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Abstract

Dementia is  the  progressive  decline  in  cognitive  functions  such  as  thinking, 
remembering,  and  reasoning  due  to  damage  or  disease  in  the  brain.  People  with 
advanced dementia have difficulty completing the activities of daily living and need 
assistance  from a  caregiver.  Cognitive  assistive  technology that  helps  guide  users 
through these activities allows this elderly population to complete activities of daily 
living more independently and can relieve some of the stress of the caregiver. The 
research  project  of  the  COACH  system  is  one  of  the  intelligent  systems  being 
developed  to  assist  persons  with  dementia  in  such  activities,  in  particular  hand-
washing.

Based on the research of the COACH system, we model the hand-washing problem as 
Markov decision processes (MDPs) in PRISM, which is one of the stochastic model 
checking tools and has been used to analyse systems from a wide range of application 
domains.  This  project  is  a  case  study of  modelling  and  verification  of  intelligent 
systems in PRISM. Various data analysis has been applied to investigate properties of 
the models.  

From  the  properties  checking  results,  we  have  identified  the  factors  that  play 
important  roles.  General  rules  for  choosing  policies  for  different  users  are 
summarised. Based on lessons learnt from modelling the hand-washing problem, we 
present  the design  of  a  planning  system to help  people  with dementia  during the 
activity of dressing. 
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Chapter 1
Introduction

1.1 Background

Dementia is  the  progressive  decline  in  the  cognitive  functions  of  thinking, 
remembering, and reasoning due to damage or disease in the brain. It usually affects 
older people and becomes more common with age. People with advanced dementia 
have difficulty completing the activities of daily living and need assistance from a 
caregiver. However, the dependence on caregivers can lead to feelings of anger and 
helplessness  for  the  patient.  The  physical  and  emotional  burden  placed  on  the 
caregiver is also heavy. Cognitive-assistive technology that helps guide users through 
these activities allows the population stricken with dementia to complete activities of 
daily living more independently and can relieve some of the stress of the caregiver. 
The research project of the COACH system presented in [1], [2], and [5] is one of the 
intelligent systems being developed to assist persons with dementia in such activities, 
in particular hand-washing.

PRISM is one of the stochastic model checking tools and has been  used to analyse 
systems from a wide range  of  application  domains,  including communication  and 
multimedia  protocols,  randomised  distributed  algorithms,  security  protocols, 
biological systems and many others [6]. This project is a modelling and verification 
case study of intelligent systems in PRISM.

This project models the hand-washing problem using DTMCs and MDPs. Based on 
different assumptions and focused on different system variables, several simplified 
versions of the hand-washing problem will be analysed, with reduced state space.

The  objective  of  this  project  is  to  compare  the  efficiency  of  different  policies, 
simulate how the different policies work under different scenarios, and investigate the 
influence of different factors on the hand-washing problem by modelling the it  in 
PRISM.  Also,  a  new planning  system is  designed  for  activities  other  than  hand-
washing, demonstrating the versatility of application for the policy.  

PRISM is a probabilistic model checking tool which has direct support for three types 
of  probabilistic  models:  discrete-time  Markov  chains  (DTMCs),  Markov  decision 
processes (MDPs) and continuous-time Markov chains (CTMCs). 
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1.2 Outline

The remainder of this dissertation is outlined as follows. Chapters 2-4 summarize the 
information  that  the  writer  had  to  learn  in  order  to  undertake  the  work  in  this 
dissertation.  Chapter  2  introduces  the  concept  of  Markov decision  processes,  and 
explains how they are used in intelligent systems. The main features of PRISM, the 
probabilistic model checker used to analyse our models, are described in chapter 3. 
Chapter  4  describes  in  detail  the  COACH system which our  application  rests  on. 
Chapters 5 and 6 contain the main contribution of this dissertation. In Chapter 5, we 
explain  the  simplified  model  for  the  hand-washing  problem  based  on  COACH’s 
planning  system,  and  discuss  properties  of  both  the  MDP model  and  the  DTMC 
model specified in PRISM. Experimental results and analysis are also presented in 
chapter 5. Supported by our findings in chapter 5, a planning system for the activity of 
dressing is proposed in Chapter 6. The idea of generalising the use of probabilistic 
model checking in designing a planning system for more activities of daily living is 
also  presented.  Finally,  in  chapter  7,  the  achievements  and  limitations  of  our 
contributions are summarised, and suggestions for future related work are included. 
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Chapter 2
MDP in intelligent systems

With its  ability to address stochasticity,  decision-theoretic planning is an attractive 
extension  of  classical  artificial  intelligence  (AI)  planning.  As  decision-theoretic 
models, Markov decision processes (MDPs) have been widely used as the underlying 
models  for  posing  and  solving  AI  planning  problems where  outcomes  are  partly 
random and partly under the control of the decision maker. In this chapter, the general 
MDP framework,  its  applications  in  planning  problems  and  their  computational 
complexity will be discussed. Major information presented in the chapter is sourced 
form [10].

2.1 The general MDP framework

In  this  section,  we  discuss  the  general  MDP  framework  for  basic  problem 
formulation. The framework is general enough to fit most problems in the domain of 
intelligent systems, and it is compared with the classical view of planning problems. 
For  different  problems,  the  framework  can  be  specified  by  making  different 
assumptions, which can either simplify the general framework or extend it. Examples 
of planning problems with underlying MDP framework are given in section 2.2.

A discrete time MDP consists of a finite or countable set S of possible system states, a 
finite  set  A of  possible  events,  a  real  value  reward  function R,  and a  description 
Pr(S’｜S, A) of each event’s effects in each state. 

At any point in time, the system can be in one of the all possible system states, and the 
system’s state changes over time in response to events. For discrete-time system, unit 
of time is defined as time step or stage. It is assumed that every event takes one time 
step to complete. 

2.1.1 Discrete time Markov chain

MDPs are an extension of Discrete time Markov Chains (DTMCs). An MDP would 
reduce to a DTMC if the action taken was fixed for each state.

To model  the uncertainty of the system, the system’s state at  some time step t  is 
considered as a random variable St, which has a domain of S. The variable St does not 
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depend  directly  on  the  value  of  future  variable  Sk (k>t),  which  is  known as  the 
assumption  of  forward  causality.  Furthermore,  we  assume  that  the  present  state 
contains enough information to predict the next state. In other words, this assumption 
(the  first  order  Markov assumption)  says  that  given the state  at  time  t is  known, 
transition probabilities to the state at time t + 1 are independent of all previous states:

Pr(St+1｜St, St-1,…,S0)= Pr(St+1｜St)

Also the state transition is assumed to be stationary, which means the effects of an 
event depend only on the state, but not on the time step at which it occurs:

Pr(St+1｜St) = Pr(St+k+1｜St+k)

First order stationary Markov chains are often illustrated using directed graphs, where 
the arrows describe the probabilities of going from one state to other states. 

Figure 1 (a) a general stochastic process; (b) a Markov chain; (c) a stationary Markov chain (sourced 

from [10])

2.1.2 Actions and exogenous events

The difference between MDPs and DTMC is the choice of actions. While a DTMC 
describes the state transitions of a stochastic system, it does not capture the fact that 
the agent, or decision maker, can choose an appropriate course of action in order to 
change the system’s state.  

Like Markov chains, MDPs possesses the Markov property, which requires that any 
information necessary to predict the effects of all events is captured in the state. In 
other words, the effects of an event in a state depend only on that state and not on the 
prior history:
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Pr(St+1｜A, St, St-1,…,S0)= Pr(St+1｜A, St)

In MDPs, there are two kinds of events: actions which are instigated by an agent in 
order to change the system’s state; and exogenous events which are not under the 
agent’s  control,  and  whose  occurrence  may  not  be  fully  predictable.  No  matter 
whether their occurrence is controlled by the agent or is unpredictable, the effects of 
both actions and exogenous events can be either deterministic or stochastic. For the 
deterministic events, a next state can be specified if the the current state and the event 
are known. In contrast, for the stochastic events, a probability distribution over next 
states is specified knowing the current state and the event.

A transition function Pr(S’=s’｜A=a, S=s) captures system dynamics by specifying the 
probability that performing action a in state s will move the system into state s’. Since 
an action may have effects on the occurrence of any exogenous events as well  as 
direct  effects  on  the  current  state,  the  state  transitions  distribution  can  be  very 
complicated  due  to  the  events  interaction.  Instead  of  specifying  the  transition 
functions for actions and exogenous events separately, state transitions are generally 
viewed as comprised effects of these two events. So, the transition function for an 
action is usually  assumed to account for any exogenous events that might occur when 
the action is performed [10].

Figure 2: A state transition diagram (sourced from [8])

2.1.3 Observations, policies and reward

The  planning  system’s  sensing  capability  can  be  modelled  by  a  finite  set  of 
observations O. Observations  capture all  the information available  to  the decision 
maker. The observable history is the sequences of actions and observations generated 
from time step 0 to some time step of interest. 

A policy is a strategy telling the decision maker which action to choose. Formally, a 
policy π is a mapping from the set of observable histories HO to the set of actions A. 
In  order  to  evaluate  the  quality of  a  policy,  a  value  function  is  defined.  A value 
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function V is mapped from the set of system histories HS to reals  R. Similar to the 
observation history, the system is a sequence of actions and states generated from time 
step 0 to some time step of interest. The decision maker prefers system history h to h’ 
when V(h)>V(h’). The value for a policy Vπ  is the expected value over the possible 
history caused by actions following this policy. 
  
Since the representation of the system history can be cumbersome, some assumptions 
are commonly made so that the structure in the value function can be easily identified. 
Assuming  time-separability  and  additivity,  the  value  function  is  defined  as  the 
combination of positive rewards and negative rewards associated with states or state 
transitions.  A reward can  be  defined  by a  function  R:SR  or  R:  S×AR or  R: 
S×S×AR. The first function means the reward is associated with a state. The second 
one means the award is associated with performing an action a in state s. The last one 
associates the reward with a state transition, in which performing an action a in state s 
results in state s’. For the reward associated with a state transition, it can either be 
counted as the reward for the present state s or for the next state s’, but not both. A 
negative reward is also called a cost.    

Since the value function has a range of real numbers, but the total reward, including 
positive and negative, may be infinite, only a few different mappings can be used to 
combine the rewards into single real numbers. 

If the policy is evaluated over a finite number of time steps, the value is the total 
reward  in  this  finite  horizon.  Denoting  the  sum of  positive  and negative  rewards 
earned at time step t as rt, the value function of a horizon of length T is:

Vπ= ∑t=0
T rt

On the  other  hand,  if  the  policy  is  evaluated  over  an  infinite  horizon,  the  value 
function  can  be  defined  as  either  a  cumulative  discounted  reward  or  an  average 
reward rate in the limit. The cumulative discounted reward with discount rate 0<γ<1 
is defined as follows:

Vπ= ∑t=0
∞γt rt

The average reward rate in the limit is defined as follows:
Vπ=lim (1/n) ∑t=0

n rt

For  different  problems,  their  objectives  can  be  finding  an  optimal  policy,  which 
maximises the value function, or a satisfying policy, whose value function exceeds a 
given threshold.

2.2 Common planning problems  
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Various  planning  problems  can  be  classified  using  this  general  MDP framework 
according to their different modelling assumptions. These are assumptions about the 
state space, events, observability, value function, objective, etc. These assumptions 
help to identify the structure of the planning system. The complexity of the policy 
construction is also determined by the corresponding problem’s set of assumptions 
(discussed in section 2.3). 

2.2.1 Fully Observable Markov Decision Processes

Fully Observable Markov Decision Processes (FOMDPs) assume fully observability. 
In this case, O = S, the set of observation is the set of system states. So the decision 
maker has full knowledge of the system current state and will know the new state 
resulting from performing an action. In FOMDPs, a policy is a function of the system 
state.  Under  Markov assumption,  the present  state  contains  all  the system history 
information relevant to the future.

2.2.2 Partially Observable Markov Decision Processes

In contrast with FOMDPs, system states can not always be determined in Partially 
Observable Markov Decision Processes (POMDPs). In this case, the decision maker 
can  observe  its  state  of  belief  but  does  not  know  the  system  state  exactly.  An 
observation distribution U(s, o) represents the probability of being in a certain state 
given an observation.  Also a complete  POMDP includes a probability distribution 
over initial states I, which reflects the probability of being in any given initial state.

2.2.3 Deterministic planning 

The  classical  AI  planning  models,  which  assumes  deterministic  actions,  can  be 
viewed as a special case of None Observable Markov Decision Processes (NOMDPs). 
Actions are deterministic means whereby Pr(S’=s’｜A=a, S=s) is either 1 or 0. These 
models assume that the initial state is known and that the executions of actions are 
prefect. Since the decision maker knows where it is from the initial state and where it 
will be at after every action, no observability is need. The reward is determined by 
reaching a goal state. To encourage faster goal achievement, it can either discount the 
reward or assign a cost to each action. 

