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My internship took place in Oxford, United Kingdom, in the Oxford University Computing Laboratory1.
I have been working under the supervision of David Parker2, in the group of Marta Kwiatkowska3. This
team, among others, develops the probabilistic model checker PRISM4.

This software is a model checker for probabilistic models. It uses MTBDDs, a specific type of decision
diagrams, to represent models and perform model checking. I have been working on reducing these
diagrams size, by playing on the order in which the model variables are represented into MTBDDs.
Indeed, smaller diagrams lead to a faster computation time and give the ability to handle bigger models.
This problem being NP-complete, I had to use heuristics.

The atmosphere in the laboratory was very good and the whole team has been very welcoming with me.
I want to thank all of them for this, and especially Dave Parker who was very present and helped me in
many ways.

Oxford is also a beautiful city with an harmonious building architecture, and of course I have taken time
to visit it. I have been particularly impressed by the university, one of the most famous and eldest ones
in Europe, composed of 38 colleges present in lots of districts.

The first section in this report is a short introduction to PRISM, in which we describe the different types of
probabilistic models PRISM can handle. Then we define the MTBDD structure and explain how PRISM
uses MTBDDs to represent probabilistic models. The third section deals with variable ordering to reduce
MTBDDs size, this is the core of my work. Finally, there are two appendices: detailed results of my
experiments in PRISM with various heuristics, and a short documentation of the new ordering options I
have implemented.

1http://web.comlab.ox.ac.uk/
2http://web.comlab.ox.ac.uk/David.Parker/
3http://web.comlab.ox.ac.uk/Marta.Kwiatkowska/
4http://www.prismmodelchecker.org/
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1 Background Material

1.1 The PRISM Model Checker

PRISM (probabilistic symbolic model checker) is a tool for the modelling and analysis of systems which
exhibit probabilistic behavior. Probabilistic model checking is a formal verification technique. It is based
on the construction of a precise mathematical model of a system which is to be analyzed. Properties
of this system are then expressed formally in temporal logic and automatically analyzed against the
constructed model.

PRISM incorporates several well-known probabilistic temporal logics:

• PCTL (probabilistic computation tree logic).

• CSL (continuous stochastic logic).

• LTL (linear time logic).

• PCTL* (which subsumes both PCTL and LTL).

plus support for costs/rewards and several other custom features and extensions.

PRISM performs probabilistic model checking to automatically analyze such properties. It also contains
a discrete-event simulation engine for approximate verification.

More information about PRISM can be found on PRISM website5, or in David Parker’s thesis [Par02].

1.2 Probabilistic Models

Traditional model checking involves verifying properties of labelled state transition systems. In the
context of probabilistic model checking, however, we use models which also incorporate information
about the likelihood of transitions between states occurring. PRISM can handle three different types
of probabilistic models: discrete-time Markov chains, Markov decision processes and continuous-time
Markov chains.

1.2.1 Discrete-Time Markov Chains

The simplest of the models handled by PRISM are discrete-time Markov chains (DTMCs). They can be
used to model either a single probabilistic system or several such systems composed in a synchronous
fashion. We define a DTMC as a tuple (S, s0, P, l) where:

• S is a finite set of states.

• s0 ∈ S is the initial state.

• P : S × S → [0, 1] is the transition probability matrix.

• l : S → 2AP is the labelling function.

An element P (s, s′) of the transition probability matrix gives the probability of making a transition from
state s to state s′. We require that

∑
s′∈S P (s, s′) = 1 for all states s ∈ S. Terminating states are

modelled by adding a self-loop (a single transition going back to the same state with probability 1).
The labelling function l maps states to sets of atomic propositions from a set AP . We use these atomic
propositions to label states with properties of interest.

Figure 1 shows a DTMC with four states. In our graphical notation, states are drawn as circles and
transitions as arrows, labelled with their associated probabilities. The initial state is indicated by an

5http://www.prismmodelchecker.org/
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additional incoming arrow. The atomic propositions attached to each state, in this case taken from the
set AP = {a, b}, are also shown.

(a) (b)0

{}
1

{}

2

{a}

3

{b}

1

0.5

0.3

0.2

1

1

P =


0 1 0 0

0.5 0 0.3 0.2
0 0 1 0
0 0 0 1



Figure 1: A 4 state DTMC and its transition probability matrix

1.2.2 Markov Decision Processes

The second type of model we consider, Markov decision processes (MDPs), can be seen as a generalization
of DTMCs. An MDP can describe both nondeterministic and probabilistic behavior. It is well known
that nondeterminism is a valuable tool for modeling concurrency: an MDP allows us to describe the
behavior of a number of probabilistic systems operating in parallel. Nondeterminism is also useful when
the exact probability of a transition is not known, or when it is known but not considered relevant. We
define an MDP as a tuple (S, s0, Steps, l) where:

• S is a finite set of states.

• s0 ∈ S is the initial state.

• Steps : S → 2Dist(S) is the transition function.

• l : S → 2AP is the labelling function.

The set S, initial state s0 and labelling function l are as for DTMCs. The transition probability matrix
P , however, is replaced by Steps, a function mapping each state s ∈ S to a finite, non-empty subset
of Dist(S), the set of all probability distributions over S (i.e. the set of all functions of the form
µ : S → [0, 1] where

∑
s∈S µ(s) = 1). Intuitively, for a given state s ∈ S, the elements of Steps(s)

represent nondeterministic choices available in that state. Each nondeterministic choice is a probability
distribution, giving the likelihood of making a transition to any other state in S. Figure 2 shows an MDP.
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4 0 0 0 1

Figure 2: A 4 state MDP and the matrix representing its transition function

1.2.3 Continuous-Time Markov Chains

The final type of model, continuous-time Markov chains (CTMCs), also extend DTMCs but in a different
way. While each transition of a DTMC corresponds to a discrete time-step, in a CTMC transitions can
occur in real time. Each transition is labelled with a rate, defining the delay which occurs before it is
taken. The delay is sampled from a negative exponential distribution with parameter equal to this rate.
We define a CTMC as a tuple (S, s0, R, l) where:

• S is a finite set of states.

• s ∈ S is the initial state.

• R : S × S → R≥0 is the transition rate matrix.

• l : S → 2AP is the labelling function.
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The elements S, s0 and l are, again, as for DTMCs. The transition rate matrix R, however, gives the rate,
as opposed to the probability, of making transitions between states. For states s and s′, the probability
of a transition from s to s′ being enabled within t time units is 1 − e−R(s,s′)·t. Typically, there is more
than one state s with R(s, s′) > 0 (this is known as a race condition). Figure 3 shows a CTMC.
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Figure 3: A 3 state CTMC with its transition rate matrix

1.3 The PRISM Language Fundamentals

The two basic elements of the PRISM language are modules and variables. A model M is defined as
the parallel composition of several interacting modules. Each module has a set of integer-valued, local
variables with finite range. We will often refer to these as model variables. The set of model variables in
M is noted var(M). The local state of a module at a particular time is given by a valuation of its local
variables. A global state of the whole model is a valuation of the variables for all modules.

A module makes a transition from one local state to another by changing the value of its local variables.
A transition of the whole model from one global state to another comprises transitions for one or more
of its component modules. This can either be asynchronous, where a single module makes a transition
independently, the others remaining in their current state, or synchronous, where two or more modules
make a transition simultaneously.

The behavior of each module, i.e. the transitions it can make in any given state, are defined by a set of
commands. Each command consists of a guard, which identifies a subset of the global state space, and
one or more updates, each of which corresponds to a possible transition of the module. Intuitively, if the
model is in a state satisfying the guard of a command then the module can make the transitions defined
by the updates of that command. The probability that each transition will be taken is also specified by
the command. The precise nature of this information depends on the type of model being described.

As an example, we consider a description of the 4 state DTMC from figure 1. This is shown in figure
4. The first line identifies the model type, in this case a DTMC. The remaining lines define the modules
which make up the model. For this simple example, only a single module m is required.

dtmc
module m

v : [0..3] init 0;
[ ] (v = 0)→ 1 : (v′ = 1);
[ ] (v = 1)→ 0.5 : (v′ = 0) + 0.3 : (v′ = 2) + 0.2 : (v′ = 3);
[ ] (v = 2)→ 1 : (v′ = 2);
[ ] (v = 3)→ 1 : (v′ = 3);

endmodule

Figure 4: An example of PRISM model file

The first part of a module definition gives its set of local variables, identifying the name, range and initial
value of each one. In this case, we have a single variable v with range [0..3] and initial value 0. Hence,
the local state space of module m, and indeed the global state space of the whole DTMC, is [[0, 3]].

The second part of a module definition gives its set of commands. Each one takes the form “ [ ] g → u;”,
where g is the guard and u lists one or more updates. A guard is a predicate over all the variables of
the model (in this case, just v). Since each state of the model is associated with a valuation of these
variables, a guard defines a subset of the model state space. The updates specify transitions that the
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module can make. These are expressed in terms of how the values of the local variables would change if
the transition occurred. In our notation, v′ denotes the updated value of v, so “v′ = 1” implies simply
that v’s value will change to 1.

Here, since M is a DTMC model, the likelihood of each possible transition being taken is given by a
discrete probability distribution. The second command of m shows an example of this. There is a clear
correspondence between this probability distribution and the one in state 1 of the DTMC in figure 1.
With an MDP, the syntax would be the same, but several command whose guards are not disjoint would
be allowed. In the case of a CTMC model, each command would be assigned rates instead of probabilities.

Commands can be labelled with a name l between square brackets: “ [l] g → u”. Commands in different
modules with the same label are synchronized. In this case, the probability (or the rate) of a synchronous
transition is defined to be the product of its component probabilities (or rates). Two synchronized
commands

[l] g →
n∑

i=1

pi : ui and [l] g′ →
n′∑

i′=1

p′i′ : u′i′

are equivalent to the command

[l] g& g′ →
n∑

i=1

n′∑
i′=1

pip
′
i′ : ui &u′i′ .

Thus, a model with synchronized commands can be described by an equivalent model without synchro-
nizations. For this reason, we consider only models with no synchronized commands. In figure 4, every
commands are asynchronous.

2 Multi-Terminal Binary Decision Diagrams

Model checking had shown itself to be successful on relatively small examples, but it quickly became
apparent that, when applied to real-life examples, explicitly enumerating all the states of the model is
impractical. The fundamental difficulty, often referred to as the state space explosion problem, is that
the state space of models representing even the most trivial real-life systems can easily become huge.

One of the most well-known approaches for combating this problem is symbolic model checking. This
refers to techniques based on a data structure called binary decision diagrams (BDDs). These are directed
acyclic graphs which can be used to represent boolean functions f : Bn → B. BDDs were introduced by
Lee [Lee59] and Akers [Ake78] but became popular following the work of Bryant [Bry86], who refined
the data structure and developed a set of efficient algorithms for their manipulation. In this report, we
assume the reader is somewhat familiar with BDDs. If not, an introduction to BDDs can be found in
[And97].

In terms of model checking, the fundamental breakthrough was made by McMillan. He observed that
transition relations, which were stored explicitly as adjacency lists in existing implementations, could be
stored symbolically as BDDs. Because of the reduced storage scheme employed by the data structure,
BDDs could be used to exploit high-level structure and regularity in the transition relations.

In PRISM, established symbolic model checking techniques are expanded to the probabilistic case. In
addition to algorithms based on graph analysis, probabilistic model checking requires numerical compu-
tation to be performed. While graph analysis reduces to operations on a model transition relation and
sets of its states, numerical computation requires operations on real-valued matrices and vectors. For
this reason, the most natural way to extend BDD-based symbolic model checking is to use multi-terminal
binary decision diagrams (MTBDDs).

MTBDDs were first proposed in [CMZ+93] and then developed independently in [CFM+93] and [BFG+93].
MTBDDs extend BDDs by representing functions which can take values from an arbitrary set D, not
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just B, i.e. functions of the form f : Bn → D. In the majority of cases, D is taken to be R and this is the
policy we adopt here. Note that BDDs are in fact a special case of MTBDDs, in which D = B.

2.1 Definition

Let {x1, . . . , xn} be a set of distinct, boolean variables which are totally ordered as follows: x1 < . . . < xn.
An MTBDD B over x̄ = (x1, . . . , xn) is a rooted, directed acyclic graph. The vertices of the graph are
known as nodes. Each node of the MTBDD is classed as either non-terminal or terminal. A non-terminal
node b is labelled with a variable var(b) ∈ x̄ and has exactly two children, denoted then(b) and else(b). A
terminal node b′ is labelled by a real number val(b′) and has no children. We will often refer to terminal
and non-terminal nodes simply as terminals and non-terminals, respectively.

The ordering < over the boolean variables is imposed upon the nodes of the MTBDD. For two non-
terminals, b1 and b2, if var(b1) < var(b2), then b1 < b2. If b1 is a non-terminal and b2 is a terminal, then
b1 < b2. We require that, for every non-terminal b in an MTBDD, b < else(b) and b < then(b). The
boolean variable ordering for an MTBDD over x̄ is noted by a list of variables: ω = [x1, . . . , xn].

