise (n[µ ])(T ) =
{
µ(T ′) if T=n[T ′ ]

0 otherwise.

4.1. Reduction Semantics
We define the reduction semantics for the Probabilistic Mobile Ambients in terms

of probabilistic automata [22, 42]. The basic idea is to represent steps of computation
as a relation from processes to probability distributions. The main reason for working
with reduction semantics is that a labelled transition system semantics for MA is very
complicated, while the reduction semantics provides a means to deal with computation in
a simple way. However, proofs in the reduction semantics are very difficult to handle due
to the presence of structural congruence, while proofs in the labelled transition systems
semantics are more straightforward as the definition is syntax-directed. Therefore we will
also introduce the labelled transition system semantics in Section 4.3 and in Section 4.4
demonstrates that, up to τ actions, the two semantics coincide.

The definition of structural congruence for MA (see Definition 3.2) is extended to
equate processes defined through the guarded probabilistic choice operator of PMA.
More precisely, we add a single new structural congruence rule (struc prob) which
equates two processes defined through the probabilistic choice operator when the corre-
sponding capabilities are the same and the structure of their distribution is the same,
that is the probability of evolving into any process is the same. To take into account the
possible replication of processes in the index set, for example in a process M.

∑
i∈Ipi.Pi

there may exist i 6= j such that Pi = Pj , we sum the probabilities over the indices if
the corresponding processes are equal. This rule will also mean that processes that are
equivalent up to a permutation of the indexed set will be equated by structural con-
gruence. For example, the following PMA processes will be equivalent under structural
congruence:

open m.
(

1
4 .P + 3

4 .Q
)
, open m.

(
3
4 .Q+ 1

4 .P
)

and open m.
(

1
4 .P + 1

4 .Q+ 1
2 .Q

)
.
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Formally we have the following definition for structural congruence over PMA.

Definition 4.2. The structural congruence over the Probabilistic Mobile Ambients is the
smallest congruence (equivalence relation preserved by all algebraic contexts) satisfying
the equations:

P ≡ P | 0 (struc par zero)
P | Q ≡ Q | P (struc par com)
(P | Q) | R ≡ P | (Q | R) (struc par assoc)
(new n) 0 ≡ 0 (struc zero res)
(newm) (new n)P ≡ (new n) (newm)P (struc res res)
(new n) (P | Q) ≡ P | (new n)Q if n /∈ fn(P ) (struc res par)
(newm) n[P ] ≡ n[ (newm)P ] if n 6= m (struc res amb)
fixAP ≡ P{fixAP/A} (struc rec)
M.
∑
i∈Ipi.Pi ≡M.

∑
j∈Jqj .Qj if [[

∑
i∈I pi.Pi]] = [[

∑
i∈I qi.Qi]] (struc prob)

Furthermore, in standard manner we lift the relation ≡ to distributions over PMA: µ ≡ ν
if and only if µ([P ]≡) = ν([P ]≡) for all equivalence classes [P ]≡ ⊆ PMA of ≡.

Combining the fact that ≡ is congruence and (struc prob) it follows that:

M.
∑
i∈Ipi.Pi ≡M.

∑
j∈Jqj .Qj if

∑
i∈I∧Pi≡T

pi =
∑

j∈J∧Qj≡T
qj for all T ∈ PMA

i.e. structural congruence identifies processes defined through the probabilistic choice
operator when their capabilities are the same and the structure of their distributions
are the same up to structural congruence. Note that this matches the equivalence over
distributions induced by structural congruence given in Definition 4.2. For example the
following processes are structurally congruent.

open m.
(

1
4 .P + 3

4 .Q
)

and open m.
(

1
4 .P + 1

4 .Q+ 1
2 .(Q | 0)

)
.

We next define the reduction semantics for the Probabilistic Ambient Calculus.

Definition 4.3. The reduction semantics for PMA is the probabilistic automaton (PMA,→
) where the probabilistic reduction relation →⊆ PMA×Distr(PMA) is the smallest rela-
tion satisfying the rules in Figure 1.

The main difference between the reduction rules for the Probabilistic Ambient Calculus
and the original reduction rules (Definition 3.3) is that in the probabilistic case processes
evolve into distributions over processes as opposed to single processes. For the rules
(red in), (red out) and (red open), because of possible replication of processes in the
index set, there is a summation over the indices which correspond to the same process.
For example applying the rule (red open) we have:

open m.
(

1
4 .P + 1

4 .Q+ 1
2 .Q

)
| m[ 0 ]→ µ

where µ(T ) =


1
4 if T = P | 0
3
4 if T = Q | 0
0 otherwise.
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(red in) m
[
in n.

∑
i∈I pi.Pi

∣∣∣ Q ] ∣∣∣ n[R ]→ n
[

m
[

[[
∑
i∈I pi.Pi]] | Q

]
| R
]

(red out) n
[

m
[
out n.

∑
i∈I pi.Pi

∣∣∣ Q ] ∣∣∣ R ]→ m
[

[[
∑
i∈I pi.Pi]] | Q

]
| n[R ]

(red open) open n.
∑
i∈I pi.Pi

∣∣ n[Q ]→ [[
∑
i∈I pi.Pi]] | Q

(red par) P | Q→ µ | Q if P → µ′

(red restr) (new n)P → (new n)µ if P → µ
(red amb) n[P ]→ n[µ ] if P → µ

(red cong) P → µ if P ≡ P ′, P ′ → µ′ and µ′ ≡ µ

Figure 1: Reduction Rules for PMA

The remaining rules, namely (red par), (red restr), (red amb) and (red cong), are
the generalised versions of the rules for MA given in Definition 3.3 to distributions. For
example, applying (red par) to the example above we have:(

open m.
(

1
4 .P + 1

4 .Q+ 1
2 .Q

)
| m[ 0 ]

)
| Q→ µ

where µ(T ) =


1
4 if T = (P | 0) | Q
3
4 if T = (Q | 0) | Q
0 otherwise.

The original Ambient Calculus can be encoded in the Probabilistic Ambient Calculus,
by simply mapping any term of the form M.P to M.1.P . Under this encoding structural
congruence and the reduction semantics given here and for the Ambient Calculus given
in Section 3.1 are equivalent. Note that to simplify the presentation, we use the orig-
inal Ambient Calculus notation and reduction rules where applicable, that is we write
probabilistic ambient components of the form M.1.P as M.P .

4.2. Examples of PMA specifications
Below we present probabilistic extensions of some Mobile Ambient examples given in

[24].

Client-Server. We consider here a scenario in distributed systems, where a client can
probabilistically choose to use one of several servers. In the example below, the client
probabilistically chooses to use Server1 with probability 1

3 and Server2 with probability
2
3 :

Client def= c
[
in s.

(
1
3 .open s1 .Client + 2

3 .open s2 .Client
) ]

Servers def= s[ s1 [ Server1 ] | s2 [ Server2 ] | open c.0 ]
System def= Client | Servers

Then:

System = c
[
in s.

(
1
3 .open s1 .Client + 2

3 .open s2 .Client
) ]
| Servers → µ

where for any T ∈ PMA:

µ(T ) =


1
3 if T = s[ c[ open s1 .Client ] | s1 [ Server1 ] | s2 [ Server2 ] | open c.0 ]
2
3 if T = s[ c[ open s2 .Client ] | s1 [ Server1 ] | s2 [ Server2 ] | open c.0 ]
0 otherwise.
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Then, for example when server 1 is chosen we have the following reduction which reaches
a situation where the client can interact with the first server.

s[ c[ open s1 .Client ] | s1 [ Server1 ] | s2 [ Server2 ] | open c.0 ]
≡ s[ c[ open s1 .Client ] | open c.0 | s1 [ Server1 ] | s2 [ Server2 ] ]
→ s[ open s1 .Client | s1 [ Server1 ] | s2 [ Server2 ] ]
→ s[ Client | Server1 | s2 [ Server2 ] ] .

We can extend this model to the case where the client can (nondeterministically) either
use a coin biased towards the first or the second server by amending the definition of the
client in the following way:

Client1
def= o

[
in s.

(
1
3 .open s1 .Client + 2

3 .open s2 .Client
) ]

Client2
def= o

[
in s.

(
2
3 .open s1 .Client + 1

3 .open s2 .Client
) ]

Client def= c[ open o.0 | Client2 | Client2 ] .

Agent Crossing a Firewall. Here we consider a probabilistic version of the Agent and
Firewall example presented in Section 3.3. We assume that the passwords k and k′ are
public and that the remaining password k′′ is secret. We modify the firewall such that
it reacts to attempts to pass through the firewall in two ways: if the final password
offered is correct then it allows the agent presenting the password to cross the firewall, if
the password is incorrect then it will be isolated. The PMA processes representing this
example are given below.

Firewall def= (newwi) (w [ k [ out w .in k ′.in w .0 ] | open k ′.(Allow | Block) ] | Isolation)
Allow def= open k ′′.P
Block def= enter i.0

Isolation def= i [ open w .open l ′′.0 ]
Agent def= k ′[ Guess ]
Guess def= open k .

(
1
50 .k

′′[Q ] + 49
50 .l
′′[Q ]

)
Following similar reduction steps to those given in in Section 3.3 we have that:

Firewall | Agent ≡
(newwi) (w [ k [ out w .in k ′.in w .0 ] | open k ′.(Allow | Block) ] | Isolation | k ′[ Guess ])
→ (newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k [ in k ′.in w .0 ] | k ′[ Guess ])
→ (newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k ′[ k [ in w .0 ] | Guess ])
→ µ

where, for any T ∈ PMA, µ(T ) equals
1
50 if T = (newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k ′[ in w .0 | k ′′[Q ] ])
49
50 if T = (newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k ′[ in w .0 | l ′′[Q ] ])
0 otherwise.