2.2.4 Probabilistic planning

14



Extended  from  deterministic  planning,  a  probabilistic  planning  problem  without 
feedback has a probability distribution over initial states, stochastic actions, a set of 
goal states and a probability success threshold. The objective is to find a satisfying 
policy that reaches any goal state with probability larger than the threshold. If there is 
no feedback, then the policy can only be in the form of straight line plans and this is a 
restricted case of NOMDP problem. The problem becomes a restricted case of the 
general POMDP problem when the actions provide some feedback. 

2.3 Comparing the complexity of FOMDP and POMDP

Since  we  mainly  focus  on  FOMDP and  POMDP for  the  hand-washing  problem, 
computational complexity of solving these two kinds of model will be exam. 

Generally MDPs (fully observable) can be solved in polynomial time in the size of the 
state space. Value iteration and policy iteration are the most common algorithms for 
solving  MDPs.  For  infinite-horizon  problems  involving  discounted  reward,  the 
optimal policy can be shown to be stationary [10].

On the other hand, POMDPs are famous for their computational difficulty. A POMDP 
can  be  viewed  as  “a  MDP with  an  infinite  state  space  consisting  of  probability 
distributions over S, each distribution representing the agent's state of belief at a point 
in time” [10]. It is exponentially hard to find an optimal policy for a POMDP with the 
objective of maximizing expected total reward or expected total discounted reward 
over a finite horizon.

2.4 Summary 

MDPs provide a mathematical framework for modeling decision-theoretic planning 
problems. MDPs are attractive as a model for the handwashing problem because its 
ability of modelling stochastic events and trandoffs between short-term and long-term 
goals.

POMDP is a generalization of a MDP which allows one to model imprecise 
information about the current environment state uncertainty in the effect of actions, 
and conflicting objectives. Hence, as a formal framework for modeling the decision 
process, POMDP has advantages in accuracy and disadvantages in computational 
complexity. 
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Chapter 3
PRISM probabilistic model checker

PRISM is the tool we use for modelling planning systems for activities of daily living. 
A basic  understanding of its  theoretical  foundations and functionality supported is 
important for our goal. The majority of the information presented in this chapter is 
sourced form [6] and [15]. 

3.1 Overview of PRISM

Probability is not only an important component in the design of algorithms, but it is 
also a tool for analysing system performance. Since probability can be used to model 
unreliable or unpredictable behaviour, probabilistic thinking plays an important role in 
many areas of artificial intelligence, including learning, planning and the evaluation 
of artificial agents. Probabilistic model checking is a formal verification technique, 
which is based on the construction of a precise mathematical model of the system 
which  is  to  be  analysed.  Properties  of  the  system are  then  expressed formally in 
probabilistic temporal logic and automatically analysed against the constructed model. 
PRISM is one of the stochastic model checking tools and has been  used to analyse 
systems  with  a  wide  range  of  application  domains,  including  communication  and 
multimedia  protocols,  randomised  distributed  algorithms,  security  protocols, 
biological systems, and many others.

PRISM  directly  supports  three  types  of  probabilistic  models,  which  are  Markov 
decision processes (MDPs), discrete time Markov chains (DTMCs) and continuous 
time  Markov  chains  (CTMCs).  CTMCs  are  extensions  of  DTMCs,  which  allow 
transitions to occur in continuous time (see chapter 3 for MDPs and DTMCs).

PRISM first parses the model description, which is in PRISM modelling language, 
and  constructs  an  internal  representation  of  the  probabilistic  model.  The  property 
specification  is  then  parsed  and  appropriate  model  checking  algorithms  can  be 
performed.  PRISM  supports  both  qualitative  and  quantitative  probabilistic  model 
checking. For properties which include a probability bound, PRISM reports a true or 
false  result  to  indicate  whether  or not  each property is  satisfied.  PRISM can also 
return quantitative results for properties.

To represent  all  reachable  state  space  and properties  specific  to  the  model,  in  its 
implementation, PRISM uses combinations of symbolic data structure such as Multi-
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Terminal  Binary Decision Diagrams (MTBDDs),  which is  an extension of Binary 
Decision Diagrams (BDDs), and conventional explicit storage schemes such as sparse 
matrices and arrays. These data structures provide space and time efficiency for the 
storage and analysis of probabilistic models, which often are large and structured, by 
exploiting their regularity. For more details on the symbolic and explicit approach, 
please see [17] [18] and PRISM’s website.

For reachability analysis, conventional temporal logic model checking and qualitative 
probabilistic model checking, the underlying computation in PRISM involves graph-
theoretical  algorithms.  For  quantitative  probabilistic  model  checking,  numerical 
computation is also involved. When performing numerical computation, PRISM can 
use one of its three numerical engines. The MTBDD engine is implemented purely in 
BDDs/MTBDDs; the spare engine uses sparse matrices; and the hybrid engine uses a 
combination of the two. All of them perform the same calculations but performance in 
terms of time and space may vary. The MTBDD engine is effective for models with a 
lot of structure and regularity. The sparse engine outperforms when models are small 
but  model  checking  takes  a  long  time.  The  hybrid  engine  provides  the  best 
compromise between time and memory usage.

PRISM  uses  several  iterative  numerical  methods  for  different  types  of  property 
verifications.  To solve linear  equations,  the numerical  techniques  PRISM supports 
include the Power method, Jacobi method, Gauss-Seidel method, Backwards Gauss-
Seidel method, JOR method, SOR method, and the Backward SOR method. Value 
iteration is used to solve linear optimisation problems in the analysis of MDPs. For 
transient analysis of CTMCs, PRISM uses a method called uniformisation.

3.2 The PRISM modelling language

PRISM is a high level, state-based probabilistic modelling language, which is based 
on  the  Reactive  Modules  formalism  in  [19].  A  model  in  PRISM  language  is 
constructed as the parallel composition of its modules, which can interact with each 
other. The definition of a module contains a number of finite range variables. These 
variables are called local variables, whose value can be read by all modules but can 
only be changed by their own module. The values of these local variables determine 
the state of the module. PRISM also supports global variables, whose values can be 
read and changed by all  modules most of the time. The global state of the whole 
model is determined by the local state of all modules and values of global variables. 

The behaviour of each module is described by commands, each of which comprise a 
guard and one or more updates:

[] g  λ1 : u1 + … + λn : un ;
The guard g is a predicate over all variables in the model. Each update ui describes a 
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transition by giving the variables new values. Each expression λi is the probabilistic 
information assigned to a corresponding update. This can be a probability in the case 
of DTMCs or MDPs, or a rate in the case of CTMCs. If the guard is true, the updates 
are executed according to their probabilistic information.

PRISM also  supports  full  parallel  composition  of  modules,  asynchronous  parallel 
composition  of  modules  and  restricted  parallel  composition  of  modules.  So, 
transitions  can  either  be  performed  in  an  interleaved  manner,  or  simultaneously. 
Synchronisation can be achieved by labelling commands with actions.  In order to 
avoid synchronising commands of different modules by assigning different values to a 
global  variable,  commands labelled with actions are  not  allowed to update  global 
variables. 

Rewards are  real  values associated with certain  states or transitions of the model. 
State rewards can be specified using multiple reward items, each of the form:

g : r;
The guard g is a predicate over all model variables and the reward r is an expression 
containing  any  variables  and  constants  of  the  model.  Transition  rewards  are 
represented in a similar form to the state reward, with action label:

[a] g : r;
Noted that [ ] g : r; is a transition reward rather than a state reward. It assigns a reward 
to all transitions in the model with no action label. If a state or a transition satisfies 
guards in multiple reward items in one reward structure, its total reward is the sum of 
the rewards for all these items. Multiple reward structures can be defined in a single 
PRISM model. A label can be assigned to each of them for the convenient of reward-
based property checking. Without labeling, PRISM will use the first reward structure 
in the model file. 

With the support of rewards, a wide range of properties can be specified and analysed 
in PRISM.

3.3 Property specifications in PCTL

Properties  are  specified  using  Probabilistic  Computation  Tree  Logic  (PCTL)  for 
MDPs and DTMCs, and Continuous Stochastic Logic (CSL) for CTMCs.

PRISM can either give yes or no answers to assertions (properties with bound), or 
they can return the expected value of the properties. Different numerical algorithms 
are used to check different types of properties (see section 3.1). There are 3 principal 
operators for specifying properties: the P operator, which refers to the probability of 
an event occurring; the S operator, which refers to steady-state probability; and the R 
operator, which refers to the expected value of rewards.
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The properties specified by the P operator can be of the form:
P bound [ pathprop ]

which means the probability that path property pathprop is satisfied by the paths from 
state s meets the bound bound; or of the form:

P query [ pathprop ]
for  which a numerical  rather  than a  Boolean value should return.  For  DTMCs or 
CTMCs, query is =?.  For MDPs, query can be min=? or max=? because only the 
minimum  or  maximum  probability  of  the  path  property  being  satisfied  can  be 
computed.  

The types of path property which can be used inside the P operation include: X, for 
‘next’; U, for ‘until’; F, for ‘eventually’; and G for ‘always’. The roles of these path 
property operators are illustrated through their basic syntax in Table 3.1. 

Syntax Meaning
X prop true if prop is true in its second state

prop_1 U prop_2 true if prop_2 is true in some state of the path and prop_1 is true in all 
preceding states

prop_1 U time prop_2 true if prop_2 becomes true within time bound time and prop_1 is true in 
all states before that point

F prop true if prop eventually becomes true at some point along the path

F time prop true if prop becomes true within time bound time

G prop true if prop remains true at all states along the path

G time prop true if prop remains true in the time bound time    

Table 1: Path properties for P operator

For the S operator, the property is of the form:
S bound [ prop ]

or S bound [ prop ]
It checks the long-term probability of being in a state which satisfies prop. 

The R operator works in a similar fashion to the P and S operators, which is of the 
form:

R bound [ rewardprop ]
or R bound [ rewardprop ]

where bound can be <r, <=r, >r or >=r for an expression r evaluating to a non-negative 
double, and query is =? for DTMCs or CTMCs, and min=? or max=? for MDPs. 

The four types of reward properties are illustrated in Table 2. 

Examples  of  probability-based  and  reward-based  properties  specifications  can  be 
found in Chapter 5 and 6, where PRISM is used as the tool for analysing the models 
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for planning systems. 

Syntax Name Meaning Notes

F prop reachability 
reward

reward cumulated along a path 
until  a  state  satisfying 
property prop is reach

state rewards for the prop satisfying 
state reached are not included

C<=t cumulative 
reward

reward cumulated along a path 
until t time units have elapsed

t  is  an  integer  for  DTMCs  and 
MDPs, a double for CTMCs

I=t instantaneous 
reward

the  reward  in  the  state  of  a 
path when exactly t time units 
have elapsed

t  is  an  integer  for  DTMCs  and 
MDPs, a double for CTMCs

S steady-state 
reward

the reward in the long run currently only available to CTMCs

Table 2: Reward properties for R operator

3.4 Summary

This chapter provided a brief overview of PRISM, and especially of the features we 
used  in  modelling  the  hand-washing  problem.  In  section  3.1  we  introduce  the 
stochastic models PRISM supported directly. Implementation details relevant to issues 
arose  throughout  our  work,  including  numerical  engines  used  for  quantitative 
probabilistic model checking is presented. Section 3.2 shows how these models can be 
described in PRISM language.  Section 3.3 explains what  properties can be model 
checked and how they can be expressed.    
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Chapter 4
An MDP-based planning system for the 
hand-washing problem

The COACH system is a guidance system that assists people with dementia in the 
activity  of  hand-washing.  Its  planning  system  employs  the  MDP  framework 
introduced in chapter 3 to make decisions for the user and remind the user what to do 
next in the task of hand-washing. The design of the planning system is subjected to 
the  constraints  of  the  hand-washing  environment,  for  example  the  technologies 
available for capturing the progress in the hand-washing task, and the knowledge of 
the user’s individual characteristics, for example, how people at different stages of 
dementia cope with the reminders. 

Before introducing our model of the hand-washing problem in chapter 5, which uses 
the research done by the COACH team as the main reference, in this chapter, the 
research on the COACH system presented in [1] [2] and [3] is discussed in more 
detail. 
 