Figure 5(a) shows an example of an MTBDD. The nodes are arranged in horizontal levels, one per boolean
variable. The variable var(b) for a non-terminal b is given by its label. The two children of a node b are
connected to it by edges, a solid line for then(b) and a dashed line for else(b). Terminals are drawn as
squares, instead of circles, and are labelled with their value val(b). For clarity, we omit the terminal with
value 0 and any edges which lead directly to it.

(a) (b)

x1

x2 x2

x3 x3 x3

3 9 4

x1 x2 x3 fB
0 0 1 3
0 1 0 9
1 1 0 9
1 0 0 4
1 0 1 4
otherwise 0

Figure 5: An MTBDD B and its function fB.

An MTBDD B over variables x̄ = (x1, . . . , xn) represents a function fB(x1, . . . , xn) : Bn → R. The
value of fB(x1, . . . , xn) is determined by tracing a path in B from the root node to a terminal, for each
non-terminal b, taking the edge to then(b) if var(b) is 1 or else(b) if var(b) is 0. The function represented
by the MTBDD in figure 5(a) is shown in figure 5(b).

The reason that MTBDDs can often provide compact storage is because they are stored in a reduced
form: if two nodes b and b′ are identical, i.e. if

var(b) = var(b′) and then(b) = then(b′) and else(b) = else(b′)

then only one copy of the node is stored. We refer to this as sharing of nodes.

In this report we assume that all MTBDDs are fully reduced in this way. Under this assumption, and
for a fixed ordering of boolean variables, the data structure can be shown to be canonical, meaning that
there is a one-to-one correspondence between MTBDDs and the functions they represent:

B = B′ iff fB = f ′B.

2.2 Variable Ordering

The size of an MTBDD B is defined as the number n of nodes contained in the data structure. This is
particularly important because it affects both
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• The total amount of memory required to store B, directly proportional to its number of nodes n.

• The time complexity of operations on B, typically proportional to n.

An important consideration from a practical point of view is variable ordering, the size of an MTBDD
representing a given function being extremely sensitive to the ordering of its boolean variables.

Let us consider a boolean function with m variables f(x1, . . . , xm) : Bm → R. The size of an MTBDD
representing f is in O(m) at the best and in O(2m) in the worst case, depending upon the ordering of
boolean variables x1, . . . , xm. This can be proved analyzing the boolean function

f(x1, . . . , xp, y1, . . . , yp) =
p∧

i=1

(xi = yi).

If constructed with the variable ordering (a) [x1, . . . , xp, y1, . . . , yp], the MTBDD representing f contains
3 · 2p − 2 = O(2p) nodes. If we choose to use the ordering (b) [x1, y1, . . . , xp, yp] instead of (a), the
MTBDD will contain only 3p+1 = O(p) nodes. Figure 6 shows the MTBDDs constructed with orderings
(a) and (b), and n = 2.

(a) (b)

x1

x2 x2

y1 y1 y1 y1

y2 y2

1

x1

y1 y1

x2

y2 y2

1

Figure 6: Two MTBDDs representing the same function, with different orderings

It is of crucial importance to care about variable ordering when applying this data structure in practice.
The problem of finding the best variable ordering is NP-complete [BW96]. The best known algorithm,
relying on a dynamic programming approach, has a time complexity O(n23n) where n is the number of
boolean variables to order [FS87]. In practice, it cannot be used for problems with more than approxi-
mately 16 boolean variables, which is in practice far too limiting. Furthermore, for any constant c > 1,
it is even NP-hard to compute a variable ordering resulting in a MTBDD with a size that is at most c
times larger than the optimal one [Sie02]. The consequence is that we absolutely need to use heuristics
to tackle this problem. This discussed in sections 3.

2.3 MTBDD Model Construction

We now present ways in which probabilistic models can be encoded as MTBDDs. This translation
proceeds in three phases. The first task is to establish an encoding of the model’s state space into
MTBDD variables. Secondly, using the correspondence between PRISM and MTBDD variables provided
by this encoding, an MTBDD representing the model is constructed from its description. Thirdly, we
compute from the constructed model the set of reachable states. All unreachable states, which are of no
interest, are then removed.

2.3.1 Encoding Into MTBDD Variables

In our case, a model’s state space is defined by a number of integer-valued PRISM variables. To represent
it in terms of MTBDD variables, PRISM’s technique is to encode each model variable with its own set of
MTBDD variables. For the encoding of each one, we use the standard binary representation of integers.
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Consider a model with three PRISM variables, v1 , v2 and v3 , each of range {0, 1, 2}. Our structured
encoding would use 6 MTBDD variables, say x1, . . . , x6, with two for each PRISM variable, i.e. x1 , x2

for v1, x3, x4 for v2 and x5, x6 for v3. The state (2, 1, 1), for example, would become (1, 0, 0, 1, 0, 1).

An interesting consequence of this encoding is that we effectively introduce a number of extra states into
the model. In our example, 6 MTBDD variables encode 26 = 64 states, but the model actually only has
33 = 27 states, leaving 37 unused. We refer to these extra states as dummy states. Happily, dummy
states will not increase the MTBDD size, as MTBDDs contain no nodes to encode irrelevant information.

Compared to other encoding techniques, this scheme generally leads to smaller MTBDDs [Par02]. Two
other important advantages result from the close correspondence between PRISM variables and MTBDD
variables. Firstly, it facilitates the process of constructing an MTBDD, i.e. the conversion of a description
in the PRISM language into an MTBDD representing the corresponding model. Since the description
is given in terms of PRISM variables, this can be done with an almost direct translation. Secondly,
we find that useful information about the model is implicitly encoded in the MTBDD. When using
PRISM, the atomic propositions used in PCTL or CSL specifications are predicates over PRISM variables.
It is therefore simple, when model checking, to construct an MTBDD which represents the set of states
satisfying such a predicate by transforming it into one over MTBDD variables. With most other encodings,
it would be necessary to use a separate data structure to keep track of which states satisfy which atomic
propositions.

2.3.2 MTBDD Construction

The second step consists in constructing an MTBDD representing the set of possible transitions in the
model from its description, using the correspondence between PRISM and MTBDD variables. We begin
by considering the problem of representing DTMCs and CTMCs. Such a model is described by a real-
valued square matrix P whose indices are global states s ∈ S (that is to say a valuation of all the model
variables), or equivalently by a function

fP : S × S → R.

Yet, given our encoding of model variables into boolean variables, described in section 2.3.1, we can
represent each variable value in a global state s as a set of boolean variables values. Thus, a global state
s can be seen as a tuple of boolean values s̃ ∈ Bn. P can then be described with a function

f̃P : Bn × Bn → R = B2n → R

which can be represented with an MTBDD. (If s̃ or s̃′ is a dummy state, f̃P (s̃, s̃′) simply returns 0,
stating the transition is impossible.)

To clarify it, we consider the 4 state DTMC in figures 1 and 4. As described in section 2.3.1, the unique
model variable v ∈ [[0, 3]] is encoded with two boolean variables (v1, v2) ∈ B2 such as v = 2v1 + v2.
Figure 7(a) represents the model transition matrix indexed by (v1, v2), and figure 7(b) the corresponding
MTBDD. As previously, notations v′,v′1, v′2 denote updated values of v, v1 and v2.

We can check that a path in the resulting MTBDD from the root node to a terminal node b corresponds
to a couple (s̃, s̃′) ∈ S2 of global states, while val(b) is the probability label of the transition s̃ → s̃′ in
the model. For example, the path v1 = v′1 = v2 = v′2 = >, consisting in following only solid lines from
the root node, leads to the probability 1. This path corresponds to the command (v = 3) → (v′ = 3)
(see figure 4). On the other hand, we can also notice there is no path v1 = v′1 = v2 = v′2 = ⊥, as well as
there is no command (v = 0)→ (v′ = 0) in the model.

Efficient construction of an MTBDD from a matrix is beyond the scope of this document. This topic is
investigated in [CFM+93] and [BFG+93].

Representing MDPs with MTBDDs is more complex than DTMCs or CTMCs since the nondeterminism
must also be encoded. An MDP is not described by a transition matrix over states, but by a function
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(a) (b)P̃ =

0, 0 0, 1 1, 0 1, 1
0, 0 0 1 0 0
0, 1 0.5 0 0.3 0.2
1, 0 0 0 1 0
1, 1 0 0 0 1

v1

v′
1 v′

1

v2 v2 v2

v′
2 v′

2 v′
2 v′

2

1 0.5 0.3 0.2

Figure 7: A re-indexed transition matrix and the corresponding MTBDD

Steps mapping each state to a set of nondeterministic choices, each of which is a probability distribution
over states.

Assuming, however, that the maximum number of nondeterministic choices in any state is m, and
letting S denote the set of states of the MDP, we can reinterpret Steps as a function of the form
S × [[1,m]]× S → [0, 1]. We have already discussed ways of encodings a model’s state S into boolean
variables. If we encode the set [[1,m]] in a similar fashion, we can consider Steps as a function mapping
boolean variables to real numbers, and hence represent it as an MTBDD. Thus, we use as usual boolean
variables to range over source and destination states, along with extra boolean variables to encode [[1,m]].
These new variables are referred as nondeterministic variables, since they represent nondeterministic
choices in the model. Their encoding scheme is addressed more in detail in [Par02].

2.3.3 Reachability

MTBDDs constructed in the previous section represent a model’s transitions relation, but do not take
into account reachability. The last step to convert a model description into an MTBDD representing it
is to compute the set of reachable states and encode it into the MTBDD: all unreachable states, which
are of no interest, have then to be removed.

Computing the set of reachable states of the model can be done via a breadth-first search of the state space
starting with the initial state. First, an MTBDD representing the initial state is computed. Reachability
is then performed iteratively using this MTBDD along with the transition MTBDD defined in section
2.3.2.

It should be noted that, in non-probabilistic model checking, determining the reachable states of a model
may actually be sufficient for model checking. In our case, though, we usually need to perform probability
calculations. Since these must be performed on the entire, reachable model, reachability is part of the
construction phase.

Another observation we make here is that the removal of unreachable states from the model often causes
an increase in the size of the MTBDD. This looks paradoxical, as both the number of states and the
number of transitions in the model decrease. An explanation for this phenomenon is that the regularity
of the model is also reduced, which decreases the ratio of shared nodes in the MTBDD. It is, however,
impractical to retain the unreachable states since this would result in extra work being performed at the
model checking stage.

3 Reducing MTBDDs Size

The size of an MTBDD is defined as the number of nodes contained in the data structure. This notion is
particularly important for several reasons. First, it affects the amount of memory required for storage: as
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each MTBDD node is stored in memory, the memory footprint of an MTBDD is typically proportional
to the number of nodes it contains. Second, time complexity of operations on MTBDDs also depends on
their size, and so construction and model checking times too.

As a consequence, reducing the average size of MTBDDs in PRISM would have two benefits:

• First, it decrease time required for MTBDD construction and model checking.

• Second, this would allow to handle more complex models with the same computation capacities.

We have seen in section 2.2 that the size of an MTBDD representing a given model is extremely sensitive
to the ordering of its boolean variables. Consequently, a way to reduce size of MTBDDs in PRISM is to
generate boolean variable orderings leading to small MTBDDs. Unfortunately, the problem of finding
the best variable ordering is NP-hard [BW96]. Thus, we will have to use heuristics to find good variable
orderings, despite not the best ones, in a reasonable time.

We will focus only on the ordering of boolean variables deriving from model variables. We have briefly seen
in section 2.3.2 that MTBDD representations of MDP models also contain extra boolean variables, known
as nondeterministic variables, to represent nondeterministic behaviors. The position these variables
should be given in orderings will not be addressed in this report. This problem is discussed in [Par02].
For our part, eventual nondeterministic boolean variables will be systematically placed in top of MTBDD
orderings, before boolean representations of model variables.

3.1 Static Heuristics vs Dynamic Heuristics

There are several heuristic approaches to find fairly good variable orderings. Variable ordering heuristics
can be divided into two groups: static and dynamic heuristics. Static heuristics compute an ordering
of variables from the syntactic description of the model to be represented before MTBDD construction.
Dynamic heuristics attempt to minimize MTBDD size by improving variable ordering after the MTBDD
has been partially or completely constructed.

These two categories of heuristics rely on different principles. In static heuristics, we try to avoid most
of computations necessary to an MTBDD construction. So, they involve less calculations and are usually
faster to run than dynamic heuristics. But they lead to less good results, since they cannot take into
consideration some fine phenomenon occurring in MTBDDs. They are also most of the time less general:
a given static heuristic may be suited for a model or a category of models, but will have poor results with
some others. On the other hand, dynamic heuristics are very general and do not depend on the category
of the model being encoded into MTBDDs. They give usually better results at the expense of a slower
computation time.