Considering each case in turn:
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• With probability 0.02, the system can evolve to a situation where the agent has
successfully passed through the firewall. In this case we have the following reduction
steps:

(newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k ′[ in w .0 | k ′′[Q ] ])
≡ (newwi) (k ′[ in w .0 | k ′′[Q ] ] | w [ open k ′.(Allow | Block) ] | Isolation)
→ (newwi) (w [ k ′[ 0 | k ′′[Q ] ] | open k ′.(Allow | Block) ] | Isolation)
≡ (newwi) (w [ open k ′.(Allow | Block) | k ′[ k ′′[Q ] ] ] | Isolation)
→ (newwi) (w [ (Allow | Block) | k ′′[Q ] ] | Isolation)
= (newwi) (w [ open k ′′.P | Block | k ′′[Q ] ] | Isolation)
≡ (newwi) (w [ open k ′′.P | k ′′[Q ] | Block ] | Isolation)
→ (newwi) (w [P | Q | Block ] | Isolation) .

• With probability 0.98, the system can evolve to the situation where the agent Q
does not gain access through the firewall and is put in isolation. For this scenario
we have the following reduction steps (we have omitted the steps that are the same
as the case above):

(newwi) (w [ open k ′.(Allow | Block) ] | Isolation | k ′[ in w .0 | l ′′[Q ] ])
· · ·

→ (newwi) (w [ (Allow | Block) | l ′′[Q ] ] | Isolation)
= (newwi) (w [ (Allow | enter i.0) | l ′′[Q ] ] | i [ open w .open l ′′.0 ])
≡ (newwi) (w [ enter i.0 | Allow | l ′′[Q ] ] | i [ open w .open l ′′.0 ])
→ (newwi) (i [ w [ 0 | Allow | l ′′[Q ] ] | open w .open l ′′.0 ])
≡ (newwi) (i [ open w .open l ′′.0 | w [ l ′′[Q ] | Allow ] ])
→ (newwi) (i [ open l ′′.0 | l ′′[Q ] | Allow ])
→ (newwi) (i [ 0 | Q | Allow ])
≡ (newwi) (i [Q | Allow ]) .

4.3. Probabilistic Labelled Transition System Semantics
Due to the nature of the Mobile Ambients, in order to specify the computational steps

that represent one ambient moving into another, or an ambient moving outside another,
processes are put on the actions of the transition relation as in [15, 27]. This kind
of labelled transition system is called a second order labelled transition system [34, 35].
However, since we are in the probabilistic setting, distributions over processes are required
in the actions of the transition relations as opposed to processes. Formally we have the
following definition.

Definition 4.4. The set of first order actions Act is defined by the syntax:

α ::= in n | out n | open n | open n

where n ∈ N. Furthermore, the set of second order actions Act? is defined by the syntax:

γ ::= k̃ enter n (ν) | enter n (ν) | k̃ exitn (ν)

where k̃ is a (possibly empty) sequence of names in N, n ∈ N and ν ∈ Distr(PMA).
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(act pfx) M.
∑
i∈I pi.Pi

M−→ [[
∑
i∈I pi.Pi]]

(act open) n[P ]
openn−−−−→ ηP

(act par1) P | Q α−→ µ | Q if P α−→ µ

(act par2) P | Q α−→ P | µ
(act rest) (new k)P α−→ (new k)µ if k 6= name(α) and P

α−→ µ

(act rec) fixAP
α−→ µ if P{fixAP/A}

α−→ µ

Figure 2: Labelled Transition System: First Order Actions

Before we give the labelled transition semantics for PMA we require the following
definitions. First, let name : Act ∪ Act? → N be the function where for any name n,
sequence of names k̃ and distribution ν:

name(in n) = name(out n) = name(open n) = name(open n) = n

and
name(k̃ enter n (ν)) = name(enter n (ν)) = name(k̃ exitn (ν)) = n .

Definition 4.5. For any (possibly empty) sequence of names k̃ we denote by {k̃} the set
of names appearing in k̃. Furthermore, for any P ∈ PMA:

(new k̃)P def=
{

(new k1) · · · (new kn)P if k̃ = k1 · · · kn for some n>0
P otherwise

and, for any set of names N ⊆ N, let k̃ �N denote the sequence k̃ restricted to only those
names in N .

We are now in a position to define the labelled probabilistic transition semantics for PMA.

Definition 4.6. The probabilistic labelled transition system semantics for PMA is the
probabilistic automaton (PMA,Act∪Act?∪{τ},→) where the labelled probabilistic tran-
sition relation →⊆ PMA × (Act ∪ Act? ∪ {τ}) × Distr(PMA) is the smallest relation
satisfying the rules in Figures 2–4.

Note that, as in the reduction semantics, due to possible replication of processes in
the index set there is again a sum over the indices which correspond to the same process.

We now explain the rules of Figures 2–4 induced by the capability in (entering an
ambient). An example of entry into an ambient is given by the following reduction:

(newm) (new k)
(
m
[
in n.

∑
i∈Ipi.Pi | Q

]
| R
)
| n[S ]→ ρ

where supposing k 6∈ fn(Q) and k 6∈ fn(Pi) for any i ∈ I, for any T ∈ PMA:

ρ(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (newm) (n[ m[T ′ | Q ] | S ] | (new k)R)

0 otherwise.
(1)
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(act? enter) m[P ]
〈〉entern(m[µ ])−−−−−−−−−→ η0 if P in n−−→ µ

(act? exit) m[P ]
〈〉exitn(m[µ ])−−−−−−−−−→ η0 if P out n−−−→ µ

(act? enter) n[P ]
entern(ν)−−−−−−→ n[P | ν ]

(act? par1) P | Q k̃β(ν)−−−→ µ | Q if fn(Q)∩{k̃}=∅ and P
k̃β(ν)−−−→ µ

(act? par2) P | Q k̃β(ν)−−−→ P | µ if fn(P )∩{k̃}=∅ and Q
k̃β(ν)−−−→ µ

(act? rest1) (new k)P
kk̃β(ν)−−−−→ µ if k 6=name(β), k∈fn(ν) and P

k̃β(ν)−−−→ µ

(act? rest2) (new k)P
k̃β(ν)−−−→ (new k)µ if k 6=name(β), k 6∈fn(ν) and P

k̃β(ν)−−−→ µ

(act? rec) fixAP
k̃β(ν)−−−→ µ if P{fixAP/A}

k̃β(ν)−−−→ µ

Figure 3: Labelled Transition System: Second Order Actions

(τ enter1) P | Q τ−→ (new k̃l̃) (µ1 | µ2) if P
k̃ entern(ν)−−−−−−−→ µ1 and Q

l̃ entern(ν)−−−−−−→ µ2

(τ enter2) P | Q τ−→ (new k̃l̃) (µ1 | µ2) if P
k̃ entern(ν)−−−−−−−→ µ1 and Q

l̃ entern(ν)−−−−−−→ µ2

(τ exit) n[P ] τ−→ (new k̃) (ν | n[µ ]) if P
k̃exitn(ν)−−−−−−→ µ

(τ open1) P | Q τ−→ µ1 | µ2 if P
openn−−−−→ µ1 and Q

openn−−−−→ µ2

(τ open2) P | Q τ−→ µ1 | µ2 if P
openn−−−−→ µ1 and Q

openn−−−−→ µ2

(τ par1) P | Q τ−→ µ | Q if P τ−→ µ

(τ par2) P | Q τ−→ P | µ if Q τ−→ µ

(τ rest) (new k)P τ−→ (new k)µ if P τ−→ µ

(τ amb) n[P ] τ−→ n[µ ] if P τ−→ µ

(τ rec) fixAP
τ−→ µ if P{fixAP/A}

τ−→ µ

Figure 4: Labelled Transition System: τ Actions

First considering the process inside the ambient m and applying (act pfx), (act par)
and (act? enter), we have:

m
[
in n.

∑
i∈Ipi.Pi | Q

] 〈〉entern(ν)−−−−−−−→ µ1

where for any T ∈ PMA:

ν(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ]

0 otherwise
and µ1(T ) =

{
1 if T = 0
0 otherwise.

In this labelled transition, the distribution ν represents the change caused by executing
the capability represented by enter n (i.e. entering an ambient n). On the other hand, the
distribution µ1 represents the part of the process which is not affected by the capability.
In this case, since the entire process moves under this capability, µ1 is given by the point
distribution η0. In general, since the distribution represents the part of the process that
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is not affected it will always be a point distribution, (this is clarified in Lemma 4.13).
Next, applying (act? par2):

m
[
in n.

∑
i∈Ipi.Pi | Q

]
| R 〈〉entern(ν)−−−−−−−→ µ1

where for any T ∈ PMA:

ν(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ]

0 otherwise
and µ1(T ) =

{
1 if T = 0 | R
0 otherwise.

The result is that the distribution µ1 now also includes the process R, since it is unaf-
fected. Using the fact that k 6∈ fn(Q) and k 6∈ fn(Pi) for any i ∈ I, applying (act? res1)
followed by (act? res2) we have:

(newm) (new k)
(
m
[
in n.

∑
i∈Ipi.Pi | Q

]
| R
) 〈m〉entern(ν)−−−−−−−−→ µ1

where for any T ∈ PMA:

ν(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ]

0 otherwise
and µ1(T ) =

{
1 if T = (new k) (0 | R)
0 otherwise.

Because k does not appear free in the part of the process that moves, the restriction
(new k) only appears in the distribution µ1. On the other hand, m does appears free (it
is the ambient name of the process that moves), and hence it is included in the action.

From (act? enter) it follows that n[S ]
entern(ν)−−−−−−→ µ2 where

µ2(T ) =
{
ν(T ′) if T = n[S | T ′ ]

0 otherwise.

In this case, the distribution µ2 represents the outcome of a process entering the am-
bient n[S ] and then evolving according to the distribution ν. Now applying the rule
(τ enter1):

(newm) (new k)
(
m
[
in n.

∑
i∈Ipi.Pi | Q

]
| R
)
| n[S ] τ−→ µ

where, using the definitions of ν, µ1 and µ2, for any T ∈ PMA:

µ(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (newm) ((new k) (0 | R) | n[S | m[T ′ | Q ] ])

0 otherwise
(2)

Since for any process T ′ ∈ PMA:

(newm) ((new k) (0 | R) | n[S | m[T ′ | Q ] ])
≡ (newm) (n[ m[T ′ | Q ] | S ] | (new k)R),

it follows that the distribution obtained through the labelled transition system rules (see
(2)) and that obtained through the reduction rules (see (1)) are structurally congruent.