4.1 Planning system design

Since the planning system of the hand-washing problem is a part of the assistance 
system which is formed by the sensing system, the planning system and the prompting 
system, the system design has to take input and output from the other two parts of the 
whole system into consideration. In the hand-washing problem, it is desirable but less 
possible  for the system to observe or measure conditions  of the user’s  hands,  for 
example, whether they are dirty or clean, dry or wet, soapy or not. In order to capture 
the  user’s  actions  and progress  in  hand-washing,  the  use of  computer  vision  is  a 
logical choice. This sensing system uses computer vision to keep track of the user’s 
hands and relevant objects in the task, such as the soap and the towel. In addition, a 
sensor to measure the water flow from the tap is also included in the system. Hence, 
the  planning  system makes  decisions  base  on  the  information  on the  user’s  hand 
location relative to the relevant objects and the water flow. 

The design of the prompting system is more flexible than the sensing system. In other 
words, there are many ways to provide the user with reminders of what to do next in 
the task. In the COACH system, six different task reminders (water on/off, use soap, 
wet hands, rinse hands, dry hands) at three levels of specificity (general, moderate, 
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specific) are used. These prompting reminders can be tailored for each user and for 
different  activities.  Different  wording,  volume and recorded voice  can  be  used  to 
achieve maximum responsiveness. Also, multimedia systems, such as video, can be 
deployed as a part of the assistive system to provide reminders. 

As a key part  of the task assistive system, the planning system models  the hand-
washing activity in a Markov decision process. As discussed in chapter 3, by adopting 
the MDP framework, different aspects of the hand-washing problem can be modelled 
in  terms  of  states  and  state  transitions,  observations,  actions,  and  rewards. 
Observations  are  limited  by the  information  provided  by the  sensing  system,  and 
actions  are  the  outputs  of  the  prompting  system.  The  MDP model  for  the  hand-
washing problem can be extended to  a  POMDP model,  which can capture partial 
observability, for example the noise of input and hidden variables that describe the 
user’s behaviour. The MDP model is capable of taking into account both uncertainty 
in the effects of its  actions and tradeoffs between short-term and long-term goals. 
Extending  to  a  POMDP  model,  it  also  has  the  ability  to  estimate  the  user’s 
characteristic  over  time.  Differences  in  three  versions  of  the  model  for  the  hand-
washing problem will be discussed in the next section.

Figure 3: The COACH system [20]

4.2 System variables

To describe  the hand-washing  problem,  the task is  divided into  several  sub-tasks, 
which are  called plan steps.  Each plan step is  a critical  step in  the hand-washing 
activity. In the MDP model described in [3] and the POMDP model described in [2], 
the plan steps capture the actions that the user has completed. The plan graph for these 
two models is shown in Figure 4. Each node in this plan steps graph is labelled as an 
action of the user. It is important to note that the action is only the label of a state and 
not the state itself. The action alone cannot represent a unique situation in the hand-
washing activity. For example, plan steps E and D in figure 4 both appear as ‘use 
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soap’, but they are two different steps and represent different progressions the user 
has made in the hand-washing activity. It does not contradict the Markov assumption, 
which says that the states transition only depends on the current state, because plan 
step E and D represent different states even if they have the same label.

Figure 4: Plan graph 1 of COACH [2]

To solve this confusion, [1] and [8] present the same plan step graph in a different 
way by labelling each plan step node as the condition of the user. In the plan step 
graph from [8] (Figure 5), the arcs between nodes are labelled with the actions which 
cause the transitions between the nodes.

Figure 5:  Plan graph of COACH [8]
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As mentioned above, there are two key observables of the hand-washing problem. 
The variable used to describe the water flow during the hand-washing task is binary, 
representing  the  water  flow  from  the  tap  off  and  on  respectively.  For  the  hand 
location, each value represents a possible region for the position of the user’s, for 
example at sink, at soap, at towel, at taps or at water. In [1], the hand location variable 
is extended to capture the locations of both hands, for example, one at sink and one at 
tap,  instead of assuming both hands are always at the same location.  In the MDP 
model,  perfect  observability  is  assumed.  On  the  other  hand,  the  POMDP model 
assumes  that  there  is  25% noise  in  the  observation  of  function  that  detects  hand 
location [2].

There are three kinds of actions available to the planning system according to [1], [2], 
and  [3].  The  system can  give  a  prompt,  call  the  caregiver,  or  do  nothing  at  all. 
Presuming  that  the  hand-washing  task  will  be  completed  successfully  with  the 
caregiver’s intervention, the action of calling the caregiver ends the planning system’s 
attempt to assist the user to finish the task. There are 6 prompts which are reminders 
of a certain subtask, at 3 levels of specificity. It is assumed that the more specific the 
prompt is, the more likely the user will response to this prompt, but at the same time it 
is more likely the user will become annoyed less independent during the task. For this 
reason, each system action is associated with a cost, which is explained in section 4.4.
 
In order to give a full picture of the task, other variables are used to capture the status 
of the hand-washing activity, such as the maximum plan step completed, whether the 
current plan step is repeated, and the progress within the current plan step. Since the 
model has Markov property, which means that the future states are independent of the 
past states (given the present state), history variables are introduced into the model to 
provide  a  summary  of  the  system  history  relevant  to  prediction  of  the  user’s 
behaviour.  These  history  variables  are  the  number  of  prompts  issued  during  the 
current plan step, the type of the last prompt, the specificity level of the last prompt, 
and the number of time steps waited since the last prompt.

4.3 Modelling the user’s behaviour

One notable difference between the MDP model in [2] [3] and the POMDP model in 
[3] [1] is the use of user variables, which reflect the aspects of the user’s mental state 
which have an impact on their actions pattern in the hand-washing task. These factors 
in the user’s individual characteristics include his or her overall level of dementia, the 
responsiveness  to  the  prompts,  and  the  awareness  of  how  to  do  the  task.  These 
variables are not observable, however, the POMDP model can estimate a particular 
user’s characteristic factors over time.
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In the MDP model, without the system’s ability to estimate the user’s characteristic, 
the dynamic associated with the user’s actions pattern were “manually specified by 
one of the authors using prior knowledge of the domain, gained through extensive 
observation of a professional caregiver guiding ten subjects with dementia through 
hand-washing” [3]. 

In the POMDP model, the dementia level variable “has some prior distribution set 
based on the population of users [1]”. The model then estimates a particular user’s 
level  of  dementia  by  watching  his/her  hand-washing  behaviour  over  multiple 
sequences. 

4.4 Costs and rewards

Both the MDP model and POMDP model have similar cost and reward structure. The 
design of the reward function is to “promote user independence, completion of overall 
task, and minimal regression by the user [3]”.

A large  reward  is  associated  with  the  completion  of  the  hand-washing  task.  Also 
smaller rewards are given for the completion of subtasks, in another word, reaching 
another maximum plan step for the first time. This design is to encourage progress 
even when the task is unlikely to be finished.

The cost for a prompt is proportional to its level of specificity. The more specific the 
prompt is, the more it costs. Otherwise, as already stated, giving prompts too often, 
especially specific prompts, could make the user feel less independent or annoyed. 
The costs for the three levels of prompts are 3, 5, and 7 according to [3] and 3, 5, 7, 
according to [2]. 

In these models, the cost for calling the caregiver is set high. Since the aim for the 
planning system is to help the user to finish the task as independently as possible, it is 
desirable to  limit  human intervention.  Calling the caregiver  is  therefore penalised. 
However, if all else fails, this action is still an important option for the system. If the 
cost associated with calling the caregiver is set too high, the system can always get a 
higher total reward by doing nothing and will never call  the caregiver even if  the 
probability of finishing the task without the caregiver’s intervention is very low. 
 
According to [3], the values shown in Table 3 were determined in an iterative process. 
Through  a  series  of  simulated  trials  (see  section  4.5),  the  reward  function  was 
successively altered until desired performance was attained. Also an ongoing research 
project of fine-tuning the reward function is reported in [2].
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Table 3: Definition of reward function (sourced form [3])

4.5 Policies for the planning system

The research done in [1], [2], and [3] mainly focuses on constructing optimal policies 
for the MDP planning system and the POMDP planning system. The optimal policies 
aim to maximise the long term discounted expected reward, as defined in the above 
section.  These solutions,  which  are  usually of  high computational  complexity,  are 
computed offline. 

For all versions of the planning system for the hand-washing problem, the optimal 
policies were computed offline due to the computational complexity of both MDP 
model and POMDP model for a planning system of such large scale, as mentioned in 
Chapter 2.
   
According to [2], the MDP model has 25,090,560 states and the POMDP model has 
50,181,120 states. The optimal policy for the MDP model was solved by the SPUDD 
algorithm and an ADD with 3,284 internal nodes and 18 leaves was used to represent 
the optimal policy for the MDP model. The optimal value function was an ADD with 
a total of 139,443 internal nodes and 106, 328 leaves. For the POMDP model, since 
its scale is beyond the reach of any exact solution techniques, the Perseus-ADD, a 
new point-based approximation solution technique based on the Perseus algorithm 
[12] approximation algorithm developed by the COACH team, is used to solve the 
POMDP only for a specific set of belief point. 

Some  other  simple  heuristic  policies  were  also  developed  for  comparison.  These 
include  the  Nil  policy,  which  never  gives  a  prompt  and the  call-caregiver  policy, 
which always calls the caregiver. 

For  the  POMDP  model,  there  are  two  more  alternative  policies  which  can  be 
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compared with the optimal policy. One alternative policy is that has a fixed set of 
thresholds  on the belief  distribution  and attempts  to  prompt when the  user  is  not 
aware. The other one assesses the most likely state given the current belief, and then 
acts according to the optimal policy of the MDP model. 

4.6 Evaluation

Although clinical trial is the most reliable method of evaluating the system, it can 
only be applied when the system has been proved safe. Survey and simulation are two 
alternatives. The simulation described in [2] and [3] used an actor to play the role of 
the user.  The actor washed hands with the help of either human care giver or the 
prompting system. Than the simulation results were analysed by the research team. 
Furthermore,  the  process  was  recorded  and  a  group  of  participants,  who  have 
experience  in  care  giving,  rated  the  efficiency  of  a  series  of  simulated  trials by 
watching video and answering questionnaires. 

Satisfactory results from both simulation experiment and clinical trial are reported in 
[1]. However, simulation can only assess the system in a small amount of scenarios 
and the risk and cost associated with clinical trial are very high. 

4.7 Summary

In  this  chapter,  the  MDP based  planning  system  assisting  people  with  dementia 
through  hand-washing  is  discussed.  Detailed  descriptions  of  design  of  plan  steps, 
modelling  of  the  user’s  behaviour,  specification  of  cost  and  reward,  as  well  as 
computation of optimal policy are given from section 4.1 to section 4.5. As seen from 
the evaluation process discussed in section 4.6, the lack of an efficient tool to assess 
the  planning  system might  be  a  bottle  neck  of  the  system development.  In  next 
chapter,  the  ability  of  a  probabilistic  model  checker  to  model  the  hand-washing 
problem is  investigated since probabilistic  model  checking is  possible  an efficient 
alternative to evaluate the planning system.  
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Chapter 5
Modelling  the  hand-washing  problem 
with PRISM

The COACH’s planning system discussed in  Chapter  4  is  modelled in a  decision 
theoretic fashion as a MDP or a POMDP, both of which were introduced in Chapter 2. 
The planning system has been evaluated through simulation experiments and trials 
with actors. The preparation for clinical trials was also reported in [1]. However, these 
experiments/tests  can  only  expose  the  planning  system  in  a  limited  number  of 
situations. In order to analyse the planning system in a more systematic way, to extend 
its exposure to a wider range of situations, and to test its performance for different 
user characteristics, we analysed the hand-washing problem with the methodology of 
probabilistic model checking (Chapter 3). 

Based  on  the  research  of  the  COACH team in  [1],  [2],  and  [3],  we  modelled  a 
simplified version of the hand-washing problem and its planning system with PRISM. 
Having already established the PRISM model for the hand-washing problem, model 
checking was applied to compare the performances of different policies for different 
user characteristics in different scenarios.

5.1 Modelling the hand-washing problem in PRISM

The simplified model of the hand-washing problem is based mainly on the work in 
[2],  with  most  of  the  assumptions  described  in  chapter  5.  While  the  COACH’s 
planning system is extended from MDP to POMDP with the ability to model the non-
observability of individual user characteristics, we first modelled the interaction of the 
planning system and the user in a MDP framework because PRISM does not directly 
support POMDP.