Both categories of heuristics are interesting, and they can be used in conjunction for a better efficiency:
first we get a boolean variable ordering from the model thanks to a static heuristic, we can then start
the MTBDD construction, and try to improve it during or after the construction phase with a dynamic
heuristic. In PRISM, all the MTBDD stuff rely on the CUDD (Colorado University Decision Diagram)
package6 of F. Somenzi. It provides a rich set of dynamic reordering algorithms, some of them being
slight variations of existing techniques and other having been developed specifically for it.

As many dynamic heuristics were provided directly by CUDD, I have been mainly working on static
heuristics during my internship. My task was to create new heuristics or adapt existing BDDs heuristic
to MTBDD representations of probabilistic models, to implement them into PRISM and to compare
results quality and computation time of these heuristics. Consequently, the sequel of this document
principally deals with static heuristics, although dynamic heuristics are briefly discussed in section 3.4

6http://vlsi.colorado.edu/~fabio/CUDD/

12

http://vlsi.colorado.edu/~fabio/CUDD/


3.2 Static Heuristics

Most of static heuristics are based on the following simple observations. First, we notice that locating
strongly dependent variables close to each other typically reduces MTBDDs size. Second, in a group of
variables, variables appearing more important should be placed higher in the variable ordering. We will
refer to these two key ideas with notations ¬ and .

These two ideas do not correspond to very precise rules. The dependence between two variables v1, v2
denotes the influence the value of v1 may have on the value of v2, and vice versa. If knowing the value
of v1 massively reduces the number of possible values for v2, then v2 is strongly dependent on v1. This
is difficult to evaluate precisely while trying to limit computation time, so it may be evaluated by the
number of commands containing both v1 and v2, or the distance between these variables in the formulas
of a model. The importance of a variable v is an indicator of the number of variables strongly dependent
on v, that is to say the way its value influences the value of many other variables. Once again, as we
try to minimize computation time, this will be interpreted by the number of commands containing v, or
the number of variables related to v. In fact, the interpretation and the consideration given to ¬ and 
depends on the heuristic.

Figure 6 illustrates the idea ¬. Consider what happens when we traverse the MTBDDs from top to
bottom, trying to determine the value of the function for some assignment of the variables. Effectively,
each node encodes the values of all the variables in levels above it. For example, in the second MTBDD,
after two levels, we have established whether or not x1 = y1. If so, we will be positioned at the single
node on the x2 level. If not, we will have already moved to the zero constant node. In either case, from
this point on, the values of x1 and y1 are effectively irrelevant, since in the function being represented, x1

and y1 relate only to each other. In the second MTBDD, however, there is a gap in the ordering between
x1 and y1. After the first level, we “know” the value of x1 but cannot “use” it until the third level. In the
meantime, we must consider all possible values of x2, causing a blow-up in the number of nodes required.

Many heuristics are performed using the model abstract syntax tree (AST), the syntactic structure of
a given PRISM model M. For this, we regard the PRISM commands as terms over the signature that
contains constant symbols and the primed and unprimed versions of the model variables as atoms, and
uses symbols like +, ∗, =, <, → as function symbols (the probabilities attached to updates are irrelevant
and can simply be ignored). The node set in the AST A for model M consists of all commands in M
and their subterms: the primed and unprimed versions of the variables ofM and nodes for all function
symbols that appear in the commands ofM (like comparison operators, arithmetic operators, the arrows
between guard and sum of updates in commands). Furthermore, A contains a special root node that
serves to link all commands. The edge relation in the AST is given by the “subterm relation”. That is, the
leaves stand for the primed or unprimed variables (they are merged) or constants. (At the bottom level,
leaves representing the same variable or constant are collapsed, so, in fact, the AST is a directed acyclic
graph, and possibly not a proper tree.) The children of each inner node a represent the maximal proper
subterms of the term represented by node a. The children of the root note are the nodes representing
the commands. As an example, figure 8 represents the AST of the second command in PRISM model file
in figure 4.

A

→

+

= = = =

v01 2 3

Figure 8: A PRISM model partial AST
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Let a be an AST node, var(a) is defined as the set ofM variables which appear in node a or its children:

var(a) =


{v} if a is a variable leave v
∅ if a is a constant leave⋃

a′ child of a

var(a′) if a is an inner node

In particular, var(A) = var(M).

3.2.1 Boolean Variable Interleaving

A prominent idea is to interleave the boolean variables v1, . . . , vn, v
′
1, . . . , v

′
n representing a model vari-

able v values before an update and after an update. In the ordering, this leads to the sequence
[. . . , v1, v′1, . . . , vn, v

′
n, . . . ]. This idea was first presented in [EFT91].

This is a consequence of ¬. Indeed, each traversal through the MTBDD corresponds to a single tran-
sition in the model. In a typical transition, only a few PRISM variables will actually change value, the
rest remaining constant. Since there is a direct correspondence between PRISM variables and MTBDD
variables, this argument also applies at the MTBDD level: generally, each v′i variable is most closely
related to vi. For instance, if we consider a model with two variables v, w, the following commands are
equivalent:

w = 0 → w′ = 1
⇐⇒ w = 0 → w′ = 1 & v′ = v
⇐⇒ w = 0 → w′ = 1 & v′1 = v1 & . . . & v′n = vn

So, boolean variables vi, v′1 should be grouped together in the ordering according to ¬. Hence, the
interleaved variable ordering is beneficial.

Figure 9 demonstrates the effect of this on some typical transition matrices. We use the polling system
case study of [IT90], but results are the same for all PRISM examples. We present MTBDD sizes for both
the interleaved and non-interleaved orderings. The difference is clear: it is simply not feasible to consider
non-interleaved orderings.

N States MTBDD size
Interleaved Non-interleaved

5 240 271 1,363
7 1,344 482 6,766
9 6,912 765 39,298
11 33,792 1,096 178,399
13 159,744 1,491 794,185

Figure 9: MTBDD sizes for interleaved and non-interleaved variable orderings

Considering these results, boolean variable interleaving will be systematically used. The rest of this section
deals with heuristics providing variable orderings for model variables only. Coupled with this boolean
variable interleaving, they can be used to construct complete boolean variable orderings. Considering
only model variables also improves running time of most of heuristics, since the amount of variables to
handle is smaller and there is no need to convert variables in model descriptions into sets of boolean
variables before running heuristics.

We are going to study several general heuristics, which can be used with any category of models. Results
are given farther in this section, and detailed results in appendix A. There also exist specialized heuris-
tics, designed to handle models representing a precise structure, for example the very efficient Noack’s
algorithm for Petri nets [Noa99]. These heuristics give generally better results on the category of models
they are conceived for than general heuristics. We have not implemented them in PRISM for two reasons.
First, most of PRISM probabilistic models simply does not correspond to an usual structure but are
rather a conjunction of probabilistic automatons with no obvious property. Second, it would be slow
and difficult to infer which structure a PRISM model file possibly corresponds to, and convert it into this
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structure to be able to apply a suited heuristic, if such a heuristic exists. For this reason, only general
heuristics are discussed next.

3.2.2 Greedy Algorithms

A first category of heuristics rely on greedy algorithms. The basic idea is to build a complete model
variable ordering step by step, adding a model variable at every step to a partial ordering ω (initially
empty), until ω contains all the model variables. To choose which variable should be added to ω at every
step, a weight function weight(v, ω,M) is computed for every model variable v ∈ var(M) \ ω not yet in
ω. This function depends on the considered variable v, the content of the partial ordering ω when the
function is called, and the modelM. The variable with the highest weight is then added to the partial
ordering ω. The mechanism of a greedy algorithm is represented in figure 10. (· is the list concatenation
operator.)

var ω = [ ]
while var(M) \ ω 6= ∅ do

for every model variable v ∈ var(M) \ ω do
var wv = weight(v, ω,M)

end for
var vmax = v ∈ var(M) \ ω such as wv is maximal
ω := ω · [vmax]

end while
return ω

Figure 10: Mechanism of a greedy algorithm

Clearly, the core of a greedy algorithm is its weight function. Its complexity also depends on this
function. Let n be the number of model variables inM and suppose time complexity of weight(v, ω,M)
is in O(f(M)), the overall time complexity of a greedy algorithm is

Tc = O
(

n∑
i=1

i · f(M)

)
where term “i · f(M)” arises from the for loop and the sum from the while loop (time to select vmax is
supposed negligible compared to f(M)).

If f(M) = O(n), then Tc = O (
∑n

i=1 i · n) so the global run time is O(n3). If weight(v, ω,M) only
depends on v,M, and not on ω, the weight wv of each model variable v has to be computed only once,
which makes the for loop useless, so time complexity is only O(n · f(M)).

Concerning memory footprint, this algorithm just requires to store a partial ordering ω whose length is
limited by n, n other bytes to store at most n model variable weights in the for loop and eventually some
room to run the weight function.

Presence In Commands

Let us present a first greedy heuristic. We consider a model M and note C the set of commands in M
(i.e. the set of root node’s children in the model AST). Then, the weight of a model variable v in a partial
ordering ω is defined as the sum, for every command c in C containing v, of the number of variables in
ω · [v] which are also present in c. In other words,

weight(v, ω,M) =
∑
c∈C

x∈var(c)

|(ω · [v]) ∩ var(c)|

We can show this algorithm respects ideas ¬ and  leading to a good variable ordering. Indeed, con-
sidering a model variable v and a partial ordering ω, there are two conditions so that weight(v, ω,M)
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returns a high value. First, v should appear in the same commands as many variables which are yet in
the partial ordering, in order to maximize the intersection term. As a consequence, close variables are
kept together in the ordering, which corresponds to ¬. Second, the weight of a model variable v depends
on the number of commands containing it, so important variables, which appear in a lot of commands,
have a more important weight and tends to be placed first in the ordering, with regards to .

Fan-in Heuristic

A well-known BDD variable ordering algorithm is fan-in heuristic [MWB88], by Malik et al. This heuristic
was primarily designed for logic circuits, but can be adapted to MTBDDs and probabilistic models rather
easily and still give good results. We study here this later variant.

Fan-in heuristic relies on walks on a model’s AST A. It consists in two steps. First, a breadth-first search
is performed, starting from the leaves in A (i.e. variables and constant symbols), which labels all nodes
of the tree with the maximum distance to a leave node. The label l(a) of a node a is formally defined by:

l(a) =
{

0 if a is a leave
1 + max{l(a′) | a′ is a child of a} if a is an inner node

The second step of the heuristic is to perform a depth-first search of variable leaves, starting at the root
node, with the additional property that the depth-first search order in each node a that is visited is
according to a descending ordering of the label values of its children. The visiting order of the variables
then yields a promising variable ordering for the model’s MTBDD.

Figure 11(a) represents the AST of command x = y → x′ = y ∗ z. Each node a is labelled by l(a). We
can check that terminal nodes are labelled by 0, the star node by 1, because its two children are terminal
nodes, the rightmost equal node by 2 = 1 + max{0, 1}, etc. Once the AST is labelled, it can be traversed
to get a variable ordering. With respect to fan-in heuristic traversal rule, starting at the arrow node, the
rightmost equal node has to be explored first since its label is greater than its brother’s, then the star
node, which leads to the ordering [y, z, x] or [z, y, x].

Fan-in heuristic is based on the assumption that variables which are accessed via longer paths are more
important, and so, to respect the principle , have to be ordered first. As ordering construction relies
on a depth-first AST traversal, this algorithms also groups close variables together, which corresponds to
the first idea ¬. It was primarily designed to be efficient for models based on logic circuits, but results
are rather good for most of PRISM models.

Another good point, this algorithm just require to traverse twice the model AST and is consequently
very fast.

(a) (b)

→3

=1 =2

∗1

x0 y0 z0

→1

=1
2 =1

2

∗1
4

x1
2

y3
8

z1
8

Figure 11: A command AST labelled by fan-in and weight heuristics

Weight Heuristic

Another ordering technique is given by the weight heuristic [MIY90]. It relies on an iterative approach
that assigns weights to all nodes in the AST A and in each iteration the variable with the highest weight

16



is the next in the variable ordering. This variable as well as any node that cannot reach any other variable
is then removed from A and the next iteration yields the next variable in the ordering. (We suppose here
that initially the leaves representing constants are removed from the AST.) In each iteration the weights
are obtained as follows. We start with the root node and assign weight 1 to it and then propagate the
weight to the leaves by means of the formula:

l(a) =


1 if a is root∑

a′ father of a

l(a′)
number of children of a′

if a is not root

(As at the at the bottom level, leaves representing the same variable or constant are collapsed, the AST
is a direct acyclic graph and possibly not a proper tree, so an outer node may have several fathers.)

Figure 11(b) represents the AST of command x = y → x′ = y ∗ z, before any node deletion occurred.
Each node a is labelled by l(a) as defined above. We can check the root node is labelled by 1, its two
children by 1

2 , the star node by 1
4 = 1/2

2 because its father is labelled by 1
2 and has two children, etc.