The cases for out and open follow a similar structure. For further details on the
general structure of the transitions constructed through the first order rules in Figure 2
see Lemma 4.11 and Lemma 4.13, while Lemma 4.12 and Lemma 4.14 present the general
structure of the transitions relating to second order rules given in Figure 3.
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4.4. Relationship Between the Semantics
In this section we demonstrate that the reduction rules and the labelled transition

system rules for Probabilistic Mobile Ambients are equivalent. More precisely, we demon-
strate that, up to structural congruence, the reduction semantics coincides with the la-
belled transition system semantics restricted to only τ actions.

Theorem 4.7. Let P be a PMA process.

1. If P → µ, then P
τ−→ ν for some ν ∈ Distr(PMA) such that ν ≡ µ.

2. If P τ−→ µ, then P → µ.

Before proceeding with the proof we require a number of preliminary lemmas and the
following remark.

Remark 4.8. We make the standard assumption that, for any process P | Q, both the
bound names of P and free names of Q, and the free names of P and the bound names
of Q are disjoint.

Lemma 4.9. For any P,Q ∈ PMA and n ∈ N, the following sets encode sets of equiva-
lence classes of ≡:

• {T |T ∈ PMA ∧ (T | P ) ≡ Q};

• {T |T ∈ PMA ∧ n[T ] ≡ Q};

• {T |T ∈ PMA ∧ (new n)T ≡ P}.

Proof. The proof follows from the fact that ≡ is a congruence, i.e. is preserved by all
algebraic contexts. For example, if T, T ′ ∈ PMA are in the same equivalence class of ≡,
since ≡ is a congruence, we have T | P ≡ T ′ | P , and therefore, due to the transitivity
of ≡, it follows that T | P ≡ Q if and only if T ′ | P ≡ Q. ut

Lemma 4.10. Let P, P ′ ∈ PMA such that P ≡ P ′.

• If P
γ−→ µ for some µ ∈ Distr(PMA) and γ ∈ Act ∪ Act? ∪ {τ}, then there exists

ν ∈ Distr(PMA) such that P ′
γ−→ ν and µ ≡ ν.

• If P ′
γ−→ ν for some ν ∈ Distr(PMA) and γ ∈ Act ∪ Act? ∪ {τ}, then there exists

µ ∈ Distr(PMA) such that P
γ−→ µ and ν ≡ µ.

Proof. The proof is by induction on ≡. Note that we only consider the first half of the
lemma since the second half follows similarly.

(struc par zero) In this case P ′ = P | 0. Below we consider the case when γ ∈ Act ;
the cases when γ ∈ Act? or γ = τ follow similarly using either (act? par1) or
(τ par1). Therefore, supposing that γ ∈ Act and P

γ−→ µ, using (act par1) we
have P | 0 γ−→ µ′, where for any T ∈ PMA

µ′(T ) =
{
µ(T ′) if T = T ′ | 0

0 otherwise.

Now applying (struc par zero) it follows that µ ≡ µ′ as required.
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(struc par com) In this case P = Q | R and P ′ = R | Q for some processes Q
and R. The result follows by considering the possible derivations of the transition
P

γ−→ µ, i.e. either (act par1), (act par2), (act? par1), (act? par2) (τ enter1),
(τ enter2), (τ open1), (τ open2), (τ par1) or (τ par2), and then applying the
symmetric rule to P ′ to construct a transition P ′

γ−→ µ′ such that µ ≡ µ′.
For example, if P

γ−→ µ is derived through the rule (τ open1), then Q
open n−−−−→ µ1

and R
openn−−−−→ µ2 and for any T ∈ PMA:

µ(T ) =
{
µ1(T1) · µ2(T2) if T = T1 | T2

0 otherwise.

Now applying (τ open2), we have P ′
γ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
µ2(T2) · µ1(T1) if T = T2 | T1

0 otherwise.

The fact that µ ≡ µ′ then follows from the definitions of µ and µ′ and applying
(struc par com).

(struc par assoc) In this case P = (Q | R) | T and P ′ = Q | (R | T ) for some
processes Q, R and T . The proof follows by considering the different ways that the
transition P

γ−→ µ is derived and then applying where necessary the appropriate
symmetric rule to obtain a transition P ′

γ−→ µ′ such that µ ≡ µ′.

(struc zero res) In this case P = (new n) 0 and P ′ = 0 for some name n, and since
one cannot derive P

γ−→ µ for any γ ∈ Act ∪ Act? ∪ {τ} and µ ∈ Distr(PMA), the
result holds in this case.

(struc res res) In this case P = (newm) (new n)Q and P ′ = (new n) (newm)Q for
some names n and m and process Q. The result follows from the fact that the

transition P
γ−→ µ is derived via two rule applications from some transition Q

γ′

−→ ρ

and that, if one applies these rules to Q
γ′

−→ ρ in the reverse order, then P ′
γ−→ µ′

for some distribution µ′ such that µ ≡ µ′.

(struc res par) In this case P = (new n) (Q | R) and P ′ = Q | (new n)R for some
processes Q and R and name n such that n /∈ fn(Q). Similarly to the case above,
this result follows from the fact that P

γ−→ µ is derived by two rule applications

from some transition Q
γ′

−→ ρ and, applying these rules to Q
γ′

−→ ρ in the reverse
order, one obtains a transition P ′

γ−→ µ′ such that µ ≡ µ′.

(struc res amb) In this case P = (newm) n[Q ] and P ′ = n[ (newm)Q ] for some
process Q and names n and m such that n 6= m. Again P

γ−→ µ is derived through

two rule applications from a transition Q
γ′

−→ ρ and one can construct a transition

P ′
γ−→ µ′ such that µ ≡ µ′ by applying these rules in the reverse order to Q

γ′

−→ ρ.

(struc rec) In this case P = fixAQ and P ′ = Q{fixAQ/A} for some identifier A and
process Q and the result follows from the rules (act rec), (act? rec) and (τ rec).
depending on whether γ ∈ Act , γ ∈ Act? or γ = τ .
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(struc prob) In this case P = M.
∑
i∈I qi.Qi and P ′ = M.

∑
j∈J rj .Rj for some pro-

cesses M.
∑
i∈I qi.Qi and M.

∑
j∈J rj .Rj such that for any T ∈ PMA:∑

i∈I∧Qi=T
qi =

∑
j∈J∧Rj=T

rj . (3)

If P
γ−→ µ, then since the only rule that can be applied is (act pfx), γ = M and

for any T ∈ PMA:
µ(T ) =

∑
i∈I∧Qi=T

qi .

On the other hand, applying (act pfx) we have P ′ M−→ µ′ where for any T ∈ PMA:

µ′(T ) =
∑
j∈J∧Rj=T

rj .

It then follows from (3) and the definitions of µ and µ′ that µ ≡ µ′ as required.

(struc refl) If P ≡ P ′ is derived through the fact that ≡ is reflexive, then P ′ = P
and the result follows.

(struc symm) If P ≡ P ′ is derived through the fact that ≡ is symmetric, then P ′ ≡ P
and the result follows by induction.

(struc trans) If P ≡ P ′ is derived through the fact that ≡ is transitive, then there
exists a process Q ∈ PMA such that P ≡ Q and Q ≡ P ′. Now, supposing P

γ−→ µ,
using the fact that P ≡ Q, by induction there exists ρ ∈ Distr(PMA) such that Q

γ−→
ρ and µ ≡ ρ. Furthermore, since Q ≡ P ′ by induction there exists ν ∈ Distr(PMA)
such that P ′

γ−→ ν and ρ ≡ ν. The result then follows from the fact that if µ1 ≡ µ2

and µ2 ≡ µ3, then µ1 ≡ µ3.

(struc cong) It remains to consider the cases when P ≡ P ′ is derived through the fact
that ≡ is preserved by all algebraic contexts, that is the cases where:

• P = Q | R and P ′ = Q′ | R for some process Q, Q′ and R where Q ≡ Q′;
• P = (new n)Q and P ′ = (new n)Q′ for some process Q and Q′ where Q ≡ Q′;
• P = n[Q ] and P ′ = n[Q′ ] for some process Q and Q′ where Q ≡ Q′;
• P = fixAQ and P ′ = fixAQ

′ for some identifier A and processes Q and Q′ such
that Q ≡ Q′;

• P = M.
∑
i∈I pi.Pi and P ′ = M.

∑
i∈I pi.P

′
i for some sequences of processes

〈Pi〉i∈I and 〈P ′i 〉i∈I where Pi ≡ P ′i for all i ∈ I.

In each case the proof follows by induction, the derivation rule used in the transition
P

γ−→ µ and employing Lemma 4.9. For example, in the case when P = n[Q ] and
γ = τ , through (τ amb) we have Q τ−→ ρ where for any T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = n[T ′ ]

0 otherwise.

Since Q ≡ Q′, by induction Q′
τ−→ ρ′ where ρ ≡ ρ′ and applying (τ amb) we have

P ′ = n[Q′ ] τ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
ρ′(T ′) if T = n[T ′ ]

0 otherwise.
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Now, since ρ ≡ ρ′, using Lemma 4.9 it follows that µ ≡ µ′ as required. ut

Lemma 4.11. Let P ∈ PMA. If P M−→ µ for some capability M , then:

P ≡ (new k̃)
(
M.
∑
i∈Ipi.Qi | Q

)
and µ ≡ µ′

for some processes M.
∑
i∈Ipi.Qi and Q, sequence of names k̃ and distribution µ′ such

that name(M) 6∈ {k̃} and for any T ∈ PMA :

µ′(T ) =

{ ∑
i∈I∧Qi=T ′

pi if T = (new k̃) (T ′ | Q)

0 otherwise.

Proof. The proof is by induction on derivation of P M−→ µ. Below we only consider the
case when M = in n for some n ∈ N as the cases when M = out n and M = open n for
some n ∈ N follow similarly.