In the MDP version of the COACH planning system [3], the user characteristic is 
specified manually and all users at different mental stages are assumed to have the 
same behaviour in the hand-washing task. In the POMDP version, a particular user’s 
characteristic is assumed unchanged and can be estimated over time. However, this 
assumption might not hold because the user characteristic can vary over time even for 
the same user. If the characteristic for the same user changes, either because the user 
is  in  different  mode  or  different  health  condition,  the  POMDP planning  system 
potentially loses its advantage over the MDP planning system. 
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Although  we  are  not  able  to  model  the  hand-washing  problem in  POMDP with 
PRISM, we still want to analyse the hand-washing problem, in particular the planning 
system,  for  different  user  characteristics.  Moreover,  since  we  want  to  relax  the 
assumption that the characteristic for a particular user is unchanged over time, MDP is 
more  attractive  as  a  model  than  POMDP because  of  the  latter’s  computational 
complexity.  In  order  to  capture  different  user  characteristics  in  our  hand-washing 
model,  a  few  parameters  are  defined  to  represent  the  user’s  awareness  and 
responsiveness (section 5.1.2). In the COACH’s MDP model, these parameters are 
fixed and in the POMDP model, these are hidden variables which can be estimated. In 
our MDP hand-washing model, these parameters can be either constants or variables, 
so the planning system has different abilities in matching its policy to different user 
characteristics, which are analysed in section 5.3.2.

Furthermore, some policies are specified as simple heuristic functions for the hand-
washing  problem.  With  a  specified  policy,  non-deterministic  is  removed from the 
MDP model and it  becomes a DTMC model.  We built  some DTMC models with 
different heuristic policies for the following reasons: 

First, unlike the optimal policy computed for the MDP model, the heuristic policy 
does  not  take  all  variables  of  the  model  into  account.  In  the  DTMC model,  the 
planning system makes  decisions  solely on the  variables  included in  the  heuristic 
function so that the variables used to capture the user characteristics are irrelevant to 
the decisions made. This answers for the assumption that the user characteristics are 
unobservable.

Secondly, there are few problems with the policy of the MDP model. Obviously it is 
difficult  to  compare the details  of  the policies  of  the  MDP models  with  different 
parameters because the state space of these models is large. Also it is not easy to 
examine the policy of one MDP model for another MDP model which describes the 
same hand-washing problem but with different user characteristics. Comparatively, 
with  the  DTMC  models,  we  can  compare  the  same  policy’s  performance  when 
different users’ characteristics are specified.  Another problem is that  since PRISM 
does  currently not  support  discounted reward,  in  order  to  compute the discounted 
award, the number of time steps has to be defined as a variable explicitly (see section 
5.1.7). Consequently, the MDP model is not stationary (see Chapter 2), which is how 
we usually assume it to be. 

Last  but not least,  MDP solutions focus on expected values. Without knowing the 
exact user’s characteristics, either optimal solution for a certain characteristic can be 
generated, or, assuming all types of characteristic are modelled, the solution which 
has  the  highest  expected  performance  for  all  types  of  user  characteristic  can  be 
computed  using  the  MDP model.  However,  good  average  performance  does  not 
necessarily  mean  satisfactory performance  for  all  cases.  It  is  possible  that  it  will 
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perform well  when some characteristics  are  seen,  but  poorly for  some other  user 
characteristics. In the DTMC model, heuristic policy can be specified as a randomised 
algorithm in order to achieve satisfactory performance for any user characteristics. 

5.1.1 Structure of the PRISM model

We modelled  the  hand-washing  problem in  PRISM as  a  model  containing  seven 
modules.  The  states’ transitions  are  specified  in  seven  phases  and  each  module 
represents one phase. The reasons for using seven phases to represent one signal time 
step are as follows:

First of all, the state space of the hand-washing problem is large and it is easier to 
model different parts of the problem in several modules. PRISM language is a high 
level language; the system dynamic can be specified structurally as the interaction 
between  modules.  Different  parts  of  the  hand-washing  problem,  for  example,  the 
decision maker, the user’s behaviour, and the hand-washing environment, should be 
modelled in several modules. 

In  each  time  step,  system prompts  affect  the  user’s  action  and  the  user’s  action 
determine the plan step. Refer to actions and exogenous events in chapter 2, where the 
combined transition is difficult to specify, even though it is possible. Dividing one 
single time step into phases simplifies the model by assuming they occur in isolation. 
This  arrangement  simplifies  the  interaction  of  events  which  seem  to  occur 
simultaneously. 

Also, each time step has to be divided into several phases because synchronisation 
cannot  be  used  to  control  the  updates  from  different  parts  of  the  hand-washing 
problem taking place at the same time. This is due to the fact that global variables 
cannot be changed in synchronised commands and modules cannot change the local 
variables of other modules. Variables like the waited time can be changed by a user 
moving his or her hands, or the system giving prompts. Since hand movement and 
system prompts are modelled as separate modules, the waiting time can only be a 
global variable and can only be modified in different modules in order. These system 
dynamics  make  enforcing  transitions  specified  in  different  modules  by 
synchronisation impossible at times. 

Finally,  using  the  7-phase  structure  can  simplify  the  model  by  eliminating  some 
system history variables (section 5.1.5). At each time step the whole system is updated 
in  a  few phases;  the  phase  that  occurs  earlier  can  access  the  old  value  of  some 
variables which are updated in the same time step but in the later phase. For example, 
one module needs to know the last prompt; putting this module in the phase before 
issuing the new prompt, this module can assess the information on the last prompt 
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more easily.  So,  with the help of  the 7-phase structure,  the model  contains  fewer 
system history variables and is thus simplified.

Phase  0  models  the  decision-making  process  of  the  planning  system.  Phase  1-4 
models the observation of the user’s  action.  Other  system variables,  including the 
history variables are updated in Phase 5 and 6. For each single time step, the system 
goes through some or all of these 6 phases. 

Phase 0 is the module for the policy of the planning system. Phase 1 models the effect 
of the given prompt on the transition of hand location. If there is no prompt given, 
then hand location is updated in phase 2. Similarly, if hand location is ’at tap’, water 
flow change is modelled in phase 3 or 4, depending on whether a related prompt is 
given. Plan step and number of time steps waited are determined in phase 5. In phase 
6, MPS are updated according to the plan step and current MPS.

5.1.2 Plan step vs. hand location and water flow

The user’s action is captured and represented by two variables, which are the hand 
location variable and the water flow variable. The transition of the plan steps of the 
hand-washing problem is caused by the user’s action. Hence, the plan step transition 
is a function of both the user’s hand location and the water flow. Figure 6 shows the 
plan steps graph of the simplified hand-washing model, which is a modified version 
of Figure 5, with more arrows indicating the plan steps transition. 

Dividing the plan steps into 6 levels, MPS indicates the maximum plan step reached. 
The higher the level is, the closer it is to finishing the task. Plan step 0 is at MPS 0, 
which is the lowest level and indicates the beginning plan step for the task. Plan steps 
1, 2, 4 are at level 1, which means their MPS equals 1. Plan step 3 has MPS 2 and 
plan step 5 has MPS 3. With MPS equal to 4, plan steps 6 and 7 are the closest plan 
steps to the final step, which is plan step 8 with MPS 5.

For each plan step, the neighbour step with a shorter distance to the final step is a 
correct next step. In other words, one plan step might have more than one correct next 
step.  Reaching a correct  next step from the current plan step is known as making 
progress in the task. Any plan step transitions other than staying in the same plan step 
or making progress are called regressions.

Making progress differs from an increment of MPS in two ways. Transition between 
plan steps from the same MPS level can also be a progression. For example, moving 
from plan step 1 to plan step 2 is making progress, but they are in the same MPS 
level. Furthermore,  progress can be made repeatedly but a MPS increment can be 
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made only once in one hand-washing event. For example, if in a hand-washing event, 
the plan step changes from 0 to 1 and then 1 to 0 repeatedly, it is making progress 
every time the plan step changes from 0 to 1, but the MPS becomes 1 after the first 
transition and never increases again. The design of MPS is to reward reaching a plan 
step which is closer to the finishing step for the first time, but not to reward making 
the same type of progress repeatedly.  More details on the reward will be given in 
section 5.1.5.

Figure 6: Plan steps transition diagram

5.1.3 System action

In our simplified model,  there are 7 actions available.  The system actions include 
doing nothing or giving one of the 6 prompts. The different prompts representing 6 
movements are: doing nothing, turning the water on, turning the water off, using the 
soap,  rinsing hands,  wetting hands,  and drying hands.  How the user  reacts  to  the 
system prompts depends on the current plan step, the last action of the user, the user’s 
awareness, and responsiveness. We assume that the system prompt can increase the 
probability of the user doing the action mentioned in the prompt in the next time step.

Unlike the COACH system, the simplified model does not include the action of “call 
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caregiver”. Calling the caregiver should only occur when the planning system decides 
to stop trying to finish the task without human intervention. The simplified model 
does not need to include this termination action because a cost/reward threshold can 
be used to determine whether the task should be terminated. 

5.1.4 Dynamic of hand location and water flow

The variable of the hand location has 6 possible  values represented by 6 regions, 
namely:  away,  at  sink,  at  soap,  at  towel,  at  tap,  and at  water.  In  the  model,  it  is 
assumed that in each time step, the user’s hand can move from one region to any of 
other 5 regions or stay in the same one. Also, it is assumed that the water flow can 
only be changed when the user’s hand location is at the tap. 

The  user  characteristic  is  represented  by  the  parameters  of  user  awareness  and 
responsiveness, which reflect on the dynamic of the hand location and water flow. 
When the planning system doesn’t give any prompt, the hand location and the water 
flow transitions only depend on the current plan step and the user’s awareness. When 
the system gives a prompt, the hand location and the water flow transitions depend on 
the current plan step, the prompt, the user’s awareness and the user’s responsiveness. 
The parameters for user’s awareness and responsiveness include HLCC, the hand-
location-correct  coefficient,  HLSC, the hand-location-same coefficient,  WFCC, the 
water-flow-correct coefficient, HLE, the hand-location effect, and WFE, the water-
flow effect. HLE and WFE indicate the responsiveness of the user, which reflect on 
the  hand  location  dynamic  and  water  flow  dynamic  respectively  when  a  correct 
prompt is given. HLSC is not related to awareness or responsiveness directly, but it 
helps to specify a certain type of user behaviour.

In this simplified model, system actions that do not make sense are eliminated. In 
other words, the planning system should never give incorrect prompts. For each plan 
step, any action that makes progress is a correct action. Similarly, any hand location 
or water flow that shows signs of making progress is a correct hand location or correct 
water  flow  for  the  current  plan  step.  Since  ‘at  sink’ is  the  position  that  hand 
movements most frequently cross, this location is generally considered as a correct 
hand location for most of plan steps. Other correct hand locations for each plan step 
are labelled in red in Figure 7.  

First consider the case that no prompt is given. The total probability that the user hand 
location at the next time step will be correct is equal to the HLCC. For example, if 
there is only one correct hand location in the current plan step, then HLCC is the 
probability of the user moving his or her hands to this correct region. If there are n 
correct  hand  locations,  the  user  is  assumed  to  move  hands  to  each  correct  hand 
location with probability HLCC/n. If the user’s current hand location is not a correct 
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hand location, then with probability HLSC, the hand location will remain the same, 
which means the user’s hands don’t move. So, the more aware the user is, the higher 
the parameter HLCC is. In the case that the user is not aware and doesn’t do the right 
thing, the higher the parameter HLSC, the less hand movements the user makes.

Figure 7: Correct hand locations (other than ‘HL=4’) for each plan step

One basic assumption is that the planning system’s action of giving a prompt only has 
an effect on the user’s action in the same time step. In other words, a prompt only 
affects the hand location and water flow of the next time step; the transition in hand 
location or water flow does not depend on the prompt given previously.

When a correct  prompt is given,  since one hand location corresponds to one user 
action, from all correct hand locations for that plan step, there should be only one 
correct hand location associated with the given prompt. For example, ‘at water’ is the 
only  correct  hand  location  when  the  prompt  ‘rinse  hands’ is  given.  HLE  is  the 
probability that the correct hand location of the prompt will be observed in the next 
time step. In other words, HLE is the probability that the user responds to the prompt 
correctly. The more responsive the user is, the higher the HLE is. 

If the user is not responsive to the prompt, then there is still total probability HLCC 
that other correct hand location will be observed. Each of the correct hand locations 
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other  than  the  prompted  one  is  equally  likely  to  be  observed.  Also,  wrong  hand 
locations are equally likely to be observed with total probability (1-HLE)*(1-HLCC).

Similar to the definition of correct hand locations, correct water flow for the current 
plan step is the water flow of any neighbour plan steps closer to the finishing plan 
step. For example, ‘water on’ for plan step 4 is the only correct water flow because its 
only arrow pointing forward points to plan step 3, in which the water flow is on (refer 
to Figure 6 or Figure 7). So the water flow of the current plan step is irrelevant to the 
correct water flow, which only depends on the water flow of the next correct step.

If the hand location is ‘at tap’, then it is possible that water flow can be changed. 
Without a prompt, if only one of ‘water on’ and ‘water off’ is the correct water flow, 
the correct one will be observed with probability WFCC. If both ‘water on’ and ‘water 
off’ are correct, then they are equally likely to be observed. 