The variable with the highest weight is x so the resulting ordering starts with variable x. To pursue
the ordering computation, x node should be removed as well as both edges leading to it, and labels of
remaining nodes should be recomputed. Finally, the resulting ordering with weight heuristic is [x, y, z].

Using this heuristic requires to delete parts of the AST and then to label some remaining nodes again
each time a variable is added to the ordering. Weight heuristic is by consequence slower than fan-in
heuristic.

3.2.3 Variable graphs

Another approach is to represent some properties of a probabilistic model M with a graph. A model
variable graph is defined as a complete, undirected edge-labeled graph G = (V,E, l) such as:

• Vertices V are model variables: V = var(M).

• E = V × V is the set of graph edges. An edge is a couple of model variables.

• l : E → R is a label function.

Variable graphs are simplified descriptions of models. The label function l maps an edge, that is to say a
pair of model variables to a value, thus representing a relation on variables. Graph algorithms can then
be used to find a hamiltonian path in the graph, that is to say a complete model variable ordering.

TSP Heuristics

A first heuristic consists in defining l(v1, v2) as the distance between model variables v1, v2 in the model’s
AST A. There are several ways to define a distance between two variables. We can envisage to use the
length of the shortest path p in A linking v1 and v2, but results are not satisfying. Indeed, v1 and v2
can be very close in a given sub-formula of model description and quite distant anywhere else, in which
case v1 and v2 should not be considered that close in the graph. It is far better to consider an average
distance between v1 and v2.

The definition which gave the best results is the following. Considering two model variable v1 and v2, let
P1 (respectively P2) the set of paths (A → · · · → v1) (respectively (A → · · · → v2)) in the AST starting
from root node and leading to the leave v1 (respectively to v2). Let

p1 = (a1 = A → a2 → · · · → am = v1) ∈ P1 and p2 = (b1 = A → b2 → · · · → bn = v2) ∈ P2

be two such paths, the distance d between p1 and p2 is given by

d(p1, p2) = (m− k) + (n− k) where k = max{i ∈ [[1,min(m,n)]] | ai = bi}
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that is to say the length of the shortest AST path joining v1 and v2 whose all nodes are in p1 ∪ p2. (As
both p1 and p2 start with the root node, such a path always exists.) The distance between v1 and v2 is
then defined by

l(v1, v2) =
1

|P1| · |P2| ·
∑

p1∈P1
p2∈P2

d(p1, p2).

Once the model graph is constructed, we want to find a model variable ordering ω = [v1, . . . , vn], i.e.
a walk on the graph, which minimizes the total variable distance

∑n−1
i=1 l(vi, vi+1) given by the sum of

distances between adjacent variables in ω. This is simply a traveling salesman problem (TSP) instance.
As TSP is an NP-complete problem, we do not try to get the best solution using an exact method (this
would be slow, destructive in regard to our goals). Instead, we use a TSP heuristic to find a fairly good
hamiltonian path considering the overall distance criterion. There are many TSP heuristics, most of
them consisting in performing random permutations in a default solution while trying to minimize the
overall distance. They may give a different solution each time they are called on a given graph, leading
to different orderings and of course different MTBDD sizes. From a certain quality of TSP solutions,
there is no clear correlation between the quality of a solution and the size of resulting MTBDD, which
legitimates a posteriori the use of TSP heuristics.

Figure 12 represents the AST of command x = y → x′ = y ∗ z and the associated variable graph. After
distance computation, we get d(x, y) = d(y, z) = 3.5 and d(x, z) = 4. TSP solver then returns ordering
[x, y, z] or [z, y, x], in which the most distant variables x and z are separated by y.

(a) (b)

→

= =

∗

x y z

x

y z

2+5+4+3
4

5+3
2

5+2
2

Figure 12: A variable graph labelled by distances

The assumption in this heuristic is that related variables are close in the model AST. So, finding a
walk which minimizes the global distance helps providing an ordering such as related variables are close
together.

Let M be a model and C the set of commands in M. An alternative TSP-based heuristic consists in
using the label function

l(v1, v2) = |{c ∈ C | v1 ∈ var(c) ∧ v2 ∈ var(c)}|
and then finding a path as long as possible with a TSP solver. An advantage of this technique compared
to the previous heuristic is that labelling is far fastest: there is no need to traverse several times the
model AST, but just to collect the variable set of each command. Here, the underlying assumption is
that variables appearing in the same commands are strongly related and should be grouped together in
the ordering.

A default of these TSP-based heuristics is that they cannot take into consideration absolute position of
model variables in orderings. For example, two reversed paths ω1 = [v1, . . . , vn] and ω2 = [vn, . . . , v1]
correspond to the same overall distance in an undirected variable graph, and thus have the same quality
according to a TSP heuristic criterion. In other words, the second key idea  is simply ignored. This
problem can be tackled with metrics, which also take advantage of these heuristics’ nondeterminism (see
section 3.3).
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Clusters

It may also be interesting, in the case of a large model with lots of variable, to clusterize the variable
graph G = (V,E, l), that is to say to partition the node set V into subsets V1, . . . , Vm such as

∀i ∈ [[1,m]], Vi 6= ∅ and V =
m⊎

i=1

Vi.

Typically, each subset Vi contains a set of closely related model variables. Once graph nodes are parti-
tioned, we have to find partial variable orderings ωi for each cluster Vi, and also an ordering of hypergraph
clusters [Vi1 , . . . , Vim ]. The complete model variable ordering is then given by ω = ωi1 · . . . · ωim . For
problems with a huge number of variables, we can envisage to perform several clustering steps: each
cluster Vi would be split into sub-clusters vi1 , . . . , vin

, and this process could possibly be iterated.

Graph clustering requires to make new choices. First, the clusterization algorithm and its parameters
(for most of algorithms, we have to set how many clusters should be created). Second, an algorithm to
construct an ordering for clusters. And finally, ordering technique(s) to use inside clusters. To address the
first issue, there are many clustering algorithms. I had good results with the Markov Cluster Algorithm
(MCL) [vD00], a fast and scalable unsupervised cluster algorithm for graphs based on simulation of
stochastic flow in graphs. This algorithm does not require to be parametrized with the number of clusters
to create. Concerning the second point, we can draw our inspiration from the usual ordering techniques,
considering clusters as meta-variables, gathering properties of contained variables. Some cluster-based
ordering techniques are detailed in [NW07].

In PRISM however, most of models are composed of a relatively small number of variables, typically
between 5 and 100, which are deeply interdependent. Consequently, variable graphs are rather isomorphic,
and clustering algorithms have difficulties to find relatively independent, medium-sized substructures in
a model variable graph. This approach, despite being potentially fast and efficient for very large, deeply
structured models (see [NW07]), is less effective than previous approaches on most of PRISM files.

Hypergraphs

The idea of variable graphs can also be extended with hypergraphs. Hypergraphs are a generalization
of graphs, where edges can connect any number of vertices (and not only two as in graphs). Formally, a
hypergraph H is a pair H = (V,E) where V is as for graphs a set of nodes, and E a set of non-empty
subsets of V called hyperedges or links. Therefore, E is a subset of P(V ) \ ∅, where P(V ) is the power
set of V . While graph edges are pairs of nodes, hyperedges are arbitrary sets of nodes, and contain an
arbitrary number of nodes.

As for model graphs, an hypergraph used to study a modelM satisfies V = var(M). Its hyperedges are
also labelled with a label function l, which maps hyperedges (i.e. sets of model variables) to values. The
advantage of using hypergraphs rather than graphs is the possibility to represent a relation on not only two
but any number of variables, and so to construct a more precise representation of a model. Hypergraphs
also provide a more general point of view on models, since it is possible to encode information concerning
large sets of model variables.

Once a model’s hypergraph representation is constructed, specific algorithms on hypergraphs are used to
derive a variable ordering from it. A technique using hypergraphs is the MINCE (min-cut, etc.) heuristic
[AMS04]. It relies on min-cut algorithm, used to split a hypergraph into two subgraphs while minimizing
the sum of hyperedge labels connecting vertices in different partitions. First, for every set of variables
(i.e. hyperedge) e ∈ E, its average span (formally defined in section 3.3.1) in the model AST is computed.
This value defines l(e). Hypergraph vertex set is then recursively bisected via min-cut linear placement,
leading to a variable ordering.

Unfortunately, because of the potentially large number of hyperedges, hypergraphs construction is usually
slower and they require more memory for storage. As for clusters, the limited size of PRISM models makes
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hypergraphs refinements less useful. Furthermore, metrics (see section 3.3) can take into account the same
information as hypergraphs.

3.2.4 Results

To compare different heuristics, we have been running PRISM on a set of test files. For each heuristic,
we show

• The resulting MTBDD size.
• The heuristic running time: this is time to get a model variable ordering.
• The MTBDD construction time, including reachability computation time.
• The model checking time.

We present here the average results for many models, so possible disparities between models cannot be
seen. For more detailed results, see appendix A.

The following ordering techniques are compared:

1. Random model variable ordering (MTBDD variables are interleaved).
2. Default PRISM variable ordering, corresponding to the order in which variable are defined in PRISM

files.
3. TSP heuristic considering distances between variables (see section 3.2.3).
4. TSP heuristic considering the number of commands containing two variables (see section 3.2.3).
5. Presence greedy heuristic (see section 3.2.2).
6. Weight greedy heuristic (see section 3.2.2).
7. Fan-in greedy heuristic (see section 3.2.2).

Results are displayed on figure 13. Each line corresponds to an ordering technique.

Technique MTBDD size Ordering (ms) Construction (ms) Model checking (ms)
1 39,863 1 2,205 36,739
2 12,190 1 699 27,086
3 9,489 1,251 651 29,302
4 8,174 49 910 26,595
5 19,790 58 1,189 23,466
6 18,965 303 1,171 23,296
7 9,002 88 519 17,215

Figure 13: Results for static heuristics

We can see that the default PRISM variable ordering is far better than the random order, since local
variables used in a module are defined inside it: in that sense, PRISM default order respects ¬. Most of
heuristics are better than default. Heuristics 5 and 6 seems to give bad results, but this is an average
number: if we look at more detailed results, we see they can construct interesting orderings for CTMCs,
but are not suited for MDPs.

3.3 Metric Optimization Heuristics

In this section, we study another category of variable ordering techniques: metric optimization heuristics.
A metric µ is a function taking as argument an ordering ω and returning a value x ∈ R.

µ :
{

S(var(M)) → R
ω 7→ x

µ is used to evaluate quality of orderings, i.e. their ability to lead to small MTBDDs model representa-
tions. A metric optimization heuristic seeks to minimize (or maximize) its metric function µ. It consists

20



in comparing several variable orderings in a comparison set Ω = {ω1, . . . , ωn} with µ, and selecting ω ∈ Ω
which minimizes (or maximizes) µ, in other words the best ordering in Ω according to µ.

Metrics are not constructive heuristics, in that sense they are not used to construct variable orderings
from a model description. This allow more freedom while defining metrics: we just have to set a criterion
to evaluate quickly quality of orderings while, unlike constructive heuristics, there is no need to care on
how construct orderings well satisfying this criterion.

However, we have to use constructive heuristics to build the comparison set Ω = {ω1, . . . , ωn}. It is
possible to use a number of different heuristics to get n variable orderings, but this may be slow since
each heuristic require some initial computations to be initialized, e.g. construct a graph or label AST
nodes. Instead, we can notice some heuristics are not deterministic: for example, a TSP-based heuristic
may give different results for the same model if the underlying TSP solver is randomized. With a
nondeterministic heuristic, we can quickly construct several different orderings since there is only one
heuristic initialization. Thus, using a nondeterministic heuristic is a good idea to compute Ω rapidly.

Naturally, the metric definition is of crucial importance in a metric optimization heuristic. The chosen
metric should be defined so as to capture enough relevant information about the model under considera-
tion to prove applicable in establishing good variable orders.

3.3.1 Variable Span

Most of metrics rely on model variable span. To define it, we consider a probabilistic model M with
n ≥ 1 variables v1, . . . , vn. Let a be an AST node ofM such as var(a) 6= ∅ and ω = [v1, . . . , vn] a variable
ordering for M. We define topω(a) as the index of the topmost occurrence of a variable from var(a)
in the ordering ω. Similarly, botω(a) is the index of the bottommost occurrence of an a variable in ω.
Formally,

topω(a) = min{i ∈ [[1, n]] | vi ∈ var(a)}
botω(a) = max{i ∈ [[1, n]] | vi ∈ var(a)}

The span of a variable set V = {vi1 , . . . , vim} ⊆ var(M) in an ordering ω is the length of the shortest
sublist ω̃ in ω such as V ⊆ ω̃ (if V = ∅, this is zero). The span of an AST node a is given by the span of
its variables var(a). An equivalent definition is

spanω(a) =
{

botω(a)− topω(a) + 1 if var(a) 6= ∅
0 if var(a) = ∅

For example, we consider a model M whose variables are {v1, . . . , v6}. Let a = (v2 = v3 + v5) be an
AST node ofM, the variable set of a is var(a) = {v2, v3, v5}. In a variable ordering ω = [v1, . . . , v6], the
smallest sublist containing var(a) is ω̃ = [v2, v3, v4, v5], whose length is 4. Thus, spanω(a) = 4. This is
illustrated in figure 14. We can also remark that botω(a)− topω(a) + 1 = 5− 2 + 1 = 4.