(act pfx) In this case P is of the form in n.
∑
i∈I pi.Pi and µ(T ) =

∑
i∈I∧Pi=T

pi. Now
from (struc par zero) and Definition 4.5 if follows that T ≡ (new 〈〉) (T | 0) for
all T ∈ PMA, and hence

P ≡ (new 〈〉)
(
in n.

∑
i∈Ipi.Qi | 0

)
and µ ≡ µ′, where for any T ∈ PMA:

µ′(T ) =

{ ∑
i∈I∧Qi=T ′

pi if T = (new 〈〉) (T ′ | 0)

0 otherwise

as required.

(act par1) In this case P is of the form Q | R, Q in n−−→ ρ and for any T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = T ′ | R

0 otherwise

Now, by induction we have

Q ≡ (new k̃)
(
in n.

∑
i∈Ipi.Pi | Q

′) and ρ ≡ ρ′

for some processes in n.
∑
i∈I pi.Pi and Q′, sequence of names k̃ and distribution ρ′

such that name(in n) 6∈ {k̃} and for any T ∈ PMA :

ρ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃) (T ′ | Q′)

0 otherwise.

Now since ≡ is a congruence:

P = Q | R ≡ (new k̃)
(
in n.

∑
i∈Ipi.Pi | Q

′) | R
≡ (new k̃)

((
in n.

∑
i∈Ipi.Pi | Q

′) | R) by (struc res par) and Remark 4.8

≡ (new k̃)
(
in n.

∑
i∈Ipi.Pi | (Q

′ | R)
)

by (struc par assoc).
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It therefore remains to show that µ ≡ µ′ where for any T ∈ PMA:

µ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃) (T ′ | (Q′ | R))

0 otherwise.

Now, for any equivalence class [T ]≡ ⊆ PMA of ≡, by construction of µ:

µ([T ]≡) = ρ{T ′ |T ′ ∈ PMA ∧ T ′ | R ≡ T}
= ρ′{T ′ |T ′ ∈ PMA ∧ T ′ | R ≡ T} by Lemma 4.9 and since ρ ≡ ρ′

=
∑
{|pi | i ∈ I ∧ (new k̃) (Pi | Q′) | R ≡ T |} by definition of ρ′

=
∑
{|pi | i ∈ I ∧ (new k̃) ((Pi | Q′) | R) ≡ T |}

by (struc res par) and Remark 4.8

=
∑
{|pi | i ∈ I ∧ (new k̃) (Pi | (Q′ | R)) ≡ T |} by (struc par assoc)

= µ′([T ]≡) by definition of µ′.

Now since the equivalence class [T ]≡ was arbitrary, by definition µ ≡ µ′ as required.

(act par2) This case is symmetric to (act par1).

(act res) In this case P is of the form (new k)Q, k 6= name(in n), Q in n−−→ ρ and for any
T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = (new k)T ′

0 otherwise.

Now, by induction we have

Q ≡ (new k̃)
(
in n.

∑
i∈Ipi.Pi | R

)
and ρ ≡ ρ′

for some processes in n.
∑
i∈I pi.Pi and R, sequence of names k̃ and distribution ρ′

such that name(in n) 6∈ {k̃} and for any T ∈ PMA :

ρ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃) (T ′ | R)

0 otherwise.

Next, since ≡ is a congruence:

P = (new k)Q ≡ (new kk̃)
(
in n.

∑
i∈Ipi.Pi

)
| R

≡ (new kk̃)
(
in n.

∑
i∈Ipi.Pi | R

)
by (struc res par) and Lemma 4.8. Furthermore, since k 6= name(in n) it follows
that name(in n) 6∈ {kk̃}. Hence, it remains to show that µ ≡ µ′ where for any
T ∈ PMA:

µ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new kk̃) (T ′ | Q′)

0 otherwise.
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Therefore consider equivalence class [T ]≡ ⊆ PMA of ≡. By construction of µ:

µ([T ]≡) = ρ{T ′ |T ′ ∈ PMA ∧ (new k)T ′ ≡ T}
= ρ′{T ′ |T ′ ∈ PMA ∧ (new k)T ′ ≡ T} by Lemma 4.9 and since ρ ≡ ρ′

=
∑
{|pi | i ∈ I ∧ (new k) (new k̃) (Pi | Q′) ≡ T |} by definition of ρ′

= µ′([T ]≡) by definition of µ′

and since the equivalence class [T ]≡ was arbitrary, by definition µ ≡ µ′ as required.

(act rec) In this case P = fixAQ for some identifier A and process Q such that
Q{fixAQ/A}

in n−−→ µ and the result follows by induction on Q. ut

Lemma 4.12. Let P be an ambient process. If P
(k̃)M(ν)−−−−−→ µ for some sequence of names

k̃, capability M and distributions ν and µ, then

P ≡ (new l̃)
(

m
[

(new l̃′) (M.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′ and µ ≡ µ′

for some processes M.
∑
i∈I pi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′ and dis-

tributions ν′ and µ′ such that

• name(M) 6∈ {l̃′} ∪ {l̃};

• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn
(

m
[

(new l̃′) (M.
∑
i∈I pi.Pi | Q1)

])
;

• for any T ∈ PMA :

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

µ′(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.

Proof. The proof is by induction on the derivation of P
(k̃)M(ν)−−−−−→ µ. Below we only

consider the case when M = in n for some n ∈ N as the case for M = out n follows
similarly.

(act? enter) In the case P is of the form m[Q], P
〈〉entern(ν)−−−−−−−→ µ, Q in n−−→ ρ and for any

T ∈ PMA:

µ(T ) =
{

1 if T = 0
0 otherwise and ν(T ) =

{
ρ(T ′) if T = m[T ′ ]

0 otherwise.

Now using Lemma 4.11:

Q ≡ (new l̃′)
(
in n.

∑
i∈Ipi.Pi | Q

′) and ρ ≡ ρ′
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for some processes in n.
∑
i∈I pi.Pi and Q, sequence of names l̃′ and distribution ρ′

such that name(in n) 6∈ {l̃′} and for any T ∈ PMA :

ρ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new l̃′) (T ′ | Q′)

0 otherwise.

By construction and since≡ is a congruence, using (struc res par), (struc par zero)
and Definition 4.5:

P = m[Q ] ≡ m
[

(new l̃′)
(
in n.

∑
i∈Ipi.Pi | Q

′) ]
≡ m

[
(new l̃′)

(
in n.

∑
i∈Ipi.Pi | Q

′) ] | 0 by (struc par zero)

= (new 〈〉)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q

′)
]
| 0
)

by Definition 4.5.

It therefore remains to show that ν ≡ ν′ and µ ≡ µ′ where:

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q′)

]
0 otherwise

µ′(T ) =
{

1 if T = (new 〈〉) 0
0 otherwise

which follows using Lemma 4.9 and the facts that ρ ≡ ρ′ and 0 = (new 〈〉) 0.

(act? par1) In the case P is of the form Q | R, fn(Q)∩{k̃} = ∅, Q k̃β(ν)−−−→ ρ and for any
T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = T ′ | Q

0 otherwise.

Now by induction on Q we have

Q ≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′ and ρ ≡ ρ′

for some processes in n.
∑
i∈Ipi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′ and

distributions ν′ and ρ′ such that:

• name(in n) 6∈ {l̃′} ∪ {l̃};

• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn
(

m
[

(new l̃′) (M.
∑
i∈I pi.Pi | Q1)

])
;

• for any T ∈ PMA :

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

ρ′(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.
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Now, since ≡ is a congruence:

P = Q | R ≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
| R

≡ (new l̃)
((

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
| R
)

≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| (Q2 | R)

)
where the second step follows from (struc res res) and Remark 4.8 and the final
step from (struc res par). Since ν ≡ ν′ it remains to show that µ ≡ µ′ where

µ′(T ) =
{

1 if T = (new k̃′) (Q2 | R)
0 otherwise.

Using Remark 4.8 and (struc res par) we have (new k̃′) (Q2 | R) ≡ (new k̃′)Q2 |
R, and hence the result follows from the fact that ρ ≡ ρ′.

(act? par2) This case is symmetric to (act? par1).

(act? rest1) In this case P is of the form (new k)Q, k̃ = kk̃′, k 6= name(β), k ∈ fn(ν)

and Q
k̃′β(ν)−−−−→ ρ. Now by induction on Q we have

Q ≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′ and ρ ≡ ρ′

for some processes in n.
∑
i∈Ipi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′ and

distributions ν′ and ρ′ such that

• name(in n) 6∈ {l̃′} ∪ {l̃};

• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn
(

m
[

(new l̃′) (M.
∑
i∈I pi.Pi | Q1)

])
;

• for any T ∈ PMA :

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

ρ′(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.

Since ≡ is a congruence we have:

P = (new k)Q ≡ (new kl̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
and the result follows from the fact that k ∈ N .

(act? rest2) In the case P is of the form (new k)Q, k 6= name(β), k 6∈ fn(ν) and

Q
k̃β(ν)−−−→ ρ where for any T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = (new k)T ′

0 otherwise.
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Now, by induction on Q we have

Q ≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′ and ρ ≡ ρ′

for some processes in n.
∑
i∈I pi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′ and

distributions ν′ and ρ′ such that

• name(M) 6∈ {l̃′} ∪ {l̃};

• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn
(

m
[

(new l̃′) (M.
∑
i∈I pi.Pi | Q1)

])
;

• for any T ∈ PMA :

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

ρ′(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.

Now since ≡ is a congruence:

P = (new k)Q ≡ (new k) (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
≡ (new l̃) (new k)

(
m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
≡ (new l̃)

(
m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| (new k)Q2

)
where the second step follows from (struc res res) and the final step follows
from (struc res par) and the hypothesis that k 6= name(β), k 6∈ fn(ν) and ν ≡ ν′.
From the definition of ρ′ and since k 6∈ N , it is sufficient to show that µ ≡ µ′ where
for any T ∈ PMA:

µ′(T ) =
{

1 if T = (new kk̃′)Q2

0 otherwise

which follows from the fact that ρ ≡ ρ′ and the definition of µ.