Given that hands are already on the tap, the prompts other than water on/off don’t 
affect  the  water  flow  dynamic.  But  other  prompts  at  the  first  place  affect  the 
probability of the hand location to be observed as ‘at tap’. 

Since we want to simplify the planning system by eliminating system actions that do 
not  make sense,  only correct  prompts  will  be  given.  So  the  system can  give  the 
prompt of ‘water on’ only when the current water flow is off and water should be on 
for the correct next step. Similarly, the prompt of ‘water off’ can only be given when 
the current water flow is on and the water should be off for the correct next step. 

When a correct prompt about water flow is given, with probability WFE*WFCC, the 
water flow will be changed into the correct water flow in next time step. WFE is a 
coefficient  equal  to  or larger  than 1,  as the prompt should never  have a  negative 
impact, which reduces the probability of correct water flow change. The maximum 
value of WFE is limited by WFCC, as WFE*WFCC should never be greater than 1. 

In the DTMC model, the awareness and responsiveness parameters are specified as 
constants and they have no effect on the decisions made by the planning system. In 
the MDP model, when policy is generated for particular user characteristics, these 
parameters  are  defined as constant.  When policy is  generated for a group of user 
characteristic models, these parameters can be defined as variables. The distribution 
of values for each of these variables is estimated as the probability of the occurrence 
of each user characteristic. 

It would be better if the awareness could be represented in one single parameter, but 
for the convenience of model construction, it is separated into HLCC and WFCC. So, 
when we check the properties for different user characteristics, it does not make sense 
to have values for HLCC and WFCC which have contradictory meanings in terms of 
awareness, for example a small value for HLCC but a large value for WFCC. This 
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also applies to responsiveness, which is separated into HLE and WFE. Since model 
checking will only apply to the values of HLCC, WFCC, HLE and WFE which make 
sense, 5 types of user characteristic are defined. These are users with low-awareness-
low-responsiveness,  high-awareness-low-responsiveness,  medium-awareness-and-
responsiveness,  low-awareness-high-responsiveness,  and  high-awareness-high-
responsiveness. For more accurate and comprehensive model checking, it is possible 
to define more types to achieve a better coverage of different situations.  

5.1.5 History variables

One of the most important system history variables in this simplified model is the 
amount of time waited. Modified from its definition in [8], the amount of time waited 
in this model is defined as the count of successive time steps in which the user does 
not make any progress. This is the case when no hand movement is detected, or a 
regression in terms of plan step transition is observed (do you mean ‘not observed’?). 
The  amount  of  time waited  will  be  reset  when the  user  makes  a  progress  or  the 
planning system gives a prompt. If a correct hand location is observed but the plan 
step is unchanged, it is also progress so the amount of time waited will be reset as 
well. 

Here we assume that the pattern of user’s behaviour is only defined by awareness and 
responsiveness. In other words, a small value of responsiveness means the user does 
not follow instruction very well or that the user responds to instruction very slowly. 
The same goes for the awareness measurement. Under these assumptions, the variable 
of amount of time waited can capture the user’s behaviour for the planning system. 
The longer the time waited, the more likely the user is not aware or not responsive. 

With the inclusion of a variable for in amount of time waited capturing whether a 
progress is made in each time step, the progress variable in [8] does not need to be 
included in this simplified model.

5.1.6 Policies

 

The system’s action, in the form of a prompt, changes the probability of reaching a 
certain  plan  step  by  influencing  the  user’s  action.  Since  the  user’s  actions  are 
observed as  changes  in  hand location  and water  flow,  the impact  of  the system’s 
prompts on the user’s actions are observed as their effect on the transition of the hand 
location and the water flow. One basic assumption of this prompting system is that 
giving a correct prompt can increase the probability of the user to do the right thing. 

36



A policy is a strategy that decides which prompt the system should give at each time 
step. Since it is the case that for each plan step, not all possible user’s actions lead to a 
correct next plan step, not all possible prompts make sense. In fact, for each plan step 
there is at least one correct user’s action for the correct next plan step (represented by 
a solid arrow in the plan step graph, Figure 7). So, for each plan step, there is at least 
one correct prompt that can increase the probability of making progress. 

In the MDP model, the policy module represents a group of non-deterministic choices 
on what the planning system should do. At each time step, the planning system can 
choose from all  correct  prompts  or  do nothing.  The non-deterministic  choices  are 
resolved in the DTMC model, in which the policy module specifies a strategy for each 
situation observed,  including the planning system’s actions of giving some correct 
prompts or doing nothing.

When a quantitative property of  a  MDP model  is  checked by PRISM, the  policy 
which  maximises  or  minimises  the  value  of  this  property is  generated  during the 
model  checking.  This  optimal  policy  is  the  decision  made  during  the  path  of 
generating the maximum reward. However due to the large state space, it is difficult 
to analyse each of these policies in detail. 

On the other hand, heuristic policies are developed and DTMC models are built. A 
policy  can  be  a  function  of  any  system  variables  except  the  awareness  and 
responsiveness  parameters  because  they  are  assumed  to  be  unobservable.  The 
heuristic  policies  are  specified  with  the  system  variables  that  reflect  the  user’s 
characteristics most directly. 

The number of time steps waited is an important signal for the user’s awareness and 
responsiveness. The heuristic policy structure uses the maximum wait, ‘maxwait’, as a 
threshold  on  when to  give  a  prompt.  If  no  prompt  has  been  given  and  the  hand 
location has not changed for a number of time steps, the planning system will give a 
correct  prompt with probability ‘p_p’.  The larger  the ‘p_p’ is  and the smaller  the 
‘maxwait’ is,  the more aggressive the planning system isThe meaning of different 
values for ‘p_p’ and ‘maxwait’ are shown in Table 4.

p_p=0 never give prompts
maxwait=0, p_p=1 always give prompts
maxwait>0, p_p=1 always give prompts when threshold is met
maxwait>0, 0<p_p<1 give prompts w/ prob p_p when threshold is met, if threshold is not 

met, never give prompts
Table 4: Parameters in heuristic policy

Compared with the MDP model, or the POMDP model without the ability to estimate 
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the user characteristic because of the relaxation of the assumption on consistence of a 
particular user’s characteristic, whose optimal policy focuses on expected values, the 
heuristic  policy  can  achieve  satisfactory  performance  for  all  types  of  user 
characteristic. This is shown in Figure 8. 

Figure 8: Policies and expected rewards for different types of user characteristic

In Figure 8, Px, x=1,2,…k denotes all possible determinant policies. Each Px is a series 
of choices of the system’s actions, which does not involve probability distribution. In 
each MDP model for a user characteristic of type m {1,2,…n}, the optimal policy∈  
Px(m), x(m) {1,2,…k} ∈  is the determinant policy whose expected reward Rm_x(m) is 
the highest among all possible determinant policies:
Rm_x(m) = max Rm_x for any x=1,2,…k. 
However, since the user characteristic type m is unobservable to the planning system, 
we may wrongfully employ the optimal policy for type m1 to type m2. In this case, 
Rm2_x(m1)<= Rm2_x(m2), because Rm2_x(m2)=max Rm2_x for any x = 1, 2…k. In fact, 
it is possible that the expected reward we get by applying the optimal policy for type 
m1 to type m2, which is Rm2_x(m1), will be very small. 

In order to find the optimal policy for all user types, the probability of encountering 
each user type pm is estimated. We denote the optimal policy for all user type as Po, 
o {1,2,…k}. Then, ∈
∑m=1,2,…n Rm_o×pm = max  ∑m=1,2,…n Rm_i×pm for all i=1, 2…k. 
Although Px(o) is the policy with the highest expected reward, it is possible that its 
performance  for  a  certain  type  of  user  characteristic  is  poor,  because  there  is  no 
guarantee  of  the  expected  reward  for  this  particular  type  of  user  characteristic 
Rm_x(o)×pm.

For the purpose of securing a satisfactory expected reward, randomised algorithms 
can be employed in defining the heuristic policy. This is shown by a simple example 
in Figure 9.
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Figure 9: An simple example on randomized heuristic policy

In the case shown in Figure 9, if we know that the user characteristic type is 1 or 2, 
the optimal policy is P1 or P2 respectively. For the average case, since 
R1_1×p1+ R2_1×p2=10×1/2+2×1/2=6, and
R1_2×p1+ R2_2×p2=4×1/2+6×1/2=5, the optimal policy is P1.
Using this optimal policy, if the user type is 2, then the expected reward is 2.
If  we want  to  maximise the minimum expected reward,  then policy P2  should be 
adopted. The minimum expected reward is 4, when the user characteristic is of type 1. 
The expected reward for all cases is then 5. To balance the goal of achieving high 
expected reward and high minimum expected reward,  a randomized policy can be 
used. For example, if we choose P1 with probability 1/2 and P2 with probability of 1/2, 
then the expected reward in the case of type 1 and 2 are 7 and 4 respectively. So the 
minimum expected reward is still 4. However, the average expected reward is 5.5, 
which is higher than 5.

In  modelling  the  hand-washing  problem,  it  is  impractical  to  find  out  all  possible 
policies. So, the randomized policies we use here use a simple heuristic structure, and 
the performances of each of them are evaluated with the help of probabilistic model 
checking in section 5.3.1.  

5.1.7 Cost and reward

Since the PRISM model does not support a negative reward, two different cost and 
reward  structures  are  used  in  this  simplified  hand-washing  model.  The  first  one 
separates positive reward and negative reward, which means the cost. By having two 
rewards  representing  the  positive  value  and  negative  value,  the  similar  reward 
structure as in [2] can be implemented. However, the total reward can be represented 
by the sum of its positive part and negative part only in DTMC models. Without non-
deterministic choices, expected value can be calculated (refer to chapter 2). For MDP, 
because of the existence of non-deterministic choices, the reward is calculated as its 
maximum value or minimum value. The maximum value for positive reward might 
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not be obtained from the same path when the negative reward is at its minimum value. 
So it does not make sense to add up maximum positive reward and minimum negative 
reward as the maximum total reward. In order to evaluate and find the optimal policy 
of the MDP model, the second reward structure assigns a single value to represent the 
total reward. 

For  the  first  reward  structure,  since  the  simplified  model  has  only  seven-system 
action, of which the 6 prompts are at one specificity level, the average cost for the 
three levels of prompts in [3] is used as the cost of each prompt (refer to section 5.4). 
For the second one, since no ‘cost’ can be computed, the reward structure modified 
from [2]  defines  the  cost  of  giving  prompts  differently.  Instead  of  penalising  the 
planning system for giving a prompt by assigning a negative reward, a positive reward 
is given for each time the planning system decides not to give any prompt. In this 
case, the expected reward is higher but it also represents the idea of addressing both 
long-term and short-term objectives.  Both  of  these  reward  structures  assign  small 
rewards for making progresses and a big reward for finishing the task.

All  of  these rewards  are  discounted rewards  (refer  to Chapter  2).  A discount  rate 
between  0  and  1  is  used  to  calculate  the  cumulated  rewards.  The  discount  rate 
represents the cost in time. 

reward = discounttime_step

Each reward is weighted by the discount rate to the power of the number of time step 
when the reward is assigned to a state or a transition. For a larger discount rate the 
long-term rewards are preferred to the short-term rewards and vice versa. The reward 
structures specified in PRISM language can be found in Appendix I and II.

Since all variables in the PRISM models are defined with a range, a maximum value 
for the variable “time_step” has to be defined. This is the cap value which the count 
for total time step cannot exceed. Since the time axis has to be limited to finite time, 
and the time_step stops increasing when the cap value is reached, using a small cap 
value might in fact create errors in calculating the discounted cumulated rewards.

5.2 Simulation and model checking for debug

Using the PRISM simulator, sample paths through a model can be generated. This 
tool is very useful for debugging models. The paths can be generated either by manual 
exploration or automatically. Figure 10 and Figure 11 show screenshots of using the 
simulator of the GUI version of PRISM. 
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Figure 10: Simulation of the MDP model for the hand-washing problem with GUI version of PRISM

Figure 11: Simulation of the DTMC model for the hand-washing problem with GUI version of PRISM

To  investigate  the  correctness  of  the  models,  properties  are  checked  against  the 
underlying assumptions of the problem modelled. Checking properties of the DTMC 
model in which the planning system will never give a prompt, the dynamics in the 
hand-washing problem without the influence of actions of the planning system can be 
analysed. 
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Figure  12: Probability of finishing the hand-washing task within a period of time for different user 

characteristic

Figure 12 shows the probability that the task can be finished within a number of time 
steps. This property expressed in PRISM language is:
P=? [time_step < total_time U MPS = 5]

For different user characteristics, this probability varies. Within a certain number of 
time steps, the user with a characteristic of higher awareness is more likely to finish 
the task without the help of the planning system. 