ω = [v1, v2, v3, v4, v5︸ ︷︷ ︸
ω̃

, v6]

Figure 14: Span of a formula in an ordering

Span metric attempts to minimize the sum of spans of every AST node. The underlying idea is that close
variables in the AST A are strongly related, and so should be grouped together in the ordering (principle
¬). The value of an ordering ω as returned by the span metric is

SPAN(ω) =
∑
a∈A

spanω(a)
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3.3.2 Command Span

A variant is Normalized Event Span (NES) metric [CS06]. Let C the set of commands inM, NES metric
is defined as

NES(ω) =
∑
c∈C

spanω(c)
| var(M)| · |C|

The NES metric computes the average span of all commands (the span is then normalized by | var(M)|)
and its value is always between 0 and 1. A low NES indicates that the command spans are small, i.e.,
that most commands affect only model variables close to each other in the ordering ω.

This metric is faster to compute than span metric, since it does not require to take into account variable
spanning of every AST node, but just of command nodes. In return, it captures less accurately information
concerning variable proximity.

We generalize this concept by introducing the Weighted Event Span (WES) metric of moment i, WESi

for variable ordering ω as:

WESi(ω) =
∑
c∈C

(
topω(c)
| var(M)|/2

)i

· spanω(c)
| var(M)| · |C|

We observe that WES0 is exactly equivalent to NES. The WES1 metric, instead, adds to it a component
that reflects the location of the affected region, by assigning higher weights to locations closer to the top.
This takes into account that operations applied to nodes in the lower portion of the MTBDD tend to
have lower cost than those applied to higher nodes (principle ). Therefore the span of an event is scaled
by topω(c)
| var(M)|/2 , the relative position of the topmost level compared to the average level | var(M)|/2. The

weight of an event is thus between (2/| var(M)|)i and 2i , but the average over all events, if their tops
were uniformly distributed over the MTBDD, should have an expected value of 1 for WES1 , like for
NES . For larger moments i, the emphasis on the location grows, as the weight multiplies in powers of 2,
while strong clustering is relatively less important.

3.3.3 Using MTBDDs

Considering a model M, it is possible to construct MTBDDs representing M with various variable
orderings, and compare directly their size. We name it the MTBDD metric. Without surprise, this metric
gives the best results but is very slow compared to other metrics, and is mostly used for comparison
purpose or to find a very good variable ordering for a model, if we need to perform intensive model
checking.

We have seen previously that the translation of a probabilistic model into an MTBDD proceeds in three
phases. The first task is to establish an encoding of the model’s state space into MTBDD variables.
Secondly, using the correspondence between PRISM and MTBDD variables provided by this encoding,
an MTBDD representing the model transitions is constructed from its description. Thirdly, we compute
from the constructed model the set of reachable states.

An interesting observation we made is that the removal of unreachable states from the model often
causes an increase in the size of its MTBDD. Intensity of this increase depends on the model and is
highly variable, it may be negligible or represent an MTBDD growth up to ten times. This is despite the
fact that both the number of states and the number of transitions in the model decrease. The explanation
for this phenomenon is that regularity of the model is also reduced.

Thus, we can define two metrics relying on MTBDDs:

MTBDDnr(ω) = size of MTBDD with ordering ω without reachability computation
MTBDDr(ω) = size of MTBDD with ordering ω with reachability computation

There is no reachability computation in MTBDDnr, so constructed MTBDDs are smaller. Consequently,
this heuristic tends to be faster and to require less memory than MTBDDr while still being very precise.
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3.3.4 Results

To compare different metrics, we have been PRISM on the same set of files than in section 3.2.4. As above,
for each heuristic we show the MTBDD size, the heuristic running time, the MTBDD construction time
and the model checking time. We present here the average results obtained with the following ordering
techniques:

1. Random model variable ordering (MTBDD variables are interleaved).

2. Default PRISM variable ordering.

3. SPAN metric on 50 orderings (see section 3.3.1).

4. WES0 = NES metric on 50 orderings (see section 3.3.2).

5. WES1 metric on 50 orderings (see section 3.3.2).

6. WES2 metric on 50 orderings (see section 3.3.2).

7. MTBDDnr metric on 10 orderings (see section 3.3.3).

8. MTBDDr metric on 10 orderings (see section 3.3.3).

Results are displayed on figure 15. The comparison set used by these metrics was generated with a TSP
heuristic. As heuristics 7 and 8 are slower, they have been run on a smaller set of orderings.

Technique MTBDD size Ordering (ms) Construction (ms) Model checking (ms)
1 39,863 1 2,205 36,739
2 12,190 1 699 27,086
3 6,226 2,071 645 24,688
4 6,354 288 615 25,178
5 6,649 290 711 30,470
6 6,668 287 681 29,735
7 6,193 1,143 394 24,834
8 5,696 7,232 490 24,887

Figure 15: Results for metrics

These results confirm what was anticipated: heuristic 4 is faster than 3 but less precise, heuristic 7 is
better than 6 but considerably slower to run, heuristics 6 and 7 are better than the others. Detailed
results are exposed in appendix A.

3.4 Dynamic Heuristics

As we have seen in section 3.1, variable ordering heuristics can be divided into two groups: static and
dynamic heuristics. Static heuristics compute variable orderings from the description of the model to be
represented before MTBDD construction, while dynamic heuristics attempt to minimize MTBDD size
by improving variable ordering after the MTBDD has been partially or completely constructed. Unlike
static heuristics, dynamic heuristics are very general and do not depend on the category of models being
encoded into an MTBDD. They give usually better results at the expense of a slower computation time.

In PRISM, all the MTBDD operations are based on the CUDD package, which provides a rich set of
dynamic reordering algorithms. For this reason, I have mainly focused on studying and implementing
static heuristics in PRISM. We are now going to mention very quickly some existing dynamic heuristics.

The key operation of dynamic heuristics is swapping two consecutive MTBDD variables, in attempt to
decrease the MTBDD size. In efficient MTBDD implementations, each variable swap has time complexity
proportional to the width of the MTBDD.
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Sifting algorithm

A well-known dynamic reordering technique is Rudell’s sifting algorithm [Rud93]. Sifting algorithm is
based on finding the optimal position for a variable, assuming all other variables remain fixed. If there
are n variables in the MTBDD (excluding the constant level which is always at the bottom), then there
are n potential position for a variable, including its current position. Each variable is considered in turn
and is moved up and down in the ordering so that it takes all possible positions. The best position is
identified and the variable is returned to that position. Globally, the sifting algorithm requires O(n2)
swaps of adjacent levels in the MTBDD.

In CUDD, things are a bit more complicated. First, there is a limit on the number of variables that will
be sifted. In addition, if the decision diagram grows too much while moving a variable up or down, the
current movement is terminated before the variable has reached one end of the order.

There are also two important variants of this technique. First, the algorithm can be iterated to conver-
gence. Second, group of variables can be aggregated according to some criterion (see [PSP94], [PS95]
for example). Variables that become adjacent during sifting are tested for aggregation. If test result is
positive, they are linked in a group. Sifting then continues with a group being moved, instead of a single
variable.

Window permutation algorithm

Window permutation algorithm was presented by Fujita et al. [FMK91] and Ishiura et al. [ISY91]. It
proceeds by choosing a level i in the MTBDD and exhaustively searching all k! permutations of the k
adjacent boolean variables starting at level i. This is done using k! − 1 pairwise exchanges followed by
up up to k(k−1)

2 pairwise exchanges to restore the best permutation seen. This is then repeated starting
from each level until no improvement in the MTBDD is seen.

Because the swap of two adjacent variables is efficient, the window permutation algorithm remains efficient
for values of k as large as 4 or 5.

Other approaches

There exist other dynamic variable reordering heuristics, including an approach based on simulated
annealing [BLW95], and a genetic algorithm [DBG95]. These methods are potentially very slow and are
not widely used.

Conclusions

We have seen in the beginning of this report how PRISM represents different kinds of probabilistic
models (DTMC, CTMCs, MDPs) with special data structures: multi-terminal binary decision diagrams,
a variant of BDDs which allows to have any number of terminal nodes. This structure is interesting
in terms of model checking, since it provides a compact storage of model descriptions and is suited to
perform computations efficiently.

Then, we have studied different categories of static heuristics, adapted to probabilistic models, to try
to reduce size of MTBDDs before they are constructed: greedy algorithms, which construct orderings
step by step by adding a variable at every step, heuristics using a graph representation of models, and
metrics to select in an ordering set the most promising one. Most of these heuristics where implemented
in PRISM and achieve to improve the default PRISM variable ordering (see appendices). For example,
with this new feature, we have been able to run PRISM on a large file which was previously causing a
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crash because of memory lack. In terms of implementation, I have added around 3000 lines in PRISM’s
Java source code to add the ordering feature.

It may be interesting to continue in this direction by using CUDD’s dynamic heuristics in PRISM, which is
not case yet. Unfortunately, this would be difficult to implement in PRISM current source code. As many
PRISM models contains several instances of the same structure (for example a server and many identical
clients), another idea would be to find an ordering on a similar, but smaller model, and to extend it to
the full-sized model.
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Appendix

A Detailed Results

Here are detailed results for many heuristics, tested on a large set of PRISM files. Files whose extension
is .pm are DTMCs models, .sm are CTMCs and .nm are MDPs. A long dash (“–” symbol) indicates a
heuristic always give the same result.

A.1 MTBDD size

Model brp.pm
Heuristic Avg Std. dev. Min Max
random 3,446 571 2,191 4,699
default 3,018 468 1,995 4,030

distance graph 3,423 435 2,538 4,400
command graph 3,075 411 2,401 3,597

presence 3,134 – – –
weight 3,825 – – –
fan-in 2,633 – – –
SPAN 3,219 114 2,523 3,421

NES = WES0 3,248 27 3,206 3,343
WES1 3,196 180 2,592 3,506
WES2 3,177 204 2,592 3,509

MTBDDnr 2,613 226 2,353 3,418
MTBDDr 2,475 83 2,248 2,635

Model cluster.sm
Heuristic Avg Std. dev. Min Max
random 3,050 1,107 1,475 8,420
default 1,901 179 1,453 2,119

distance graph 1,639 10 1,619 1,658
command graph 1,840 230 1,229 2,154

presence 2,044 – – –
weight 2,111 – – –
fan-in 2,355 – – –
SPAN 1,793 273 1,200 2,107

NES = WES0 1,883 195 1,394 2,143
WES1 1,799 242 1,215 2,123
WES2 1,846 267 1,200 2,158

MTBDDnr 1,467 183 1,215 1,935
MTBDDr 1,451 163 1,203 1,768

Model coin4.nm
Heuristic Avg Std. dev. Min Max
random 5,397 2,673 1,901 14,626
default 1,798 308 1,402 2,432

distance graph 1,428 – – –
command graph 1,694 81 1,609 1,772

presence 2,454 – – –
weight 2,454 – – –
fan-in 2,336 – – –
SPAN 1,762 39 1,609 1,772

NES = WES0 1,717 77 1,609 1,772
WES1 1,609 – – –
WES2 1,609 – – –

MTBDDnr 1,609 – – –
MTBDDr 1,609 – – –

Model csma3_2.nm
Heuristic Avg Std. dev. Min Max
random 21,823 3,350 15,245 28,877
default 12,927 738 11,747 14,542

distance graph 22,984 2,573 18,661 26,316
command graph 17,836 2,115 16,000 23,292

presence 19,854 – – –
weight 20,445 – – –
fan-in 14,306 – – –
SPAN 16,766 886 15,400 18,535

NES = WES0 16,261 706 15,458 17,473
WES1 16,637 46 16,322 16,697
WES2 16,615 95 16,267 16,697

MTBDDnr 16,239 393 16,000 17,473
MTBDDr 16,153 298 15,783 17,431

Model dice.pm
Heuristic Avg Std. dev. Min Max
random 66 4 62 71
default 67 4 62 71

distance graph 62 – – –
command graph 62 – – –

presence 71 – – –
weight 71 – – –
fan-in 71 – – –
SPAN 62 – – –

NES = WES0 62 – – –
WES1 62 – – –
WES2 62 – – –

MTBDDnr 62 – – –
MTBDDr 62 – – –

Model two_dice.nm
Heuristic Avg Std. dev. Min Max
random 311 75 188 367
default 196 8 188 203

distance graph 194 – – –
command graph 194 – – –

presence 365 – – –
weight 365 – – –
fan-in 203 – – –
SPAN 194 – – –

NES = WES0 194 – – –
WES1 194 – – –
WES2 194 – – –

MTBDDnr 194 – – –
MTBDDr 194 – – –

Model two_dice_knuth.pm
Heuristic Avg Std. dev. Min Max
random 237 4 231 240
default 235 4 231 240

distance graph 231 – – –
command graph 231 – – –

presence 240 – – –
weight 240 – – –
fan-in 240 – – –
SPAN 231 – – –

NES = WES0 231 – – –
WES1 231 – – –
WES2 231 – – –

MTBDDnr 231 – – –
MTBDDr 231 – – –

Model dining_crypt5.nm
Heuristic Avg Std. dev. Min Max
random 15,578 4,545 6,659 26,824
default 7,854 2,384 4,169 11,703

distance graph 12,693 2,652 5,743 16,498
command graph 6,007 2,261 3,258 14,349

presence 10,778 – – –
weight 9,178 – – –
fan-in 4,077 – – –
SPAN 6,173 1,745 3,250 11,402