(act rec) In this case P = fixAQ for some identifier A and process Q such that

Q{fixAQ/A}
(k̃)M(ν)−−−−−→ µ and the result follows by induction on Q. ut

Lemma 4.13. Let P be an ambient process. If P
open n−−−−→ µ for some n ∈ N, then

P ≡ (new k̃) (n[P1 ] | P2) and µ ≡ µ′

for some processes P1 and P2, sequence of names k̃ and distribution µ′ such that n 6∈ {k̃}
and for any T ∈ PMA :

µ′(T ) =
{

1 if T = (new k̃) (P1 | P2)
0 otherwise.
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Proof. The proof follows by induction on derivation tree for P
open n−−−−→ µ and is similar

to Lemma 4.11. ut

Lemma 4.14. Let P be an ambient process. If P
entern(ν)−−−−−−→ µ for some distributions ν

and µ, then:
P ≡ n[Q1 ] | Q2, ν ≡ ν′ and µ ≡ µ′

for some processes Q1 and Q2 and distributions ν′ and µ′ such that for any T ∈ PMA :

µ′(T ) =
{
ν′(T ′) if T = n[T ′ | Q1 ] | Q2

0 otherwise

Proof. The proof follows by induction on derivation tree for P
entern(ν)−−−−−−→ µ in a manner

similar to Lemma 4.12. ut

We now proceed with the proof of Theorem 4.7.

Proof of Theorem 4.7. In the first half of the proof we show that if P → µ, then
P

τ−→ µ′ for some µ′ ∈ Distr(PMA) such that µ ≡ µ′. The proof is by structural induction
on P → µ.

(red in) In this case P is of the form m
[
in n.

∑
i∈I pi.Pi | Q

]
| n[R ] and for any

T ∈ PMA:

µ(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = n[ m[T ′ | Q ] | R ]

0 otherwise

Now using (act pfx), (act par) and (act? enter) we have

m
[
in n.

∑
i∈Ipi.Pi | Q

] 〈〉entern(ν′)−−−−−−−→ µ′1

where for any T ∈ PMA:

ν′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ]

0 otherwise
and µ′1(T ) =

{
1 if T = 0
0 otherwise.

On the other hand, using (act? enter), n[R ]
entern(ν′)−−−−−−→ µ′2 where

µ′2(T ) =
{
ν′(T ′) if T = n[R | T ′ ]

0 otherwise.

Combining these transitions through (τ enter1) it follows that

m
[
in n.

∑
i∈Ipi.Pi | Q

]
| n[R ] τ−→ µ′
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where for any T ∈ PMA:

µ′(T ) =
{
µ′1(T1) · µ′2(T2) if T = (new 〈〉) (T1 | T2)

0 otherwise

=
{
µ′1(T1) · µ′2(T2) if T = T1 | T2

0 otherwise by Definition 4.5

=
{

1 · µ′2(T2) if T = 0 | T2

0 otherwise by definition of µ′1

=
{
ν′(T ) if T = 0 | n[R | T ′ ]

0 otherwise by definition of µ′2

=

{ ∑
i∈I∧Pi=T ′

pi if T = 0 | n[R | m[T ′ | Q ] ]

0 otherwise
by definition of ν′.

Now using (struc par zero), for any T ′ ∈ PMA:

n[ m[T ′ | Q ] | R ] ≡ 0 | n[ m[T ′ | Q ] | R ]
≡ (0 | n[R | m[T ′ | Q ] ]) by (struc par com)

and hence it follows that µ ≡ µ′ as required.

(red out) By definition P = n
[

m
[
out n.

∑
i∈I pi.Pi | Q

]
| R
]
→ µ where for any

T ∈ PMA:

µ(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ] | n[R ]

0 otherwise.

Now using (act pfx), followed by (act par), (act? exit) and (act? par2) we
have

m
[
out n.

∑
i∈Ipi.Pi | Q

]
| R 〈〉exitn(ν′)−−−−−−−→ ρ′

where for any T ∈ PMA:

ν′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ]

0 otherwise
and ρ′(T ) =

{
1 if T = 0 | R
0 otherwise.

Next, applying (τ exit), P τ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
ν′(T1) · ρ′(T2) if T = T1 | n[T2 ]

0 otherwise

=
{
ν′(T1) · 1 if T = T1 | n[ 0 | R ]

0 otherwise by definition of ρ′

=

{ ∑
i∈I∧Pi=T ′

pi if T = m[T ′ | Q ] | n[ 0 | R ]

0 otherwise
by definition of ν′.

Now by (struc par zero) for any T ′ ∈ PMA:

m[T ′ | Q ] | n[R ] ≡ m[T ′ | Q ] | n[ 0 | R ]

and hence it follows that µ ≡ µ′ as required.
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(red open) By definition P = open n.
∑
i∈I pi.Pi | n[Q ] → µ where for any T ∈ PMA:

µ(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = T ′ | Q

0 otherwise.

Now using (act pfx) and (act open)

open n.
∑
i∈I

pi.Pi
open n−−−−→ µ′1 and n[Q ]

openn−−−−→ µ′2

where for any T ∈ PMA:

µ′1(T ) =
∑

i∈I∧Pi=T ′

pi and µ′2(T ) =
{

1 if T = Q
0 otherwise.

Next, applying (τ open1) we have P τ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
µ′1(T1) · µ′2(T2) if T = T1 | T2

0 otherwise

=
{
µ′1(T1) · 1 if T = T1 | Q

0 otherwise by definition of µ′2

=

{ ∑
i∈I∧Pi=T ′

pi if T = T ′ | Q

0 otherwise
by definition of µ′1

= µ(T ) by definition of µ.

Since µ = µ′ it follows that µ ≡ µ′ as required.

(red par) In this case P = Q | R, Q→ ν and for any T ∈ PMA:

µ(T ) =
{
ν(T ′) if T = T ′ | R

0 otherwise.

By induction Q τ−→ ν′ and ν ≡ ν′. Next applying (τ par1) we have P = Q | R τ−→ µ′

where for any T ∈ PMA:

µ′(T ) =
{
ν′(T ′) if T = T ′ | R

0 otherwise

Applying Lemma 4.9 it follows that µ ≡ µ′ as required.

(red restr) In this case P = (new n)Q, Q→ ν and for any T ∈ PMA:

µ(T ) =
{
ν(T ′) if T = (new n)T ′

0 otherwise

By induction Q
τ−→ ν′ for some distribution ν′ such that ν ≡ ν′. Next applying

(τ rest) we have P = (new n)Q τ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
ν′(T ′) if T = (new n)T ′

0 otherwise

Applying Lemma 4.9 it follows that µ ≡ µ′ as required.
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(red amb) P = n[Q ], Q→ ν and for any T ∈ PMA:

µ(T ) =
{
µ′(T ′) if T = n[T ′ ]

0 otherwise

By induction Q
τ−→ ν′ for some distribution ν′ such that ν ≡ ν′. Next applying

(τ amb) we have P = n[Q ] τ−→ µ′ where for any T ∈ PMA:

µ′(T ) =
{
ν′(T ′) if T = n[T ′ ]

0 otherwise

Applying Lemma 4.9 it follows that µ ≡ µ′ as required.

(red cong) In this case P ≡ Q, Q → ρ and ρ ≡ µ. Now, by induction there exists ρ′

such that Q τ−→ ρ′ and ρ ≡ ρ′. Furthermore, applying Lemma 4.10, P τ−→ µ′ and
µ′ ≡ ρ′. Therefore, by the transitivity of ≡, it follows that µ ≡ µ′ as required.

Since these are the only cases to consider this completes the first half of the proof.
In the second half of the proof we show the reverse direction, that is, if P τ−→ µ, then

P → µ. The proof is by induction on the derivation of P τ−→ µ.

(τ enter1) In this case P = Q | R, Q
k̃ entern(ν)−−−−−−−→ µ1, R

entern(ν)−−−−−−→ µ2 and for any
T ∈ PMA:

µ(T ) =
{
µ1(T1) · µ2(T2) if T = (new k̃) (T1 | T2)

0 otherwise.

By Lemma 4.12:

Q ≡ (new l̃)
(

m
[

(new l̃′) (in n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′1 and µ1 ≡ µ′1

for some processes in n.
∑
i∈Ipi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′ and

distributions ν′1 and µ′1 such that:

• name(in n) 6∈ {l̃′} ∪ {l̃};
• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn(in n.

∑
i∈I pi.Pi | Q1);

• for any T ∈ PMA :

ν′1(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

µ′1(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.

Furthermore, using Lemma 4.14 we have

R ≡ n[R1 ] | R2, ν ≡ ν′2 and µ2 ≡ µ′2

for some processes R1 and R2 and distributions ν′2 and µ2 such that for any T ∈
PMA:

µ′2(T ) =
{
ν′2(T ′) if T = n[T ′ | R1 ] | R2

0 otherwise.
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Using Lemma 4.9 and the fact that µ1 ≡ µ′1, it follows from the definition of µ that
µ ≡ ρ1 where for any T ∈ PMA:

ρ1(T ) =
{
µ2(T2) if T = (new k̃) ((new k̃′)Q2 | T2)

0 otherwise.

Combining Lemma 4.9 with the fact that µ′2 ≡ µ2, we have ρ1 ≡ ρ2 where for any
T ∈ PMA:

ρ2(T ) =
{
ν′2(T2) if T = (new k̃) ((new k̃′)Q2 | (n[T ′ | R1 ] | R2))

0 otherwise.

Next, since ν′2 ≡ ν it follows that ρ2 ≡ ρ3 where for any T ∈ PMA:

ρ3(T ) =
{
ν(T2) if T = (new k̃) ((new k̃′)Q2 | (n[T ′ | R1 ] | R2))

0 otherwise.

Furthermore, since ν ≡ ν′1, ρ3 ≡ ρ4 where, for any T ∈ PMA, ρ4(T ) equals{ P
i∈I∧Pi=T ′

pi if T = (new k̃)
“
(new k̃′) Q2|

“
n
h
m
h
(new l̃′) (T ′|Q1)

i
|R1

i
|R2

””
0 otherwise.