Also, the expected number of time steps to finish the task can be checked. To specify 
this property in PRISM, a reward of time step has been defined in the model. Since 
the model uses seven sub-steps to model one-time steps, which are defined as phases, 
the number of time steps can be counted as:
rewards "time"

phase = 0 : 1;

endrewards

and the property to check is: R{“time”}=? [F MPS=5].

For analyzing the model in which no reminder will be prompted, the expected time 
step of finishing the task can be used instead of the cost and reward defined in section 
5.1.7. Without any cost associated with giving a prompt, the discounted reward can 
only reflect  whether the task has been finished and how fast  it  has been finished. 
Thus, checking the probability of finishing the task with a certain number of time 
steps  and the  expected  number  of  time  steps  to  finish  the  task  can  be used  as  a 
straightforward method to analyse these properties. However, this does not apply to 
the models when system prompts and their associated costs are involved. 

The expected numbers of time steps to finish the task are 49.6, 19.9, and 13.6 for user 
awareness at the low level, medium level, and high level respectively.  

Furthermore, a path can be expressed in a property specification with the U operator 
(see section 3.3). Although this specification can be miscellaneous, the probability of 
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the occurrence of any specific scenario can be checked. For example, if we want to 
check the probability that the user’s hand location is ‘at sink’ at the first time step, and 
is away at the second and third time step, the property’s expression in PRISM is:
P =? [( ( (time_step=0)| ((time_step=1)&(HL=4)) ) | ( (time_step=2) & ((phase<3)|(HL=5)) ) ) 

| (time_step>2) U (( time_step=3)& (HL=5))]

5.3 Experiments 

We are mainly interested in checking the discounted rewards for different heuristic 
policies of the DTMC models and the optimal policies of the MDP models for the 
hand-washing  problem.  The  discounted  reward  should  be  a  fair  measurement  to 
evaluate the performance of each policy. For simplification, instead of evaluating the 
policies for every single user characteristic modelled with our assumptions, 5 typical 
users’  characteristics  are  considered.  Type  1  represents  characteristic  of  low 
awareness  and  low  responsiveness;  type  2  means  high  awareness  and  low 
responsiveness; type 3 means medium awareness and responsiveness; type 4 means 
low awareness and high responsiveness; and finally, type 5 means high awareness and 
high responsiveness. For details of the user characteristic, please see section 5.1.4.

Since our models are not very large and model checking takes a long time, the spare 
engine (see Chapter 3, section 3.1) is used. The difference in time and memory usage 
between the sparse engine and the hybrid engine is significant here.

5.3.1 MDP model and optimal policy

In order to generate an optimal policy for a MDP model, the second reward structure 
defined in section 5.1.7 is used. The optimal policy is the one that maximizes the 
expected value of this cumulated discounted reward. The first reward structure is not 
available  for  the  MDP model  since  the  maximum positive  reward  and  minimum 
negative reward may come from different paths (section 5.1.7). The optimal policy is 
generated by PRISM when the property regarding the maximum value of this reward 
is checked: R{“total_2”} max =? [F MPS=5].

By checking  the  minimum value  of  the  expected  reward,  the  worst  case  can  be 
analysed. This is specified in PRISM language as: 
R{“total_2”} min =? [F MPS=5].

The  results  of  the  property  checking  under  different  assumptions  of  user 
characteristics are shown in Table 5. Also, note that the maximum expected reward 
and the minimum expected reward of the MDP model are the upper bound and lower 
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bound  for  expected  rewards  associated  with  any  policy,  either  determinate  or 
randomized. 

Expected reward: max min
Low awareness low responsiveness 189.134 136.813
High awareness low responsiveness 255.119 209.439
Medium awareness medium responsiveness 230.671 192.333
Low awareness high responsiveness 230.770 142.690
High awareness high responsiveness 248.152 217.548
Characteristic unknown 224.781 179.766
Table 5: Maximum and minimum expected rewards for different user characteristic

When  the  characteristic  type  is  unknown,  it  is  assumed  that  these  5  typical 
characteristic types have covered all the cases and each of them is equally likely to 
occur. With this additional assumption, the optimal policy of the MDP model for the 
unknown characteristic can be generated. 

Under the basic assumption of the planning system’s ability of assisting people, no 
matter what policy is used, it should not have a negative impact on the hand-washing 
activity. So the minimum probability of finishing the task within a finite number of 
time steps is checked. This property specified in PRISM language is:
P min = ? [ time_step < total_time U MPS=5]
Figure 13 shows the result. Comparing Figure 13 with Figure 12 (section 5.2), the 
difference is  unnoticeable.  One implication is  that  the model  does not  violate  the 
assumption of no negative impact. The other implication is that the policy that has the 
minimum probability of finishing the task with a  particular  number  of time steps 
might be the policy of doing nothing. 

However, generally it is not easy to investigate what exactly a particular policy does 
because the state space is large even in version 3.2 common line based PRISM, the 
transition matrix generated from the MDP model regarding the property checked can 
be exported. Also the MDP model is not stationary because the number of time steps 
is defined as a variable for the purpose to computing discounted reward. In order to 
eliminate the effect of the variable of time step on the policy and compare different 
policies  in  a  more  systematic  way,  the  DTMC model  with  heuristic  policies  are 
studied in next section.
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Figure 13: Minimum probability of finishing the hand-washing task within a period of time

5.3.1 DTMC model with heuristic policy

In this section, properties of the DTMC model which implement the simple heuristic 
policy structure are checked. Changing the parameter ‘maxwait’ and ‘p_p’ of policy 
structure,  different  policies  can  be  generated.  The  policy  with  smaller  value  of 
‘maxwait’ and larger number of ‘p_p’ is more aggressive in terms of more likely to 
give  a  prompt  at  each time step.  For  details  of  the heuristic  policy structure,  see 
section 5.1.6.

5.3.1.1 Significant factors

Before  investigating  the  policies,  first  of  all,  the  reward  structure,  which  is  the 
mechanism of evaluating their performance, is analysed in this part of the experiment. 
Two different reward structures are used, one is directly adopted from [2], which is in 
the form of the total of one positive part and one negative part, and the other one is a 
modification to represent the total reward in one single value (see section 5.1.7). If 
these two rewards are consistent, then for a particular user type, when a policy has a 
higher  first  reward  than  another  policy,  its  second  reward  should  also  be  higher; 
similarly, for a particular reward, if its first reward for one type of user is higher than 
another type, its second reward should be higher as well. However, this consistency 
does not hold for all scenarios, which will be shown in this part of the experiment. 
Although the focus  is  on the rewards for finishing the task,  there  are  some other 
factors  which  can  affect  the  result  of  the  evaluation.  These  factors  include  the 
discount rate used in computing discounted reward and the cap value for counting 
time steps.

The reward-based properties checked in this section include:
R{“positive_1”}=? [F MPS=5]

45



R{“negative_1”}=? [F MPS=5]

R{“total_2”}=? [F MPS=5]

The first reward property is asking for the reward ‘positive_1’, which is the positive 
part of the first reward structure, cumulated until finishing the hand-washing task. The 
second reward property is about the negative part of the first reward structure and the 
third reward property is about the total reward defined by the second reward structure. 

In order to compare the difference in rewards when different numbers are used as the 
cap values for the total time steps, the expected rewards when different policies are 
used, with different cap value of the total time steps, are shown in Figure 14, Figure 
15, Figure 16, Figure 17 and Figure 18. Each of these figures shows the case for a 
different user characteristic type. The second reward structure (see section 5.1.7) is 
used and the discount rate equals 0.95. The heuristic policies have a fixed value of 
p_p at 1 and different policies are generated by varying the value of maxwait. These 
straightforward policies are at different levels of aggressiveness: the smaller the value 
of maxwait is, the more often the planning system gives a prompt (see section 5.1.6).

The larger the cap value is, the more accurate the discounted reward function in 
section 5.1.7 is. From Figure 14 - 18 we can see that, for every user characteristic 
type, the reward for each policy decreases as the cap value for total time increases. 
Since the rewards obtained after the total time reaches its maximum value are not 
being discounted further, a small cap value results in a larger cumulated discounted 
reward. Also, the function of cumulated discounted reward converges for a larger cap 
value of time. The differences in the reward curves for max time=50 and max 
time=100 are almost undifferentiable. The maximum differences between rewards 
obtained when max time = 50 and max time = 100 are 5.70063%, 0.00015%, 
0.05901%, 5.63519% and 0.00015% for these 5 user characteristic types respectively. 
If the cap value is too low, the result might not be accurate since the cumulated 
discounted rewards calculated in this case might give a wrong idea of which policy 
performs better. For example, in the case of user characteristic type of low awareness 
high responsiveness (Figure 17), when the max time is 50 or 100, the expected 
rewards decrease as the maxwait of the policies increases. In other words, policies 
with lower maxwait have higher expected rewards than policies with higher maxwait. 
However, this is not true when the max time is 10, 20 or 30, where policies with 
higher maxwait might have higher expected rewards. Throughout the following 
experiments, the total_time of 50 is used. 
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Figure 14: Reward vs. policy, with different cap values of total time (user characteristic type: low 

awareness low responsiveness)

Figure  15: Reward vs. policy, with different cap values of total time (user characteristic type: high 

awareness low responsiveness)

Figure 16: Reward vs. policy, with different cap values of total time (user characteristic type: medium 

awareness medium responsiveness)
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Figure  17:  Reward vs.  policy,  with different cap values of total  time (user characteristic type:  low 

awareness high responsiveness)

Figure  18: Reward vs. policy, with different cap values of total time (user characteristic type: high 

awareness high responsiveness)

Not only the cap value of the total time, but also the discount rate used in calculating 
the cumulated rewards  affects  the model  checking results.  Figure 19-23 show the 
rewards defined by the second reward structure when different values are assigned to 
the discount  rate.  Again,  different  policies  with different  values of “maxwait”  but 
fixed value 1 of “p_p” are used and the cases of different user characteristic types are 
considered. 
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Figure 19: Reward vs. policy, with different discount rates (user characteristic type: low awareness low 

responsiveness)

Figure 20: Reward vs. policy, with different discount rates (user characteristic type: high awareness low 

responsiveness)

Figure 21: Reward vs. policy, with different discount rates (user characteristic type: medium awareness 

medium responsiveness)
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Figure 22: Reward vs. policy, with different discount rates (user characteristic type: low awareness high 

responsiveness)

Figure  23: Reward vs. policy, with different discount rates (user characteristic type: high awareness 

high responsiveness)

According to the formula of the discounted reward in section 5.1.7, the discounted 
reward is a monofonic function of the discount rate.  So the cumulated discounted 
reward, which is the sum of all discounted rewards along the path, is also a monofonic 
function of the discount rate. In other words, the larger the discount rate is, the larger 
the total reward is. From Figure 19 to Figure 23 we can see that the levels of the 
reward curves increase as the discount rate increases.

Moreover,  using  different  discount  rates  can  change  the  preference  in  different 
policies for a particular type of user. For example, for user characteristic type of high 
awareness high responsiveness (Figure 23), when the discount rate is 0.92 or 0.95, 
policy with maxwait=0 is the best policy among the 11 policies. However, when the 
discount  rate  is  0.98,  this  policy  has  the  lowest  expected  cumulated  discounted 
reward.  This  is  because  different  values  of  the  discount  rate  encourage  different 
tradeoffs between short-term and long-term goals. When the discount rate is small, the 
short-term goal is more important because the reward obtained from achieving the 
long-term goal would be low. So when the discount rate is lower, the most aggressive 
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policy of all  these 11 policies,  which give a correct  prompt at  every time step, is 
preferred.  Using the more aggressive policy,  it  is  more likely that rewards can be 
obtained  in  a  shorter  period  of  time.  By  contrast,  the  least  aggressive  policy  is 
preferred for the larger discount rate because time is less important and the planning 
system can afford to wait for a longer time in the hope of the user making progress 
without a prompt, which can reduce the cost of giving a prompt.
Fixing the discount value to be 0.95, the two reward structures are compared through 
a  series  of  experiments,  whose  results  are  shown  in  Figure  24-28.  The  reward 
“total_1”,  which  is defined  by the  first  reward  structure,  is  the  difference  of  the 
positive  reward  and  the  negative  reward.  The  reward  “total_2”  is  defined  by the 
second reward structure, which, instead of penalising the actions of giving a prompt 
by the assignment of costs, a positive reward is given when no reminder is prompted. 
So, reward “total_2” is larger than reward “total_1’ in all cases. Ideally,  if  reward 
“total_2” equals to “total_1” plus an offset, these two reward structures are consistent. 