NES = WES0 3,846 555 3,167 5,089
WES1 3,880 511 3,258 5,088
WES2 3,899 672 3,225 6,151

MTBDDnr 4,109 908 3,132 7,175
MTBDDr 3,492 161 3,203 3,797
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Model embedded.sm
Heuristic Avg Std. dev. Min Max
random 1,182 213 699 1,650
default 1,073 245 646 1,898

distance graph 695 27 668 739
command graph 907 217 612 1,503

presence 740 – – –
weight 879 – – –
fan-in 875 – – –
SPAN 743 132 571 1,117

NES = WES0 1,001 242 636 1,470
WES1 747 72 643 1,014
WES2 779 117 633 1,301

MTBDDnr 731 90 578 917
MTBDDr 701 65 586 833

Model fms.sm
Heuristic Avg Std. dev. Min Max
random 286,507 137,886 67,183 585,875
default 28,484 5,043 16,463 37,987

distance graph 32,198 8,287 14,859 54,009
command graph 26,559 8,306 14,594 57,223

presence 23,044 – – –
weight 27,286 – – –
fan-in 30,953 – – –
SPAN 19,598 4,529 14,334 27,014

NES = WES0 19,304 5,240 13,833 27,847
WES1 20,998 1,199 19,227 26,237
WES2 21,428 2,026 19,353 33,221

MTBDDnr 20,536 4,921 14,392 33,286
MTBDDr 16,564 3,087 13,850 23,792

Model leader4.nm
Heuristic Avg Std. dev. Min Max
random 26,402 4,482 17,492 35,703
default 14,767 3,529 10,813 20,176

distance graph 14,000 2,542 10,507 20,546
command graph 12,184 2,586 9,983 21,659

presence 26,379 – – –
weight 24,758 – – –
fan-in 14,100 – – –
SPAN 10,243 323 9,739 11,088

NES = WES0 11,802 1,787 9,770 16,317
WES1 11,833 1,458 9,770 14,903
WES2 11,909 1,256 9,643 15,008

MTBDDnr 10,892 892 9,861 14,169
MTBDDr 10,175 390 9,564 11,381

Model leader4_3.pm
Heuristic Avg Std. dev. Min Max
random 6,660 989 4,492 9,071
default 5,133 410 4,320 6,047

distance graph 6,844 883 5,355 8,771
command graph 6,960 1,787 3,762 10,650

presence 6,007 – – –
weight 4,929 – – –
fan-in 6,257 – – –
SPAN 6,870 1,389 4,233 8,959

NES = WES0 6,642 1,661 3,994 10,428
WES1 5,204 622 3,833 7,250
WES2 5,029 512 3,852 6,039

MTBDDnr 6,022 1,446 3,909 8,987
MTBDDr 4,662 450 3,848 5,825

Model knacl.sm
Heuristic Avg Std. dev. Min Max
random 2,554 184 2,308 2,986
default 2,563 203 2,308 2,995

distance graph 2,740 3 2,736 2,743
command graph 2,739 3 2,736 2,743

presence 2,542 – – –
weight 2,542 – – –
fan-in 2,736 – – –
SPAN 2,736 – – –

NES = WES0 2,736 – – –
WES1 2,736 – – –
WES2 2,736 – – –

MTBDDnr 2,743 – – –
MTBDDr 2,736 – – –

Model mc.sm
Heuristic Avg Std. dev. Min Max
random 1,435 121 1,214 1,640
default 1,397 125 1,214 1,592

distance graph 1,525 24 1,498 1,546
command graph 1,503 41 1,443 1,546

presence 1,546 – – –
weight 1,546 – – –
fan-in 1,386 – – –
SPAN 1,546 – – –

NES = WES0 1,546 – – –
WES1 1,443 – – –
WES2 1,443 – – –

MTBDDnr 1,494 15 1,443 1,498
MTBDDr 1,443 – – –

Model peer2peer5_4.sm
Heuristic Avg Std. dev. Min Max
random 3,590 1,261 1,170 5,903
default 6,065 – – –

distance graph 3,614 1,206 1,345 5,786
command graph 3,999 1,094 1,591 5,744

presence 4,740 – – –
weight 4,740 – – –
fan-in 6,065 – – –
SPAN 3,908 1,134 1,361 5,918

NES = WES0 4,020 1,389 1,249 6,008
WES1 3,478 1,126 1,120 5,537
WES2 3,819 1,075 1,236 6,020

MTBDDnr 2,025 632 826 3,527
MTBDDr 1,927 511 1,165 2,983

Model phil_lss3.nm
Heuristic Avg Std. dev. Min Max
random 10,113 1,722 7,037 13,277
default 7,940 568 7,037 9,166

distance graph 8,192 358 7,887 8,612
command graph 9,671 1,777 7,037 13,277

presence 12,710 – – –
weight 7,788 – – –
fan-in 9,550 – – –
SPAN 7,386 360 7,037 7,801

NES = WES0 9,889 1,746 7,091 13,277
WES1 9,979 1,635 7,037 13,277
WES2 10,032 1,789 7,037 13,277

MTBDDnr 8,637 735 7,664 10,049
MTBDDr 7,507 500 7,037 9,166

Model poll6.sm
Heuristic Avg Std. dev. Min Max
random 427 232 240 1,120
default 496 234 265 1,011

distance graph 370 113 265 680
command graph 406 127 277 725

presence 367 – – –
weight 390 – – –
fan-in 367 – – –
SPAN 319 42 265 371

NES = WES0 319 46 265 384
WES1 335 43 269 385
WES2 318 45 265 385

MTBDDnr 287 17 265 343
MTBDDr 285 17 265 344

Model beauquier3.nm
Heuristic Avg Std. dev. Min Max
random 127 18 77 154
default 142 9 129 153

distance graph 142 5 135 149
command graph 139 7 129 153

presence 141 – – –
weight 77 – – –
fan-in 129 – – –
SPAN 142 3 131 143

NES = WES0 143 6 129 153
WES1 143 6 129 153
WES2 142 6 129 153

MTBDDnr 131 2 129 135
MTBDDr 132 3 129 135
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Model tandem.sm
Heuristic Avg Std. dev. Min Max
random 177 31 126 220
default 164 30 126 201

distance graph 161 37 126 201
command graph 161 23 126 201

presence 153 – – –
weight 126 – – –
fan-in 153 – – –
SPAN 201 – – –

NES = WES0 166 – – –
WES1 166 – – –
WES2 166 – – –

MTBDDnr 128 8 126 166
MTBDDr 128 7 126 153

Model wlan1.nm
Heuristic Avg Std. dev. Min Max
random 8,436 1,355 5,979 11,386
default 7,303 556 5,760 8,287

distance graph 9,295 860 7,571 12,631
command graph 7,376 64 7,283 7,477

presence 6,838 – – –
weight 5,730 – – –
fan-in 4,484 – – –
SPAN 7,477 – – –

NES = WES0 7,477 – – –
WES1 7,436 249 6,927 8,743
WES2 7,530 386 6,927 8,794

MTBDDnr 7,290 25 7,283 7,375
MTBDDr 7,269 70 6,927 7,283

Model wlan1_collide.nm
Heuristic Avg Std. dev. Min Max
random 11,242 1,816 6,922 15,262
default 9,309 758 7,635 11,218

distance graph 10,138 785 9,206 12,643
command graph 8,828 166 8,626 9,871

presence 7,276 – – –
weight 6,436 – – –
fan-in 6,880 – – –
SPAN 8,947 – – –

NES = WES0 8,921 79 8,612 8,947
WES1 9,018 680 8,552 12,138
WES2 9,051 831 8,612 12,263

MTBDDnr 8,739 52 8,721 8,947
MTBDDr 8,722 24 8,612 8,743

Model wlan1_time_bounded.nm
Heuristic Avg Std. dev. Min Max
random 34,305 5,826 23,068 46,988
default 28,972 4,171 22,619 38,696

distance graph 26,859 2,722 23,366 34,721
command graph 24,886 1,113 23,903 26,310

presence 36,126 – – –
weight 31,318 – – –
fan-in 17,778 – – –
SPAN 24,062 – – –

NES = WES0 24,062 – – –
WES1 27,129 2,301 25,103 33,293
WES2 26,783 1,936 24,997 33,293

MTBDDnr 23,936 40 23,903 23,988
MTBDDr 23,922 36 23,881 23,988

Model zeroconf.nm
Heuristic Avg Std. dev. Min Max
random 9,646 1,322 6,053 12,958
default 7,387 784 5,490 8,858

distance graph 9,772 1,371 5,661 12,741
command graph 7,202 1,160 5,357 10,350

presence 7,529 – – –
weight 7,132 – – –
fan-in 9,286 – – –
SPAN 7,010 670 6,092 8,359

NES = WES0 7,230 800 5,447 8,846
WES1 6,987 642 5,845 8,560
WES2 7,154 587 5,629 8,249

MTBDDnr 6,708 1,018 5,555 8,708
MTBDDr 5,793 373 5,402 7,111

Model mapk_cascade.sm
Heuristic Avg Std. dev. Min Max
random 426,313 210,919 115,569 1,181,070
default 71,297 54,569 20,274 258,048

distance graph 43,838 42,721 15,392 225,075
command graph 39,497 23,214 11,331 105,128

presence 297,053 – – –
weight 300,005 – – –
fan-in 34,064 – – –
SPAN 14,469 1,968 10,352 18,082

NES = WES0 15,074 1,820 11,331 21,288
WES1 16,628 3,231 11,648 25,640
WES2 17,245 3,228 11,651 27,035

MTBDDnr 19,170 6,046 11,916 39,493
MTBDDr 16,401 3,013 11,916 23,844

Model sprouty.sm
Heuristic Avg Std. dev. Min Max
random 117,550 58,245 43,393 336,180
default 84,271 44,355 18,068 246,159

distance graph 24,178 10,217 8,691 48,825
command graph 20,402 10,922 5,597 52,959

presence 22,615 – – –
weight 9,762 – – –
fan-in 53,773 – – –
SPAN 9,780 4,082 5,374 20,646

NES = WES0 11,089 4,774 5,995 24,196
WES1 14,349 4,096 8,356 33,422
WES2 13,510 3,989 8,455 25,890

MTBDDnr 8,839 2,656 5,681 16,662
MTBDDr 8,375 1,851 5,517 13,099

Average result
Heuristic Avg Std. dev. Min Max
random 39,863 17,558 13,239 93,823
default 12,190 4,787 6,019 27,756

distance graph 9,489 3,113 5,830 20,048
command graph 8,174 2,308 5,175 14,927

presence 19,790 – – –
weight 18,965 – – –
fan-in 9,002 – – –
SPAN 6,226 708 5,157 7,688

NES = WES0 6,354 846 5,186 8,218
WES1 6,649 734 5,531 8,976
WES2 6,668 761 5,526 9,035

MTBDDnr 6,193 812 5,192 8,524
MTBDDr 5,696 444 5,101 6,823
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A.2 Heuristic Running Time

Time is displayed in milliseconds (ms).