By (struc par com) for any T ′ ∈ PMA:

(new k̃)
(

(new k̃′)Q2 |
(

n
[

m
[

(new l̃′) (T ′ | Q1)
]
| R1

]
| R2

))
≡ (new k̃)

(
n
[

m
[

(new l̃′) (T ′ | Q1)
]
| R1)

]
| ((new k̃′)Q2 | R2)

)
and hence ρ4 ≡ ρ5 where, for any T ∈ PMA, ρ5(T ) equals{ P

i∈I∧Pi=T ′
pi if T = (new k̃)

“
n
h
m
h
(new l̃′) (T ′|Q1)

i
|R1

i
|((new k̃′) Q2|R2)

”
0 otherwise.

Finally in this derivation, through the transitivity of ≡, we have µ ≡ ρ5.

On the other hand, since ≡ is a congruence:

P = Q | R ≡ (new l̃)
“
m
h
(new l̃′) (inn.

P
i∈Ipi.Pi | Q1)

i
| Q2

”
| (n[ R1 ] | R2)

≡ (new k̃) (new k̃′)
“
m
h
(new l̃′) (inn.

P
i∈Ipi.Pi | Q1)

i
| Q2

”
| (n[ R1 ] | R2)

≡ (new k̃)
“
m
h
(new l̃′) (inn.

P
i∈Ipi.Pi | Q1)

i
| (new k̃′) Q2

”
| (n[ R1 ] | R2)

≡ (new k̃)
“
m
h
(inn.

P
i∈Ipi.(new l̃′) (Pi | Q1))

i
| (new k̃′) Q2

”
| (n[ R1 ] | R2)

≡ (new k̃)
““

m
h
(inn.

P
i∈Ipi.(new l̃′) (Pi | Q1))

i
| (new k̃′) Q2

”
| (n[ R1 ] | R2)

”
≡ (new k̃)

““
m
h
(inn.

P
i∈Ipi.(new l̃′) (Pi | Q1))

i
| n[ R1 ]

”
| ((new k̃′) Q2 | R2)

”
where the second step follows from (struc res res) and the definition of l̃, the
third, fourth and fifth from (struc res par) and the facts that l̃ �N\N= k̃′,
name(in n) 6∈ l̃′ and Remark 4.8, while the final step from applying (struc par com)
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and (struc par assoc). Applying the structural congruence rules, (red in),
(red restr), (red par) and (red cong), it follows that P → µ′ where, for any
T ∈ PMA, µ′(T ) equals

∑
i∈I∧Pi=T ′

pi if T = (new k̃) (n
[

m
[

(new l̃′) (T ′|Q1)
]
|R1

]
|((new k̃′)Q2|R2))

0 otherwise

Now since µ′ = ρ5 it follows that µ ≡ µ′, and hence using (red cong) we have
P → µ as required.

(τ enter2) This case is symmetric to (τ enter1).

(τ exit) In this case P is of the form n[Q ], Q
k̃exitn(ν)−−−−−−→ ρ and for any T ∈ PMA:

µ(T ) =
{
ν(T1) · ρ(T2) if T = (new k̃) (T1 | n[T2 ])

0 otherwise.

By Lemma 4.12:

Q ≡ (new l̃)
(

m
[

(new l̃′) (out n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

)
, ν ≡ ν′ and ρ ≡ ρ′

for some processes out n.
∑
i∈I pi.Pi, Q1 and Q2, sequences of names l̃, l̃′ and k̃′

and distributions ν′ and ρ′ such that

• name(out n) 6∈ {l̃′} ∪ {l̃};
• l̃ �N= k̃ and l̃ �N\N= k̃′ where N = fn(out n.

∑
i∈I pi.Pi | Q1);

• for any T ∈ PMA :

ν′(T ) =


∑

i∈I∧Pi=T ′
pi if T = m

[
(new l̃′) (T ′ | Q1)

]
0 otherwise

ρ′(T ) =
{

1 if T = (new k̃′)Q2

0 otherwise.

By definition of µ, Lemma 4.9 and the fact that ρ ≡ ρ′ it follows that µ ≡ µ1 where
for any T ∈ PMA:

µ1(T ) =

{
ν(T1) if T = (new k̃)

(
T1 | n

[
(new k̃′)Q2

])
0 otherwise.

Since ν ≡ ν′ it follows that µ1 ≡ µ2 where, for any T ∈ PMA, µ2(T ) equals
∑

i∈I∧Pi=T ′
pi if T = (new k̃)

(
m
[

(new l̃′) (T ′ | Q1)
]
| n
[

(new k̃′)Q2

])
0 otherwise.
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On the other hand, since ≡ is a congruence:

P = n[Q ] ≡ n
[

(new l̃)
(

m
[

(new l̃′) (out n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

) ]
≡ n

[
(new k̃k̃′)

(
m
[

(new l̃′) (out n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

) ]
≡ (new k̃) n

[
(new k̃′)

(
m
[

(new l̃′) (out n.
∑
i∈Ipi.Pi | Q1)

]
| Q2

) ]
≡ (new k̃) n

[
m
[

(new l̃′) (out n.
∑
i∈Ipi.Pi | Q1)

]
| (new k̃′)Q2

]
≡ (new k̃) n

[
m
[

(out n.
∑
i∈Ipi.(new l̃′) (Pi | Q1))

]
| (new k̃′)Q2

]
where the second step follows from (struc res res) and the definition of l̃, the
remaining steps follow from Remark 4.8, (struc res par) and the following facts:

• name(out n) 6∈ l̃;
• l̃ �N= k̃;

• l̃ �N\N= k̃′;

• name(out n) 6∈ l̃′.

Now, applying the structural congruence rules (red out), (red restr), (red par)
and (red cong), n[Q ]→ µ′ where, for any T ∈ PMA, µ′(T ) equals

∑
i∈I∧Pi=T ′

pi if T = (new k̃)
(

m
[

(new l̃′) (T ′ | Q1)
]
| n
[

((new k̃′)Q2)
])

0 otherwise.

Now since µ ≡ µ2 it follows that µ ≡ µ′ and therefore applying (red cong) we
have P → µ as required.

(τ open1) In this case P is of the form Q | R, Q
open n−−−−→ µ1, R

open n−−−−→ µ2 and for any
T ∈ PMA:

µ(T ) =
{
µ1(T1) · µ2(T2) if T = T1 | T2

0 otherwise.

Now by Lemma 4.11:

Q ≡ (new k̃1)
(
open n.

∑
i∈Ipi.Pi | Q

′) and µ1 ≡ µ′1

for some processes open n.
∑
i∈I pi.Pi and Q′, sequence of names k̃1 and distribution

µ′1 such that name(open n) 6∈ {k̃} for any T ∈ PMA :

µ′1(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃1) (T ′ | Q)

0 otherwise.

Furthermore, from Lemma 4.13:

R ≡ (new k̃2) (n[R1 ] | R2) and µ2 ≡ µ′2
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for some processes R1 and R2, sequence of names k̃2 and distribution µ′ such that
for any T ∈ PMA :

µ′2(T ) =
{

1 if T = (new k̃2) (R1 | R2)
0 otherwise.

Now, since µ2 ≡ µ′2, it follows that µ ≡ ρ1 where for any T ∈ PMA:

ρ1(T ) =
{
µ1(T1) if T = T1 | (new k̃2) (R1 | R2)

0 otherwise.

Next, using Lemma 4.9 together with the fact that ν ≡ ν′, ρ1 ≡ ρ2 where for any
T ∈ PMA:

ρ2(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃1) (T ′ | Q′) | (new k̃2) (R1 | R2)

0 otherwise.

From Remark 4.8 and (struc res par) it follows that for any T ∈ PMA:

(new k̃1) (T ′ | Q′) | (new k̃2) (R1 | R2) ≡ (new k̃1k̃2) ((T ′ | Q′) | (R1 | R2))

≡ (new k̃1k̃2) ((T ′ | R1) | (Q′ | R2))

by (struc par comm) and (struc par assoc). This fact together with Lemma 4.9
implies that ρ2 ≡ ρ3 where for any T ∈ PMA:

ρ3(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃1k̃2) (T ′ | R1) | (Q′ | R2)

0 otherwise.

Furthermore, by the transitivity of ≡, µ ≡ ρ3.

On the other hand since ≡ is a congruence:

P = Q | R ≡ (new k̃1)
(
open n.

∑
i∈Ipi.Pi | Q

′) | (new k̃2) (n[R1 ] | R2)

≡ (new k̃2k̃1)
(
open n.

∑
i∈Ipi.Pi | Q

′) | (n[R1 ] | R2)

≡ (new k̃2k̃1)
(
open n.

∑
i∈Ipi.Pi | n[R1 ]

)
| (Q′ | R2)

where the first step follows by (struc res res) and Remark 4.8 and the second
by (struc par comm) and (struc par assoc). Now, applying the structural
congruence rules, (red open), (red restr) and (red cong), Q | R → µ′ where
for any T ∈ PMA:

µ′(T ) =

{ ∑
i∈I∧Pi=T ′

pi if T = (new k̃1k̃2) (T ′ | R1) | (Q′ | R2)

0 otherwise.

Therefore, since µ ≡ ρ′3, it follows that µ ≡ µ′, and therefore applying (red cong)
we have P → µ as required.

(τ open2) This case is symmetric to (τ open1).
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(τ par1) In this case P is of the form Q | R, Q τ−→ ρ′ and for any T ∈ PMA:

µ(T ) =
{
µ′(T ′) if T = T ′ | R

0 otherwise

By induction Q→ ρ′ for some distribution ρ′ such that ρ ≡ ρ′. Applying (red par)
we have P = Q | R→ µ′ and for any T ∈ PMA:

µ′(T ) =
{
ρ′(T ′) if T = T ′ | Q

0 otherwise

Using Lemma 4.9 it follows that µ ≡ µ′, and hence, by (red cong), P → µ as
required.

(τ par2) This case is symmetric to (τ par1).

(τ rest) In this case P is of the form (new k)Q, Q τ−→ ρ and for any T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = (new k)T ′

0 otherwise.