However, from Figure 25, we can see that the above is not true. For the case of high 
awareness low responsiveness user characteristic, reward ‘total_1’ claims policy with 
maxwait=0 is  prefer  to  policy with  maxwait=1,  while  reward  ‘total_2’ shows the 
performance of policy with maxwait=1 is better. Contradictory results indicate that 
the  two  reward  structures  handle  the  tradeoffs  between  costs  differently.  For  the 
second reward structure, since more positive rewards are assigned to sub goals, the 
final goal, which is finishing the task, is weighed less important than that in the first 
reward structure. As a consequence, instead of giving a prompt at each time step, less 
aggressive policies are preferred. By comparing Figure 27 with Figure 25, it is shown 
that if a reward of 200 instead of 300 is assigned to the final goal in the first reward 
structure, the results from two reward structures become consistent.

Figure 24: Reward vs. policy, with different reward structures (user characteristic type: low awareness 

low responsiveness)
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Figure 25: Reward vs. policy, with different reward structures (user characteristic type: high awareness 

low responsiveness)

Figure  26:  Reward  vs.  policy,  with  different  reward  structures  (user  characteristic  type:  medium 

awareness medium responsiveness)

Figure 27: Reward vs. policy, with different reward structures (user characteristic type: low awareness 

high responsiveness)
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Figure 28: Reward vs. policy, with different reward structures (user characteristic type: high awareness 

high responsiveness)

Figure  29:  Reward vs.  policy,  comparing the two reward structures  (user  characteristic  type:  high 

awareness low responsiveness)

5.3.1.2 Performance analysis

In this section, the performances of different policies for different user characteristic 
types are evaluated. With the same setting of the system factors, different user types 
may prefer different policies. The discount rate is assigned to be 0.95, the cap value of 
total time 50 is used throughout the remaining experiments. 

First, we look at two types of user characteristic with the most interesting properties: 
high  awareness/low  responsiveness  and  low  awareness/high  responsiveness. 
Aggressive policies which prompt the user all the time might not suit the type of high 
awareness/low responsiveness because the probability that the user can make progress 
without a prompt is high and the probability that the user responsiveness to a prompt 
is low. On the other hand, users with low awareness/high responsiveness might need 
system prompts more often. This is shown is Figure 30 and Figure 31, in which the 
expected rewards when policies with different values of maxwait and p_p are plotted 
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for these two user characteristic types. Here, the second reward structure is used.

Figure 30: Reward vs. policy, for high awareness low responsiveness user characteristic

Figure 31: Reward vs. policy, for low awareness high responsiveness user characteristic

In Figure 30, for high awareness low responsiveness characteristic type, the maximum 
expected reward, 220.43, is achieved when the policy with maxwait=1 and p_p=0.9 is 
employed. In Figure 31, for low awareness/high responsiveness characteristic type, 
the maximum expected reward, 216.27, is achieved when the policy with maxwait=0 
and  p_p=1  is  employed.  This  result  is  consistent  with  the  argument  that  more 
responsive and less aware users need more prompts. 

5.4 Discussion

In this chapter, the modelling of the hand-washing problem in PRISM and the model 
checking  are  explained  in  details.  Prior  knowledge of  the  hand-washing  problem, 
which is mainly learnt from the research done by the COACH team, the additional 
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assumptions on the hand-washing problem made for simplification, and details of our 
simplified MDP and DTMC models for the hand-washing problem are discussed in 
section 5.1. In section 5.2, using simulation and property checking for debugging the 
models was discussed. Then, in section 5.3, the MDP model for the hand-washing 
problem and the DTMC models with heuristic policies were analysed with more in-
depth probabilistic property checking.  
   
Although it was shown in section 5.2 and 5.3 that the MDP and DTMC models are 
able to capture the essence of the hand-washing problem, the lack of data and prior 
knowledge in the domain of assisting people with dementia limits overall accuracy 
and comprehensiveness. For example, we assume that the effect of each prompt lasts 
for one time step and we did not consider the fact that the user’s response time might 
vary.  As  a  consequence,  some  of  the  assumptions  on  the  hand-washing  problem 
discussed in this chapter, upon which our models built, are too naive to be true. On the 
other  hand,  simplifying  the  hand-washing  problem  provides  an  advantage  for 
analysing the relations between each factor  in  the hand-washing problem. Section 
5.3.2 discussed how the tradeoffs between short term and long term goals, the method 
of assigning cost and reward, and the difference in user characteristics can all affect 
the policy preference. 

In section 5.2.1, by analysing the worst-case scenarios, we showed that if the user 
characteristic has been wrongly estimated, the performance of the planning system 
can be poor. To avoid such cases, if the user characteristic is unobservable, while the 
optimal policy focuses on maximising the expected value, a randomised policy can be 
used to ensure satisfactory performance for any user type, as argued in section 5.1.6. 

Since the number of time steps has to be defined as a variable in the models, the MDP 
model is  not  stationary,  which is  a basic assumption for most  intelligent  systems. 
There are three alternative way to solve this problem. Firstly, since we are interested 
in properties of the model in a finite time line, it is possible to calculate the cumulated 
reward without discount. However, the tradeoffs between short-term and long-term 
goals are not reflected in the model which does not take time into account. Since the 
positive reward for finishing the task eventually will be the same if the discount rate is 
1, the planning system will always choose to do nothing in order to minimise the 
negative reward and achieve the maximum total  reward.  The second alternative is 
using the expected time of finishing the task as the evaluation of planning system’s 
performance. In the reverse of the first alternative, the planning system can simply 
give a prompt every time to achieve the minimum expected time since there is no cost 
for giving a prompt. So the best way of solving this problem is to add a functionality 
of PRISM, which enables the calculation of cumulated discounted reward. With this 
functionality,  time does not need to be defined explicitly in the model so that the 
system is stationary. This functionality should be easy to realise since the probabilistic 
model checking is based on PCTL.   

55



Compared with the method used to evaluate the COACH system, the experiments 
discussed  in  this  chapter  show that  probabilistic  model  checking  is  a  systematic, 
efficient,  and economy way of  evaluating  a  planning  system. Unlike  carrying out 
simulation, the model is exposed to almost all possible scenarios during probabilistic 
model  checking.  Although  clinical  trial  is  the  most  reliable  way  to  evaluate  the 
system, the cost and risk are very high. So we propose the use of probabilistic model 
checking as an alternative evaluation method of clinical  trial  for planning systems 
guiding people with dementia through activities of daily living at their early design 
stage. In the next chapter, the design and evaluation of a planning system modified to 
address the dressing problem will be discussed, in which probabilistic model checking 
plays an important role. 
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Chapter 6
Planning systems for other activities of 
daily living

Inspired by the planning system to assist people with dementia with the task of hand 
washing,  as  well  as  the  usefulness  of  probabilistic  model  checking  in  modelling 
problems in this domain and in system evaluation as discussed in Chapter 5, a naïve 
planning system for the activity of dressing has been designed. In this chapter, we will 
go through the motivation of applying the planning framework to activities other than 
hand washing, the model for the activity of dressing, and the model checking with 
PRISM. 

6.1 The activity of dressing

The  planning  system  for  the  hand-washing  problem  can  be  generalised  to  other 
activities in daily living to help people with dementia. There are many activities that 
can be modelled in similar ways as the hand-washing problem. The planning system 
designed for people with dementia should be designed for the activities which are 
easy to observe by sensors and significant in affecting the user’s independence. 

Here, we chose the problem of clothes-changing to analyse, in which a camera should 
be sufficient to monitor the progress. Without the requirement for some sophisticated 
sensing  system,  we  can  assume  that  the  technologies  needed  to  implement  the 
planning system for assisting people with dementia  in the activity of dressing are 
available. 

The  basic  idea  for  monitoring  the  progresses  in  the  dressing is  that  the  planning 
system can  identify which pieces  of  clothes  the user  is  wearing with the help of 
computer vision. Technologies used in the COACH system to monitor hand-washing 
should be able to handle this problem. Although it might be difficult to keep track of a 
piece of clothing using computer vision because it is not a rigid body, as most vision 
tracking system assume their target to be [24], colour recognition can be used to solve 
this problem. Assuming each piece of clothing has a different colour, the planning 
system can  identify  which  piece  is  worn  on  top.  This  assumption  can  be  easily 
satisfied in real life. Since colour is easier to identify than other important elements in 
the dressing environment, for example motion, the requirement for the vision system 
is not too high. 
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Defining the dressing problem with plan steps, with the ability of observing the top 
layer, the planning system can identify all the layers the user has put on. Details of 
plan steps are in section 6.2. 

6.2 Modelling the activity of dressing

The activity of dressing is modelled as an MDP. The activity status is defined by 
system  variables  including  plan  step  and  colour  observed.  The  colour  observed 
indicates which piece of clothing is the top layer worn by the user. Each piece of 
clothing is associated with one unique colour. For example, if a jacket is grey and a 
shirt is green, green is observed when the user is wearing the shirt. After the user puts 
the jacket on, only grey is observed no matter what colour of clothes the user wears 
under the jacket. Skin colour is observed if the user does not have clothes on.  

As a starting point for modelling the dressing problem, it is assumed that 3 pieces of 
clothes are used in this activity. Initially, the user is in pyjamas, and the final goal of 
the task of dressing is to put on two layers, a shirt first and a jacket on top. During the 
activity, there are many possible statuses in terms of the combination of clothes worn. 
To reflect the reality as well as to limit the number of possible combinations, it is 
assumed that the jacket can only be worn as the top layer. So, there are 10 possible 
user  statuses,  which  are:  wearing  pyjamas,  wearing  no  clothes,  wearing  a  shirt, 
wearing a shirt and a jacket, wearing pyjamas with a shirt on top, wearing pyjamas 
and a jacket, wearing pyjamas and a shirt and a jacket, wearing a shirt with pyjamas 
and a jacket, and wearing a shirt with pyjamas on top. 

Figure 32 shows the plan step transition caused by the user’s action. The user’s action 
can be affected by the planning system. The user’s  possible actions include doing 
nothing, taking off the pyjamas, taking off the shirt, taking off the jacket, putting on 
the pyjamas, putting on the shirt, and putting on the jacket. These actions result in 
transition of the plan steps and can be observed by identifying the colour of the top 
layer. The planning system can give prompts, reminding the user what to do next. For 
the goal defined above, the system’s actions include doing nothing and giving one of 
the five prompts, which are taking the pyjamas off, taking the shirt off, taking the 
jacket off, putting on the shirt, and putting on the jacket. 

The transition probability also depends on the user’s awareness and responsiveness. If 
the awareness is high, the probability that the user do the right thing at each step is 
high. If the responsiveness is high, the increase in probability of doing the right thing 
with the system’s prompt is larger. For details of these assumptions, please refer to 
Chapter 5. 
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Other system variables include maximum plan step, maximum plan step repeat, and 
total time are defined for the same reasons and in a similar fashion as in the model for 
the  hand-washing  problem.

Figure 32: Plan-step diagram for the clothes-change problem (self loop eliminated)

The second reward structure defined in Chapter  5,  section 5.1.7 is  applied to this 
model for two reasons.  Firstly,  without enough prior knowledge in  the domain of 
care-giving,  relying on assumptions made for hand-washing, which is  a similar  to 
dressing, is a better strategy than making up unjustifiable assumptions. Second, as 
discussed in Chapter 5, the first reward structure is not suitable for MDP models.  

The structure of the PRISM for the activity of dressing is similar to that of the hand-
washing problem.  For  the  same reasons  discussed  in  Chapter  5  section  5.1.1,  the 
dressing model consists of 6 modules, which are 5 basic phases and one additional 
step to  specify a  user  type at  the beginning of the task.  The module for  phase 0 
contains the choices of system actions. In phase 1, the user’s action is modelled as the 
effect of the system actions, and results in the top layer observed, represented by its 
colour. The system variables, including plan step and maximum plan step are updated 
determinately in phases 2 and 3. And then the system starts phase 0 of the next time 
step.

The main difference between the dressing problem and the hand-washing problem is 
that  some of the plan steps in the dressing problem are undesirable.  In the hand-
washing problem, every plan step is necessary for finishing the task. In comparison, in 
the hand-washing problem, some plan steps are reachable only when the user does the 
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wrong things. All undesirable plan steps are marked grey in Figure 32.

6.3 Evaluation of the model for dressing in PRISM

Similar to experiments in Chapter 5, we are interested in evaluating policies for users 
with different characteristics. Because of the difference in modelling of the dressing 
problem and the hand-washing problem, properties related to entering the undesired 
plan steps can also be analysed. Also, a program has been developed to modify the 
optimal solution generated by PRISM, enforcing the stationary assumption.