Model brp.pm
Heuristic Avg
random 1
default 1

distance graph 78
command graph 31

presence 42
weight 69
fan-in 17
SPAN 318

NES = WES0 231
WES1 231
WES2 232

MTBDDnr 399
MTBDDr 2,686

Model cluster.sm
Heuristic Avg
random 1
default 1

distance graph 32
command graph 27

presence 11
weight 48
fan-in 11
SPAN 334

NES = WES0 255
WES1 261
WES2 258

MTBDDnr 286
MTBDDr 525

Model coin4.nm
Heuristic Avg
random 0
default 0

distance graph 55
command graph 25

presence 15
weight 41
fan-in 26
SPAN 317

NES = WES0 229
WES1 225
WES2 227

MTBDDnr 241
MTBDDr 2,416

Model csma3_2.nm
Heuristic Avg
random 1
default 1

distance graph 9,999
command graph 92

presence 143
weight 439
fan-in 230
SPAN 1,968

NES = WES0 390
WES1 392
WES2 372

MTBDDnr 597
MTBDDr 12,486

Model dice.pm
Heuristic Avg
random 1
default 1

distance graph 30
command graph 28

presence 6
weight 8
fan-in 8
SPAN 203

NES = WES0 203
WES1 204
WES2 202

MTBDDnr 138
MTBDDr 138

Model two_dice.nm
Heuristic Avg
random 1
default 1

distance graph 28
command graph 16

presence 8
weight 13
fan-in 10
SPAN 189

NES = WES0 188
WES1 187
WES2 186

MTBDDnr 105
MTBDDr 106

Model two_dice_knuth.pm
Heuristic Avg
random 1
default 1

distance graph 56
command graph 32

presence 10
weight 24
fan-in 15
SPAN 213

NES = WES0 211
WES1 213
WES2 212

MTBDDnr 144
MTBDDr 142

Model dining_crypt5.nm
Heuristic Avg
random 0
default 0

distance graph 77
command graph 26

presence 24
weight 84
fan-in 17
SPAN 327

NES = WES0 230
WES1 233
WES2 231

MTBDDnr 224
MTBDDr 700

Model embedded.sm
Heuristic Avg
random 1
default 1

distance graph 34
command graph 30

presence 11
weight 51
fan-in 11
SPAN 335

NES = WES0 259
WES1 255
WES2 257

MTBDDnr 222
MTBDDr 327

Model fms.sm
Heuristic Avg
random 1
default 1

distance graph 137
command graph 37

presence 48
weight 123
fan-in 42
SPAN 378

NES = WES0 239
WES1 247
WES2 251

MTBDDnr 935
MTBDDr 4,095

Model leader4.nm
Heuristic Avg
random 1
default 1

distance graph 1,324
command graph 61

presence 121
weight 247
fan-in 84
SPAN 646

NES = WES0 290
WES1 287
WES2 288

MTBDDnr 505
MTBDDr 2,298

Model leader4_3.pm
Heuristic Avg
random 1
default 1

distance graph 259,063
command graph 137

presence 263
weight 4,432
fan-in 652
SPAN 39,534

NES = WES0 701
WES1 705
WES2 697

MTBDDnr 1,829
MTBDDr 2,554
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Model knacl.sm
Heuristic Avg
random 1
default 1

distance graph 19
command graph 17

presence 6
weight 8
fan-in 6
SPAN 201

NES = WES0 203
WES1 202
WES2 204

MTBDDnr 128
MTBDDr 142

Model mc.sm
Heuristic Avg
random 1
default 1

distance graph 20
command graph 25

presence 6
weight 9
fan-in 11
SPAN 231

NES = WES0 230
WES1 228
WES2 228

MTBDDnr 201
MTBDDr 223

Model peer2peer5_4.sm
Heuristic Avg
random 1
default 1

distance graph 66
command graph 60

presence 32
weight 62
fan-in 9
SPAN 417

NES = WES0 366
WES1 371
WES2 365

MTBDDnr 359
MTBDDr 391

Model phil_lss3.nm
Heuristic Avg
random 1
default 1

distance graph 26,390
command graph 83

presence 122
weight 403
fan-in 365
SPAN 2,175

NES = WES0 445
WES1 448
WES2 448

MTBDDnr 484
MTBDDr 2,729

Model poll6.sm
Heuristic Avg
random 1
default 1

distance graph 58
command graph 43

presence 13
weight 46
fan-in 19
SPAN 415

NES = WES0 304
WES1 307
WES2 285

MTBDDnr 270
MTBDDr 310

Model beauquier3.nm
Heuristic Avg
random 1
default 1

distance graph 28
command graph 22

presence 7
weight 13
fan-in 7
SPAN 269

NES = WES0 235
WES1 234
WES2 235

MTBDDnr 158
MTBDDr 155

Model tandem.sm
Heuristic Avg
random 1
default 1

distance graph 19
command graph 24

presence 5
weight 8
fan-in 6
SPAN 243

NES = WES0 246
WES1 228
WES2 229

MTBDDnr 179
MTBDDr 246

Model wlan1.nm
Heuristic Avg
random 1
default 1

distance graph 4,172
command graph 63

presence 72
weight 331
fan-in 151
SPAN 448

NES = WES0 264
WES1 263
WES2 262

MTBDDnr 316
MTBDDr 1,334

Model wlan1_collide.nm
Heuristic Avg
random 1
default 1

distance graph 4,092
command graph 71

presence 121
weight 292
fan-in 212
SPAN 595

NES = WES0 290
WES1 300
WES2 297

MTBDDnr 393
MTBDDr 2,209

Model wlan1_time_bounded.nm
Heuristic Avg
random 1
default 1

distance graph 6,145
command graph 73

presence 96
weight 305
fan-in 140
SPAN 657

NES = WES0 282
WES1 289
WES2 290

MTBDDnr 474
MTBDDr 21,634

Model zeroconf.nm
Heuristic Avg
random 1
default 1

distance graph 492
command graph 57

presence 86
weight 195
fan-in 41
SPAN 508

NES = WES0 309
WES1 314
WES2 315

MTBDDnr 18,255
MTBDDr 100,004

Model mapk_cascade.sm
Heuristic Avg
random 2
default 2

distance graph 126
command graph 58

presence 81
weight 126
fan-in 42
SPAN 391

NES = WES0 260
WES1 265
WES2 256

MTBDDnr 828
MTBDDr 16,512

Model sprouty.sm
Heuristic Avg
random 2
default 2

distance graph 181
command graph 78

presence 113
weight 193
fan-in 63
SPAN 470

NES = WES0 342
WES1 350
WES2 340

MTBDDnr 913
MTBDDr 6,459

Average result
Heuristic Avg
random 1
default 1

distance graph 12,509
command graph 49

presence 58
weight 303
fan-in 88
SPAN 2,071

NES = WES0 288
WES1 290
WES2 287

MTBDDnr 1,143
MTBDDr 7,233
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A.3 Construction Time

Time is displayed in milliseconds (ms).

Model brp.pm
Heuristic Avg Std. dev. Min Max
random 466 137 228 906
default 391 88 225 536

distance graph 406 91 217 533
command graph 353 102 207 517

presence 492 – – –
weight 480 – – –
fan-in 279 – – –
SPAN 432 82 261 519

NES = WES0 422 79 336 515
WES1 343 33 241 423
WES2 343 42 240 473

MTBDDnr 266 52 233 449
MTBDDr 250 16 215 294

Model cluster.sm
Heuristic Avg Std. dev. Min Max
random 87 23 50 185
default 55 3 49 68

distance graph 50 1 48 54
command graph 54 3 47 63

presence 55 – – –
weight 59 – – –
fan-in 51 – – –
SPAN 54 3 47 62

NES = WES0 54 3 47 59
WES1 54 2 51 61
WES2 54 2 50 59

MTBDDnr 55 7 50 87
MTBDDr 54 2 49 60

Model coin4.nm
Heuristic Avg Std. dev. Min Max
random 1,081 515 227 2,600
default 378 103 160 499

distance graph 339 5 333 349
command graph 351 122 229 492

presence 173 – – –
weight 173 – – –
fan-in 162 – – –
SPAN 246 60 230 488

NES = WES0 312 113 230 470
WES1 473 7 470 490
WES2 488 6 478 492

MTBDDnr 481 7 469 488
MTBDDr 478 8 469 490

Model csma3_2.nm
Heuristic Avg Std. dev. Min Max
random 2,220 514 1,379 3,858
default 1,176 109 988 1,397

distance graph 2,861 889 1,622 3,953
command graph 1,706 373 1,278 2,486

presence 1,599 – – –
weight 1,671 – – –
fan-in 1,339 – – –
SPAN 1,566 267 1,244 2,263

NES = WES0 1,467 201 1,233 1,817
WES1 1,757 25 1,693 1,796
WES2 1,761 27 1,693 1,847

MTBDDnr 1,398 150 1,287 1,954
MTBDDr 1,383 148 1,270 1,909

Model dice.pm
Heuristic Avg Std. dev. Min Max
random 14 – – –
default 14 – – –

distance graph 14 – – –
command graph 14 – – –

presence 14 – – –
weight 14 – – –
fan-in 14 – – –
SPAN 14 – – –

NES = WES0 14 – – –
WES1 14 – – –
WES2 14 – – –

MTBDDnr 14 – – –
MTBDDr 14 – – –

Model two_dice.nm
Heuristic Avg Std. dev. Min Max
random 23 3 20 39
default 21 1 20 22

distance graph 21 – – –
command graph 21 – – –

presence 39 – – –
weight 39 – – –
fan-in 21 – – –
SPAN 21 – – –

NES = WES0 21 – – –
WES1 21 – – –
WES2 21 – – –

MTBDDnr 21 – – –
MTBDDr 21 – – –

Model two_dice_knuth.pm
Heuristic Avg Std. dev. Min Max
random 38 5 35 45
default 40 5 35 45

distance graph 45 – – –
command graph 45 – – –

presence 35 – – –
weight 35 – – –
fan-in 35 – – –
SPAN 45 – – –

NES = WES0 45 – – –
WES1 45 – – –
WES2 45 – – –

MTBDDnr 45 – – –
MTBDDr 45 – – –

Model dining_crypt5.nm
Heuristic Avg Std. dev. Min Max
random 184 55 88 338
default 101 22 64 139

distance graph 151 36 77 208
command graph 85 24 57 180

presence 128 – – –
weight 114 – – –
fan-in 65 – – –
SPAN 85 17 56 129

NES = WES0 65 7 57 86
WES1 65 6 58 81
WES2 64 7 56 84

MTBDDnr 67 11 55 109
MTBDDr 60 2 57 63
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Model embedded.sm
Heuristic Avg Std. dev. Min Max
random 35 4 27 44
default 33 4 27 45

distance graph 27 1 26 28
command graph 31 3 25 41

presence 26 – – –
weight 32 – – –
fan-in 31 – – –
SPAN 27 2 24 33

NES = WES0 31 3 26 39
WES1 29 1 26 31
WES2 29 2 26 38

MTBDDnr 27 1 25 31
MTBDDr 28 2 25 31

Model fms.sm
Heuristic Avg Std. dev. Min Max
random 9,107 4,585 1,597 17,674
default 574 86 425 837

distance graph 713 168 424 1,155
command graph 589 180 385 1,243

presence 914 – – –
weight 1,083 – – –
fan-in 1,238 – – –
SPAN 425 39 356 515

NES = WES0 406 24 350 463
WES1 378 22 345 457
WES2 390 32 347 514

MTBDDnr 519 139 389 886
MTBDDr 459 46 381 572

Model leader4.nm
Heuristic Avg Std. dev. Min Max
random 606 120 378 889
default 349 65 266 456

distance graph 345 55 272 485
command graph 309 53 252 503

presence 485 – – –
weight 446 – – –
fan-in 352 – – –
SPAN 271 12 252 302

NES = WES0 295 34 250 371
WES1 300 29 257 356
WES2 299 26 255 345

MTBDDnr 283 15 264 339
MTBDDr 270 12 252 292

Model leader4_3.pm
Heuristic Avg Std. dev. Min Max
random 286 200 93 1,177
default 87 22 64 148

distance graph 133 47 74 276
command graph 321 260 83 1,479

presence 467 – – –
weight 120 – – –
fan-in 153 – – –
SPAN 210 101 103 536

NES = WES0 265 164 80 868
WES1 246 100 110 488
WES2 216 85 101 487

MTBDDnr 123 28 75 213
MTBDDr 228 100 97 448

Model knacl.sm
Heuristic Avg Std. dev. Min Max
random 28 1 26 29
default 28 1 26 29

distance graph 28 0 28 29
command graph 29 0 28 29

presence 28 – – –
weight 28 – – –
fan-in 29 – – –
SPAN 29 – – –

NES = WES0 29 – – –
WES1 29 – – –
WES2 29 – – –

MTBDDnr 28 – – –
MTBDDr 29 – – –

Model mc.sm
Heuristic Avg Std. dev. Min Max
random 30 3 25 35
default 28 2 25 31

distance graph 29 2 26 31
command graph 29 3 26 33

presence 31 – – –
weight 31 – – –
fan-in 28 – – –
SPAN 31 – – –

NES = WES0 31 – – –
WES1 29 – – –
WES2 29 – – –

MTBDDnr 26 1 26 29
MTBDDr 29 – – –

Model peer2peer5_4.sm
Heuristic Avg Std. dev. Min Max
random 35 3 30 44
default 41 13 36 128

distance graph 36 4 30 52
command graph 36 3 29 44

presence 35 – – –
weight 35 – – –
fan-in 41 – – –
SPAN 38 11 30 100

NES = WES0 38 12 30 117
WES1 35 4 29 48
WES2 36 3 29 45

MTBDDnr 36 16 28 112
MTBDDr 32 2 28 35

Model phil_lss3.nm
Heuristic Avg Std. dev. Min Max
random 315 45 191 410
default 255 33 192 305