By inductionQ→ ρ′ for some distribution ρ′ such that ρ ≡ ρ′. Applying (red rest)
we have P = (new n)Q→ µ′ and for any T ∈ PMA:

µ′(T ) =
{
ρ′(T ′) if T = (new k)T ′

0 otherwise

Using Lemma 4.9 it follows that µ ≡ µ′, and hence by (red cong) we have P → µ
as required.

(τ amb) In this case P is of the form n[Q ], Q τ−→ ρ and for any T ∈ PMA:

µ(T ) =
{
ρ(T ′) if T = n[T ′ ]

0 otherwise.

By inductionQ→ ρ′ for some distribution ρ′ such that ρ ≡ ρ′. Applying (red amb)
we have P = n[Q ]→ µ′ and for any T ∈ PMA:

µ′(T ) =
{
ρ′(T ′) if T = n[T ′ ]

0 otherwise.

Using Lemma 4.9 it follows that µ ≡ µ′, and hence by (red cong) we have P → µ
as required.

(τ rec) In this case P = fixAQ for some identifier A ∈ Id and process Q ∈ PMA such
that Q{fixAQ/A}

τ−→ µ and the result follows by induction on Q and (struc rec).

This completes the proof of Theorem 4.7. ut

35



4.5. Bisimulation for Probabilistic Mobile Ambients
To complete the semantics for PMA we define here probabilistic bisimulation for

Probabilistic Mobile Ambients following the definition of barbed bisimulation [36]. Sim-
ilarly to the case for MA (see Definition 3.7), the basic idea is that two processes are
bisimilar if they exhibit the same observable behaviour and if they reduce in the same
way in any context. The definitions of the observational predicate ↓ (exhibits a barb) and
a process contexts C are as for Mobile Ambients (see Definition 3.4 and Definition 3.6
respectively).

Definition 4.15. Barbed probabilistic bisimulation is the largest symmetric relation
'p⊆ PMA× PMA such that P 'p Q implies:

• for each n ∈ N, if P ↓ n, then Q ↓ n;

• for any context C, if C(P ) τ−→ µ, then C(Q) τ−→ ν for some distribution ν such that
µ([R]) = ν([R]) for all [R] ∈ PMA/'p

.

Below are some examples of PMA processes that are barbed probabilistic bisimilar.

q
[
in n.

(
1
3 .open r .0 + 2

3 .in m.(new k) 0
) ]

'p q
[
in n.

(
1
6 .open r .0 + 1

6 .open r .0 + 2
3 .in m.0

) ]
(new q) (q

[
in n.

(
1
3 .open r .0 + 2

3 .open r .0
) ]

'p (new s) (new t)
(
s
[
in n.

(
1
6 .open r .0 + 5

6 .open r .out t .0
) ])

Moreover, structural congruence is included in barbed probabilistic bisimilarity.

Proposition 4.16. Let P and Q be PMA processes. If P ≡ Q, then P 'p Q.

Proof. The proof follows by induction on ≡. ut

As in the case of Mobile Ambients, where there exist processes that are barbed bisimilar
but not structurally congruent, the reverse of Proposition 4.16 is not true. For exam-
ple, we can encode the standard example of MA processes that are bisimilar but not
structurally congruent as the following PMA processes:

in n.1.(in n.1.0) and (in n.1.0) | (in n.1.0)

which are barbed probabilistic bisimilar but not structurally congruent.

4.6. Encoding of probabilistic asynchronous CCS into PMA
Asynchronous CCS can be faithfully encoded into MA [49]. In this section we will

show that probabilistic asynchronous CCS can be faithfully encoded into PMA. Proba-
bilistic asynchronous CCS is a variant of the probabilistic extension of CCS as defined
in [11]. The difference is that, in the asynchronous setting [50, 51] the output operator
has no continuation and there is no nondeterministic choice operator. For simplicity we
call this calculus PCCS . We will show that, as in the non-probabilistic setting [49], the
encoding to PMA is quite natural since it is homomorphic for parallel composition, sum,
restriction and recursion.

We assume an enumerable set of input actions Act and corresponding set of output
actions Act = {a | a ∈ Act}.
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(input) a.
∑
i∈I pi.Pi

a−→ [[
∑
i∈I pi.Pi]]

(output) a
a−→ η0

(par1) P | Q α−→ µ | Q if P α−→ µ

(par2) P | Q α−→ P | µ if Q α−→ µ

(comm1) P | Q τ−→ µ1 | µ2 if P a−→ µ1 and Q
a−→ µ2

(comm2) P | Q τ−→ µ1 | µ2 if P a−→ µ1 and Q
a−→ µ2

(rest) (new b)P α−→ (new b)µ if α 6= b, α 6= b and P
α−→ µ

(rec) fixAP
τ−→ µ if P{fixAP/A}

τ−→ µ

Figure 5: Labelled Transition Semantics for PCCS

Definition 4.17. The set PCCS of processes PCCS is given by the syntax:

P,Q ::= 0
∣∣ P | Q ∣∣ (new a)P

∣∣ A
∣∣ fixAP

∣∣ a.∑i∈Ipi.Pi
∣∣ a

where a ∈ Act, a ∈ Act and
∑
i∈I pi is a summation over a countable index set I such

that pi ∈ (0, 1] for all i ∈ I and
∑
i∈I pi = 1.

Definition 4.18. Let Lab = Act∪Act∪ {τ} be the set of labels. The labelled transition
system semantics for PCCS is the probabilistic automaton (PCCS,Lab,→) where the
probabilistic transition relation →⊆ PCCS × Lab × Distr(PCCS) is the smallest relation
satisfying the rules in Figure 5.

We next give our encoding of PCCS into PMA.

Definition 4.19. The encoding [[·]] : PCCS → PMA of PCCS processes into PMA pro-
cesses is defined as follows:

[[0]] = 0
[[a]] = n(a)[ 0 ]

[[a.
∑
i∈I pi.Pi]] = open n(a).

∑
i∈I pi.[[Pi]]

[[P | Q]] = [[P ]] | [[Q]]
[[(new a)P ]] = (new n(a)) [[P ]]

[[fixAP ]] = fixA[[P ]]

where n : Act → N is an injective mapping from the set actions of PCCS to the set of
names of PMA. We also extend the encoding to map labels of PCCS to the actions of
PMA as follows:

[[a]] = open n(a), [[a]] = open n(a) and [[τ ]] = τ

and lift the mapping to distributions such that for any distribution µ ∈ Distr(PCCS) and
process T ∈ PMA:

[[µ]](T ) =
∑

P∈PCCS∧[[P ]]=T

µ(P ) .
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The following proposition demonstrates the above translation preserve the behaviour
of PCCS processes.

Proposition 4.20. For any process P ∈ PCCS and action α ∈ Lab:

P
α−→ µ ⇔ [[P ]]

[[α]]−−→ [[µ]] .

Proof. The proof follows by induction on the structure of P . ut

5. Probabilistic Ambient Logic

In this section we extend the Ambient Logic [24, 48] (see Section 3.2) to the proba-
bilistic setting. We take the standard approach in probabilistic temporal logics, see for
example PML [33] a probabilistic extension of HML [52] and PCTL [9, 44] a probabilistic
extension of CTL [53], and replace the some time operator 3φ with a probabilistically
quantified version of the form IP∼p(3φ) where ∼ ∈ {<,≤,≥, >} and p ∈ [0, 1]. Intu-
itively, a process satisfies such a formula IP∼p(3φ) if the probability of reaching a process
satisfying the formula φ in the underlying semantics (probabilistic automata) satisfies the
condition ∼p. Because of the nondeterminism present in the underlying semantic model
(see Section 2), we must quantify this condition over all the possible resolutions of the
nondeterminism.

Formally, the syntax of the Probabilistic Ambient Logic (PAL) is defined below.

Definition 5.1. The set of logical formulae of the Probabilistic Ambient Logic PAL is
given by the syntax:

φ ::= T
∣∣ ¬φ ∣∣ φ∨φ ∣∣ 0

∣∣ η[φ]
∣∣ φ|φ ∣∣ ◊φ

∣∣ φ@η
∣∣ φ . φ ∣∣ ∀x. φ ∣∣ ηrφ ∣∣ φ� η ∣∣

IP∼p(3φ) (probabilistic some time)

where x ∈ Var and η ∈ N ∪ Var, ∼∈ {<,≤,≥, >} and p ∈ [0, 1].

Definition 5.2. The satisfaction relation |=⊆ PMA × PAL is defined in the same way
as the satisfaction relation for AL (see Definition 3.9) except that for the probabilistic
operator: P |= IP∼p(3φ) if and only if

ProbAP {π ∈ PathA(P ) | π |= 3φ} ∼ p for all adversaries A of (PMA, {τ},→)

where π |= 3φ if and only if there exists i ∈ IN such that π(i) |= φ.

Examples of PAL properties include:

• n[ IP≤0(3 0) ] which states that there exists an ambient n and the chance that the
process inside this ambient becomes inactive is always 0;

• φ . IP≥1(3ψ) which states that in any context where φ holds one can always make,
with probability 1, ψ hold in the future;

• nr IP≥0.4(3φ) which states that once placed inside the ambient n, with probability
at least 0.4, φ will eventually become true;
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• IP≤0.75(3 (◊φ)) which states that the greatest chance that φ holds at any time in
any place is at most 0.75.

Note that the the original Ambient Logic (see Section 3.2) can be encoded in PAL by
mapping any formula 3φ to the formula ¬IP≤0(3φ) (which states that there exists an
adversary under which the probability of φ holding some time in the future is greater
than 0). Furthermore, the semantics of AL and PAL coincide for the subset of of PMA
which correspond to MA processes (i.e. which the guarded probabilistic choice operator
is restricted to M.1.P ).

We have seen in Section 3.2 that the equivalence relation induced by the Ambient
Logic coincides with structural congruence - for the finite fragment of Mobile Ambients
[39].

Definition 5.3. For any P,Q ∈ PMA, we write P =PAL Q when, for any formula
φ ∈ PAL, we have P |= φ if and only if Q |= φ.

Proposition 5.4. Let P,Q ∈ PMA. If P ≡ Q, then P =PAL Q.

Proof. The proof follows by showing that if P,Q ∈ PMA, P ≡ Q and φ ∈ PAL, then
P |= φ if and only if Q |= φ. The proof is by induction on the structure of φ ∈ PAL
and extends the case for Mobile Ambients and the Ambient logic [24]. The extension
concerns the case when φ = IP∼p(3ψ) for some ∼∈ {<,≤,≥, >}, p ∈ [0, 1] and ψ ∈ PAL
which we now describe.

By induction we have that if P,Q ∈ PMA and P ≡ Q, then P |= ψ if and only if
Q |= ψ. Using Lemma 4.10 we have that ≡ is a probabilistic bisimulation relation [33],
and hence using the results of [42] preserves formulae of the logic PCTL [9]. Further-
more, we can express the formula IP∼p(3ψ) in the logic PCTL by means of the formula
P∼p[ T U aψ ] where aψ is the atomic proposition labelling all processes satisfying ψ.
Combining these results with the induction hypothesis it follows that for any P,Q ∈ PMA
such that P ≡ Q: P |= IP∼p(3ψ) if and only if Q |= IP∼p(3ψ) as required. ut

The reverse direction is an open question, as is the exact relationship between this equiv-
alence and barbed probabilistic bisimulation. Recall that in the non-probabilistic setting
logical equivalence coincides with structural equivalence, and hence it also follows that
logical equivalence is stronger than barbed bisimulation. From these results it follows that
there exist processes that are barbed probabilistic bisimilar but not logically equivalent,
for example:

0 'p (new n) n[ 0 ] while 0 6|= n[T]� n, and (new n) n[ 0 ] |= n[T]� n .

Therefore, the possible relationship between logical equivalence and barbed probabilistic
bisimulation is either that logical equivalence is strictly finer than barbed probabilistic
bisimulation or that the equivalences are incomparable. On the other hand, from Propo-
sition 5.4, we have that that either PAL equivalence is strictly coarser than structural
congruence or the equivalences coincide.

6. Virus Spreading

In this section we demonstrate how the Probabilistic Ambient Calculus can be used for
specifying how a virus might spread through a network. In addition, we give examples of
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properties expressed in the Probabilistic Ambient Logic and results obtained for this case
study after a manual translation of the model and properties into the probabilistic model
checker PRISM [54, 55]. Note that the feasibility of this translation follows from the fact
that the semantics of the example has a finite state space. This example is inspired by
the models presented in [56, 21, 57] but considers nondeterminism not treated in these
models.

The model consists of a network in which one node has been infected by a virus. We
suppose that the virus, after infecting a node, can attempt to enter any of the neigh-
bouring nodes and, if successful, try to infect the neighbour. Furthermore, we suppose
that both the events of the virus entering a node and infecting a node are probabilistic.
In the case of entering, this means that there is chance that the virus may fail to pass
through the node’s firewall undetected, while in the case of infection, when the virus tries
to infect a node it may be detected and quarantined by the node’s local software. On
the other hand, we suppose that the choice as to which node (out of neighbouring nodes
that are not infected) the virus attempts to infect next is nondeterministic. Note that
the actual choice as to which node to infect next could depend on the precise topology
of nodes present in the network; for example, the choice may be based on that fact that
some of the neighbouring nodes are closer than others, because the virus is following
some route, or because the virus tries to attack certain types of nodes first.

The network is a grid of N×N nodes with each node connected to four neighbours
(the nodes that are above, below, to the left and to the right), except for the nodes on the
border for which some of the neighbours are not present. Unlike [56, 21, 57], we model
the situation in which the virus spawns/multiplies. That is, once a node is infected, the
virus remains at that node and repeatedly tries to infect any of the neighbouring nodes
while they remain uninfected.

The Probabilistic Ambient Calculus specification is given below.

System def= (Run | Node1,1 | Node1,2 | · · · | Noden,n−1 | Virusn,n)

Run def= (open run.0) | Run

Nodei,j
def= nodei,j [ 0 ]

Virusi,j
def= vi,j

[
in nodei−1 ,j .

(
pi−1,j .0 + (1−pi−1,j).Infect i−1,j

i,j

) ]
∣∣ vi,j

[
in nodei,j+1 .

(
pi,j+1.0 + (1−pi,j+1).Infect i,j+1

i,j

) ]
∣∣ vi,j

[
in nodei+1 ,j .

(
pi+1,j .0 + (1−pi+1,j).Infect i+1,j

i,j

) ]
∣∣ vi,j

[
in nodei,j−1 .

(
pi,j−1.0 + (1−pi,j−1).Infect i,j−1

i,j

) ]∣∣ Virusi,j

Infectk,li,j
def= run

[
Activatek,li,j

]
| Virusk,l

Activatek,li,j
def= out vi,j .

(
qk,l.0 + (1−qk,l).( out nodek ,l .open nodek ,l .open vk ,l .0 )

)
The behaviour of the virus in the specification given above can be understood as fol-
lows. When the virus has infected any node, it can spawn and attempt to enter the
ambient of any (uninfected) neighbouring node. If the virus has infected node Ni,j and
attempts to enter the neighbouring node Nk,l by entering the ambient nodek,l, then

40



N2,3N2,2N2,1

N3,1 N3,3N3,2
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virus

Figure 6: Network Configuration

with probability pk,l it will be blocked by the firewall, and with probability 1−pk,l it
will successfully pass through the node’s firewall. When the virus succeeds, it next tries
to infect the node. With probability qk,l the virus is detected and quarantined; with
probability 1−qk,l, the infection succeeds. Infection by the virus opens (removes) the
ambient nodei,j preventing the virus from attacking an infected node in the future. In
addition, it opens (removes) the ambient vi,j which enables the virus to spread to the
uninfected neighbours of the newly infected node: before the ambient vi,j is opened, the
virus present at the newly infected node (Virusk,l) is inside the ambient vi,j (the virus
has the form vi,j [ · · · vk,l[ in noden,m · · · ] · · · ]), and hence is unable to attempt to spread
to a neighbouring node Nn,m.

For our analysis we assume that the network is of size 3×3 and that the nodes N2,1,
N2,2 and N2,3 act as a barrier between the ‘high’ nodes (N1,1, N1,2 and N1,3) and the
‘low’ nodes (N3,1, N3,2 and N3,3) and are used to scan the traffic between these sets of
nodes. A graphical representation of the network in its initial configuration is given in
Figure 6. More precisely, we suppose that the probability qi,j equals 0.5 for each node,
while the probability pi,j for any ‘high’ or ‘low’ node equals 0.5, and for the barrier nodes
(N2,1, N2,2 and N2,3) we vary pi,j from 1 to 0.9.

We consider properties relating to node N1,1 getting infected by the virus which, since
initially only the node N3,3 is infected, requires that the virus passes through the barrier
nodes. For example, consider the following Probabilistic Ambient Logic formulae:

• ◊ n2,2[¬0 ] states that the virus has either infected node N2,2 or entered the node
without detection;

• IP≥1( 3 ( T | v1,3[ T ] ) ) states that with probability at least 1, the node N1,3 is
eventually infected by the virus;

• T . ¬IP≤0.2( 3 ( T | v1,2[ T ] ) ) states that, no matter what security measures are
added to the network, it is possible that the node N1,2 will become infected with
probability greater than 0.2;

• IP≤0( 3 ( T | node2,1[ 0 ] | node2,2[ 0 ] | node2,3[ 0 ] | v1,1[ T ] ) ) states that the
(‘high’) node N1,1 cannot become infected if none of the ‘barrier’ nodes are in-
fected;

• IP≥0.5( 3 ( T | node2,1[ 0 ] | v2,2[ T ] ) ) states that node N2,2 becomes infected before
node N2,1 with probability at least 0.5.
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Figure 7: Probability node N3,3 gets infected after K attacks

Note that, by a simple adaptation of the model, one can incorporate a counter into the
specification which counts the number of attempted attacks the virus undertakes, and
then also specify properties relating to the minimum/maximum probability that a node
is infected after at most k attacks.

Since this model is finite state, we have translated the semantics of this system into
the probabilistic model checking tool PRISM [54, 55] and calculated both the minimum
and maximum probability that node N3,3 is eventually infected and is infected after the
virus has performed at most k attacks, where k varies from 0 to 100. Both the minimum
and maximum probability of node N1,1 eventually becoming infected is 1, which is to be
expected since in our model at any infected site the virus repeatedly tries to infect all
neighbouring nodes.

The results concerning probability of infecting node N1,1 after at most k attacks are
presented in Figure 7. The first point to note is that, if the firewalls of the barrier nodes
are completely secure (pi,j equals 1), then the virus cannot pass from the ‘low’ nodes to
the ‘high’ nodes, and hence, no matter how many attacks are made, both the minimum
and maximum probability of N3,3 becoming infected is 0. The fact that there is a large
difference between the minimum and maximum probabilities of infection is because the
virus chooses nondeterministically which node to infect next, and in the maximum case
the virus finds the quickest route to infect the node N1,1, while in the minimum case
the virus attempts to infect all other nodes before infecting the node N1,1. Note that
the minimum and maximum probabilities to infect all nodes after at most k attacks are
the same; this is because the only choice the virus has is which neighbouring uninfected
node to attack next.

7. Conclusions

We have introduced probabilistic versions of Mobile Ambients and Ambient Logic,
with the aim of modelling randomised mobile distributed systems. We are able to carry
out probabilistic model checking of probabilistic ambient processes against Ambient Logic
specifications under the assumption that the underlying probabilistic automaton is finite
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state. In classical process calculi, such as CCS or the π-calculus, simple syntactic re-
strictions suffice to guarantee the finite-state property: namely, that recursive definition
can occur only under prefix and cannot be composed with any other operator in the
language. In the case of Mobile Ambients this restriction is too weak [58]. It is also
shown in [58] that finite state ambient is achieved by means of a type system.

Future work will include investigation of how the finite control type system can be
adapted to the probabilistic version of the calculus presented in this paper, with the aim of
developing and implementing a probabilistic model checker for the Probabilistic Ambient
Logic. In addition, we aim to answer the open question described in Section 5 regarding
the relationship between structural congruence, barbed probabilistic bisimulation and
logical equivalence.
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