distance graph 267 15 249 280
command graph 294 53 191 410

presence 388 – – –
weight 285 – – –
fan-in 307 – – –
SPAN 233 45 190 293

NES = WES0 298 48 192 395
WES1 299 51 192 395
WES2 299 53 194 395

MTBDDnr 270 15 241 304
MTBDDr 239 42 190 301

Model poll6.sm
Heuristic Avg Std. dev. Min Max
random 27 3 25 43
default 28 3 25 36

distance graph 27 2 25 32
command graph 27 2 24 32

presence 31 – – –
weight 27 – – –
fan-in 26 – – –
SPAN 26 3 25 43

NES = WES0 26 1 25 30
WES1 26 1 25 29
WES2 26 2 25 38

MTBDDnr 26 1 25 27
MTBDDr 26 1 25 27

Model beauquier3.nm
Heuristic Avg Std. dev. Min Max
random 16 1 15 18
default 16 0 16 17

distance graph 17 2 15 21
command graph 16 1 15 21

presence 16 – – –
weight 15 – – –
fan-in 17 – – –
SPAN 17 0 16 17

NES = WES0 17 0 16 17
WES1 17 0 16 17
WES2 17 0 16 17

MTBDDnr 16 0 16 17
MTBDDr 16 0 16 17
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Model tandem.sm
Heuristic Avg Std. dev. Min Max
random 40 6 32 51
default 40 8 32 51

distance graph 41 9 32 51
command graph 38 6 32 51

presence 37 – – –
weight 32 – – –
fan-in 37 – – –
SPAN 51 – – –

NES = WES0 35 – – –
WES1 35 – – –
WES2 35 – – –

MTBDDnr 32 1 32 35
MTBDDr 32 1 32 37

Model wlan1.nm
Heuristic Avg Std. dev. Min Max
random 419 56 299 516
default 344 28 291 405

distance graph 389 19 368 473
command graph 329 6 321 339

presence 308 – – –
weight 276 – – –
fan-in 240 – – –
SPAN 328 – – –

NES = WES0 328 – – –
WES1 327 16 301 425
WES2 335 28 303 427

MTBDDnr 329 5 326 339
MTBDDr 327 7 303 339

Model wlan1_collide.nm
Heuristic Avg Std. dev. Min Max
random 510 74 366 638
default 413 32 356 486

distance graph 444 40 389 529
command graph 383 14 334 407

presence 356 – – –
weight 318 – – –
fan-in 326 – – –
SPAN 394 1 394 400

NES = WES0 395 5 381 427
WES1 385 29 357 522
WES2 388 40 357 547

MTBDDnr 388 6 382 405
MTBDDr 384 8 370 391

Model wlan1_time_bounded.nm
Heuristic Avg Std. dev. Min Max
random 5,482 1,884 2,232 9,896
default 4,485 1,416 2,780 6,856

distance graph 4,208 1,468 2,665 6,206
command graph 3,413 114 3,242 3,564

presence 3,657 – – –
weight 2,495 – – –
fan-in 4,120 – – –
SPAN 3,450 19 3,444 3,514

NES = WES0 3,447 14 3,444 3,514
WES1 3,733 858 3,249 6,262
WES2 3,664 804 3,249 6,273

MTBDDnr 3,479 21 3,449 3,542
MTBDDr 3,487 17 3,445 3,542

Model zeroconf.nm
Heuristic Avg Std. dev. Min Max
random 3,688 4,081 958 22,015
default 1,620 1,081 609 5,496

distance graph 2,950 3,643 590 22,863
command graph 11,671 17,649 501 53,324

presence 770 – – –
weight 674 – – –
fan-in 984 – – –
SPAN 7,118 7,355 581 40,722

NES = WES0 6,255 5,961 563 14,722
WES1 8,116 4,907 589 13,895
WES2 7,425 5,762 561 14,575

MTBDDnr 588 96 466 768
MTBDDr 3,316 10,313 511 44,551

Model mapk_cascade.sm
Heuristic Avg Std. dev. Min Max
random 25,955 12,134 8,259 68,947
default 3,972 3,836 978 17,102

distance graph 1,823 1,861 539 10,784
command graph 1,777 1,352 518 7,996

presence 18,747 – – –
weight 20,311 – – –
fan-in 1,168 – – –
SPAN 604 52 487 714

NES = WES0 607 52 494 737
WES1 641 70 461 790
WES2 648 82 500 960

MTBDDnr 787 272 529 1,740
MTBDDr 723 210 500 1,296

Model sprouty.sm
Heuristic Avg Std. dev. Min Max
random 4,436 2,285 1,788 11,661
default 2,984 1,617 720 7,703

distance graph 905 330 413 1,816
command graph 822 449 285 2,590

presence 905 – – –
weight 486 – – –
fan-in 1,917 – – –
SPAN 404 100 266 913

NES = WES0 478 141 279 1,067
WES1 368 71 265 640
WES2 364 83 256 672

MTBDDnr 531 139 288 931
MTBDDr 523 113 363 845

Average result
Heuristic Avg Std. dev. Min Max
random 2,205 1,069 735 5,683
default 699 343 337 1,714

distance graph 651 348 342 2,012
command graph 910 831 328 3,037

presence 1,189 – – –
weight 1,171 – – –
fan-in 519 – – –
SPAN 645 327 341 2,083

NES = WES0 615 274 341 1,049
WES1 711 249 356 1,095
WES2 681 283 356 1,138

MTBDDnr 394 39 351 517
MTBDDr 498 442 349 2,227
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A.4 Model Checking Time

As model checking is slow, this experiment has been run on a smaller set of files. Time is displayed in
milliseconds (ms).

Model leader4.nm
Heuristic Avg Std. dev. Min Max
random 48,521 9,756 32,338 76,392
default 34,894 4,751 27,893 45,427

distance graph 35,067 4,378 26,924 46,168
command graph 30,747 3,697 25,079 40,298

presence 38,223 – – –
weight 34,982 – – –
fan-in 37,550 – – –
SPAN 28,065 1,733 24,495 32,230

NES = WES0 30,029 3,108 25,436 36,508
WES1 29,924 2,739 25,470 36,247
WES2 30,053 2,326 25,164 35,328

MTBDDnr 30,220 1,902 25,940 33,967
MTBDDr 28,315 1,741 25,914 33,155

Model leader4_3.pm
Heuristic Avg Std. dev. Min Max
random 114 28 69 195
default 81 7 70 108

distance graph 110 17 84 149
command graph 131 47 62 295

presence 104 – – –
weight 75 – – –
fan-in 100 – – –
SPAN 126 28 69 189

NES = WES0 121 42 69 261
WES1 92 16 62 135
WES2 88 13 69 120

MTBDDnr 105 28 64 157
MTBDDr 89 18 66 131

Model wlan1_time_bounded.nm
Heuristic Avg Std. dev. Min Max
random 97,150 42,746 34,024 220,059
default 72,396 28,545 33,450 137,056

distance graph 80,849 18,677 54,523 139,833
command graph 74,418 8,374 61,926 89,399

presence 54,749 – – –
weight 57,260 – – –
fan-in 29,965 – – –
SPAN 69,673 97 69,644 70,001

NES = WES0 69,658 70 69,644 70,001
WES1 90,949 13,789 69,515 132,765
WES2 87,881 11,088 63,128 129,755

MTBDDnr 68,165 3,873 64,022 73,708
MTBDDr 70,355 3,621 64,022 73,708

Model zeroconf.nm
Heuristic Avg Std. dev. Min Max
random 1,171 193 792 1,850
default 972 138 632 1,256

distance graph 1,182 160 779 1,476
command graph 1,085 390 698 1,895

presence 787 – – –
weight 868 – – –
fan-in 1,245 – – –
SPAN 887 58 775 1,030

NES = WES0 903 76 789 1,085
WES1 914 70 808 1,089
WES2 918 84 786 1,140

MTBDDnr 849 117 725 1,130
MTBDDr 789 261 675 1,820

Average result
Heuristic Avg Std. dev. Min Max
random 36,739 13,181 16,806 74,624
default 27,086 8,360 15,511 45,962

distance graph 29,302 5,808 20,578 46,907
command graph 26,595 3,127 21,941 32,972

presence 23,466 – – –
weight 23,296 – – –
fan-in 17,215 – – –
SPAN 24,688 479 23,746 25,863

NES = WES0 25,178 824 23,985 26,964
WES1 30,470 4,154 23,964 42,559
WES2 29,735 3,378 22,287 41,586

MTBDDnr 24,834 1,480 22,688 27,241
MTBDDr 24,887 1,410 22,669 27,204
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B New Ordering Options in PRISM

I have implemented many of the ordering techniques described above in a branch of PRISM. New command
line options -ordering and -metric were added to let an user specify how PRISM should construct a
variable ordering from a model description. This appendix is a documentation of this new feature.

B.1 Using a Heuristic: the -ordering Switch

The -ordering switch can be used to specify an ordering technique. Most of available techniques are
heuristics. Syntax of this option is:

-ordering <heuristic name>

Some techniques also accept or require arguments. In this case, syntax is

-ordering <heuristic name>([<option name> = <value>[, ...]])

Possible data types for argument values are:

• integer: an expression whose value is a positive integer number.
• boolean: an expression whose value is a boolean or an integer number. In the latter case, 0 corre-

sponds to false, another value to true.
• seed: a seed value to initialize a random number generator, that is to say selfinit (self-initialization

with the computer clock) or an expression whose value is an integer number.
• variable list: a comma-separated list of variable names, inside brackets or a list function. For

example, [a, b, c] or equivalently list(a, b, c).

Here is a description of the available ordering techniques.

• default: in this ordering, nondeterministic variables are put in top of the ordering, and then model
variables in the order they are defined in the model description.
This is the default variable ordering in PRISM.
Options:
• ddgap (optional, integer, default value: 20): create a gap in the MTBDD variables, between

nondeterministic and model variables. This allows to prepend additional variables, e.g. for
constructing a product model when doing LTL model checking.

• schedinmod: variant of the default ordering, in which scheduling nondeterministic variables are
placed just before the variables of the module they correspond to.
This variable ordering is used by default with -mtbdd and -o2 switches.
Options: no option.

From now on, nondeterministic variables are always put in top of orderings.

• random: model variables are put in a random order.
This ordering is mainly used for comparison purpose.
Options:
• kpmodstr (optional, boolean, default value: false): if true, variables of each module are kept

grouped together in the ordering.
• sameinren (optional, boolean, default value: false): if true and kpmodstr is set to true, use

the same random permutation in renamed modules.
• seed (optional, seed, default value: selfinit): seed value to use in the random number

generator.
• manual: let the user specify the model variable ordering. This can also be used by an external

ordering program to run PRISM with an ordering it generated.
Options:
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• vars (mandatory, variable list): the model variable ordering to use.

• astdstgrph: use a TSP heuristic in which variable graph edges are labelled by distance in AST.
This heuristic is described in section 3.2.3.
Options:
• seed (optional, seed, default value: selfinit): seed value to use in the random number

generator.
• iters (optional, integer, default value: 1000): number of iterations to perform in the TSP

solver. A bigger value leads to better TSP solutions at the expense of a slower computation
time.

• cmdgrph: use a TSP heuristic in which variable graph edges are labelled by the number of commands
containing both corresponding variables. This heuristic is described in section 3.2.3.
Options:
• seed (optional, seed, default value: selfinit): seed value to use in the random number

generator.
• iters (optional, integer, default value: 1000): number of iterations to perform in the TSP

solver. A bigger value leads to better TSP solutions at the expense of a slower computation
time.

• sumcmd: use the presence greedy heuristic, described in section 3.2.2.
Options: no option

• weight: use the weight heuristic, described in section 3.2.2.
Options: no option

• fanin: use the fan-in heuristic, described in section 3.2.2.
Options: no option

B.2 Using a Metric: the -metric Switch

We may prefer construct several variable orderings with techniques described above, and compare them
with a metric to select the best one. To construct a set of orderings, it is possible to use several times
the same nondeterministic heuristic:

-ordering <n> * <heuristic>

where n is the number of orderings to generate with this heuristic. Nondeterministic ordering techniques
are random, astdstgrph and cmdgrph.

We can also use several techniques to produce orderings:

-ordering [<n1> * ]<heuristic1> + [<n2> * ]<heuristic2> [+ ...]

It is generally faster to produce n orderings with a few nondeterministic heuristics, each one providing
many orderings, than to use lots of different techniques. Indeed, most of ordering techniques require some
computations to be initialized, thus it is beneficial to minimize the number of initialized techniques.

A metric must also be specified to compare orderings:

-metric <metric name>

Here is a description of available metrics.

• span: use the SPAN metric, described in section 3.3.1.

• nes: use the NES metric, described in section 3.3.2.
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• wes0, wes1, wes2: use the WES metric, described in section 3.3.2.
wes0 corresponds to WES0 – this is an alias of nes.
wes1 corresponds to WES1.
wes2 corresponds to WES2.

• noreachdd: use the MTBDDnr metric, described in section 3.3.3.

• reachdd: use the MTBDDr metric, described in section 3.3.3.
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