6.3.1 Property checking

Firstly, the maximum and minimum cumulated discounted rewards are checked for 
different user characteristic types. Since awareness and responsiveness are used to 
model  the  user  characteristic,  the  types  are  defined  as  low  awareness/low 
responsiveness,  low  awareness/high  responsiveness,  high  awareness/low 
responsiveness, and high awareness/high responsiveness. 

Since there are tradeoffs between accuracy and complexity, the constant ‘total_time’ 
which is  the upper bound of the variable ‘time_step’ is  analysed.  As discussed in 
Chapter 5, section 5.3, the larger the total time is, the more accurate the cumulated 
discounted reward is. On the other hand, with a smaller value of total time, a model 
with smaller state space and lower computational complexity can be built. From the 
experiment results shown in Figure 33, we can see that any value greater than 10 
would  be  a  reasonable  choice  in  terms  of  accuracy.  Also,  taking  complexity  into 
consideration, a value of 20 is chosen. The maximum value is for the expected reward 
of deploying the best policy. The minimum value is the lower bound of the expected 
reward, no matter which possible policies the planning system uses. The properties 
checked are expressed in PRISM language as:
R {"total"} max =? [F MPS = 3]
and
R {"total"} min =? [F MPS = 3]

In the plan steps for hand-washing, although not every step is necessary for finishing 
the task, for example,  it  is possible for the user to skip the step of wetting hands 
before using the soap, entering a plan step for the first time always makes progress. 
By comparison,  entering  some  plan  steps  even  for  the  first  time  cannot  cause  a 
regression. For example, if the user puts a jacket on with the pyjamas, the user is 
going further away from reaching the goal.
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Figure  33: Cumulated discounted rewards for 4 types of user characteristic (a: maximum reward; b: 

minimum reward)
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Figure 34: Probability of reaching undesired plan steps (a: minimum; b: maximum)

Figure 34 shows the maximum and minimum probability of reaching undesired plan 
steps. In PRISM language, the specifications of these properties are:
P min = ? [true U PS= x]

and
P max = ? [true U PS= x]

where x is the index of plan step interested.

Only plan steps 3- 8 are undesired as shown in Figure 32. Since plan step 0, which is 
the initial step, plan step 1, 2 and the final step 9 are necessary steps for finishing the 
task,  their  probabilities  are  1.  Plan  steps  6  and  8  are  less  likely  to  be  entered. 
Referring to Figure 32, plan step 6 must be entered from plan step 3, which is another 
undesired plan step.  Not linking to a necessary plan step makes the possibility of 
entering plan step 6 low. The probabilities for plan step 8 are low for the same reason.

From Figure  34(b)  we  also  notice  that  the  differences  in  maximum probabilities 
between low awareness/low responsiveness and low awareness/high responsiveness, 
and  between  high  awareness/low  responsiveness  and  high  awareness/low 
responsiveness are tiny. This is because in the worst case, the planning system gives 
very few prompts, so the probabilities only depend on the user’s awareness but not on 
responsiveness.

Note that using a better policy can decrease the possibility of entering undesired plan 
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steps, but the policies achieving minimum values for each undesired plan step might 
not be the same. For example, if the policy optimising the probability of entering plan 
step 3 is used, the probability of entering plan step 4 might not achieve its minimum 
value. As we have shown, the event of entering one plan step is not independent of 
events of entering some other  plan steps,  so it  does not make sense to add these 
probabilities up. To calculate the minimum and maximum probabilities of entering 
any of the undesired plan steps (Table 6), these properties are checked: 
P min = ? [true U ( (((PS = 3)|(PS = 4)) | ( (PS=5) | (PS=6)))| ( (PS=7) | (PS=8)))]

and
P max = ? [true U ( (((PS = 3)|(PS = 4)) | ( (PS=5) | (PS=6)))| ( (PS=7) | (PS=8)))]

min max
Low awareness low responsiveness 0.401 0.578
High awareness low responsiveness 0.224 0.431
Low awareness high responsiveness 0.312 0.578
High awareness high responsiveness 0.123 0.431
Table 6: Probability of entering any undesired plan steps

6.2.2 Modifying the optimal policy

As discussed in Chapter 5, the stationary assumption cannot be made because the 
number of time steps has to be defined as a variable for the purpose of calculating 
cumulated discounted award, which is a function of the number of time steps. In order 
to show that the maximum cumulated discounted award is not achievable under the 
assumption of a stationary system, a program is written to modify policies generated 
for the MDP model by PRISM (see Appendix IV). The program is written in Java, 
which  is  an  objected  oriented  programming  language.  It  takes  a  text  file  of  the 
transition matrix generated by PRISM and a text file describing the state space as 
inputs, and the output is a text file of a new transition matrix. 

Assuming that changes in time do not vary the actions chosen by the planning system, 
transitions for states which have different values for ‘time_step’ but the same values 
for all other variables, are exactly the same. So, we choose the transitions for states 
with  time_step=20 as  the  transitions  for  states  with  different  values  of  time_step. 
Twenty is a relatively large number in terms of time steps, so we believe that states 
defined by all variables other than time_step are reachable at this time. The transition 
matrix has the format of: 
state1 state2 probability

in which state1 and state2 are integers representing the states. For example:
0 1 0.25

0 2630 0.25

0 5635 0.25
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0 8264 0.25

1 11269 1

2 11272 1

The meaning of the state is defined in the state space file, which has the format of:
state:(variable1,variable2,…)

For example:
(phase,a,rb,PS,MPS,MPSrepeat,time_step,top,r,prompt)

0:(-1,6,11,0,0,1,0,1,11,0)

1:(0,6,11,0,0,1,0,1,11,0)

Referring to the state space, the states defined by different values of time_step whose 
values for all other variables are identical are grouped together. Then the transitions 
from the  states  in  the  same group are  changed according  to  the  transitions  when 
time_step=20. For example, two of the lines in the state space file are as follow:
2494:(0,6,11,4,0,0,1,9,11,0)

19828:(0,6,11,4,0,0,1,20,11,0)

Since the eighth variable is time_step, states 1234 and 4321 should have the same 
transition according the assumption of stationary. If there are two lines as follow in 
the transition matrix file:
2494 11269 1

19828 11272 1

then the first line should be changed into:
2494 11272 1

Since  we only change the choices  made by the  planning system (states  in  which 
phase=0), the state transitions interested all have probability 1.

A DTMC Model can be constructed in PRISM through direct  specification of the 
modified transition matrix. A file containing information about the initial state of the 
model as well as the state space file should be imported. Since importing state reward 
and  transition  reward  is  not  supported  by  the  current  version  of  PRISM,  only 
probability-based properties can be checked.

The natural language translation for
P = ? [time_step<5 U PS=9]

is “the probability that PS is eventually equal to 9 and time_step remains less than 5 
until  that  point”.  Since we know that PS is eventually equal to 9 for certain,  this 
property can also be translated to “the probability of PS is equal to 9 within 5 time 
steps.”

We compared this  probability for  the  DTMC model  constructed by importing  the 
transition matrix generated by PRISM, which specified the optimal policy regarding 
cumulated discounted reward and for the DTMC model constructed by importing the 
modified transition matrix, as well as the maximum and minimum probability for the 
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MDP model. Table 7 shows the result.

L awa L res H awa L res L awa H res H awa H res
DTMC (optimal) 0.595 0.796 0.753 0.937
DTMC (modified) 0.528 0.711 0.682 0.831
MDP max 0.660 0.855 0.760 0.941
MDP min 0.454 0.629 0.454 0.629
Table 7: Probability of finishing the task within 5 time steps

Note that the directly generated policy optimises the cumulated discounted reward, 
not the probability of finishing the task within 5 time steps, so that the probabilities 
for the DTMC model with the optimal policy are less than their maximum values. 
Although  the  policies  generated  by  the  Java  program  satisfy  the  stationary 
assumption, they might not be the optimal ones under this assumption. As discussed 
in Chapter 5, the optimal policy under the stationary assumption can be easily found if 
PRISM supports discounted rewards. 

The  idea  of  modifying  the  transition  matrix  to  generate  interesting  policies  can 
potentially be applied to model problems which are only partially observable. Similar 
to what we are doing with the variable time_step, influence of the variables which are 
unobservable to the planning system can be removed. However, as discussed above, 
there is no guarantee that the policies generated are optimal under the assumption of 
partial observability. 

6.4 Discussion 

In this chapter, we proposed a planning system to help people with dementia with the 
activity of dressing. The problem of dressing is modelled as an MDP in PRISM. The 
nature of the dressing problem is analysed by checking properties related to its plan 
steps. 

Also, a Java program has been developed to modify the optimal policy generated by 
PRISM. The program outputs a transition matrix in plain text, which can be imported 
into PRISM to construct a DTMC model. This program can be used to eliminate the 
effect of time in the policy to make the model to be stationary. However, the best way 
to solve the stationary problem is to support a discounted reward in PRISM. It is also 
feasible to use this program to make the model satisfying the assumption of partial 
observability by removing the  effect  of  unobservable  variables  in  the  policy.  The 
result will be a feasible policy, even if it is not the optimal one.

The planning system designed here can serve as an example of modelling activities in 
daily living in PRISM. It  is  possible to model other activities like brushing teeth, 
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making tea, and using the toilet, for which planning systems can be designed with the 
support of different sensing systems. With a probabilistic model checker, models can 
be assessed against the assumptions of the domain and system requirements. Since the 
parameters can be easily changed, and both worst-case and best-case scenarios can be 
analysed, modelling with a probabilistic model checker is potentially a useful first 
step in designing a planning system to help people with dementia through activities in 
daily living.
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Chapter 7
Conclusion and future work

From the probability modelling checking in Chapter 5 for the hand-washing problem, 
we can see that the discount rate and the reward structure have significant influence 
on the preference in policies. This is because they represent the objectives in trading 
off between long-term and short-term goals. So, fine-tuning rewards is critical for the 
development of a planning system. By identifying the relationships between factors in 
the hand-washing problem, the experiment results  from Chapter 5 show that even 
when the user’s behaviour cannot be fully observed or modelled accurately, general 
rules can be applied in choosing a policy for the user. 

The planning system helping people with dementia during the activity of dressing is 
presented in Chapter 6. Modelled the dressing problem successfully, it is shown that 
probabilistic model checking is useful in early stage of planning system design. 

The program presented in Chapter 6,  which can modify the policies generated by 
PRISM, is  useful  for generating feasible policy.  It  can provide feasible  policy for 
stationary system when time is defined as a variable in the system. It can be modified 
to generate feasible policy under the assumption of partially observability. 
 
From modelling  intelligent  systems in  PRISM, we found that  the functionality of 
PRISM can be further improved in several ways. Firstly, it could support cumulated 
discounted  reward  by  enabling  the  use  of  time  in  specification  of  cost/reward. 
Secondly,  if  state  rewards  and transition  rewards  can  be  imported  explicitly,  then 
reward-based  properties  can  be  checked  for  models  constructed  through  direct 
specification of their transition matrix. 

There are some other limitations of this work. Because of the lack of prior knowledge 
in the domain of care giving, although probability model checking is able to cover 
every possible scenario, the scenarios chosen to be discussed and presented might not 
be the scenarios with most concerns. Also the simplified models might be too naïve 
and not accurate enough to expose all interesting properties of the hand-washing and 
dressing problems.  

Other than MDP, it is possible to model one activity of daily living as a CTMC in 
PRISM. Modelling as a CTMC, the user’s action can be modelled as a smooth state 
transition with a rate. This does not only model the user action more accurately, it also 
can improve the planning system performance by taking the speed of the user’s action 
into account. 
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As future work, MDP based planning systems can be designed for more activities in 
daily living. With the help of probabilistic model checking, best-case and worst-case 
scenarios can be analysed. So even without prior knowledge in the domain of care 
giving or results form early stage clinical trials, the system can be analysed by simply 
changing the value of each parameter. It is also possible to gain a better understanding 
of relevant factors in the system form analysing parameters of the model. The cost for 
carrying out model checking is low, and this early stage analysis can help to set a 
higher starting point for later clinical trials. 

68



Bibliography

[1]  J.  Hoey,  A.  Bertoldi,  P.  Poupart,  and  A.  Mihailidis. Assisting  Persons  with 
Dementia during Handwashing Using a Partially Observable Markov Decision 
Process.  In Proceedings of the International Conference on Vision Systems (ICVS), 
Biefeld, Germany, 2007.

[2]  J.  Boger,  P.  Poupart,  J.  Hoey,  C.  Boutilier,  G.  Fernie,  and  A.  Mihailidis. A 
Decision-Theoretic Approach to Task Assistance for Persons with Dementia. In 
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 
pages 1293-1299, Edinburgh, Scotland, 2005.

[3]  J.  Boger,  J.  Hoey,  P.  Poupart,  C.  Boutilier,  G.  Fernie,  and  A.  Mihailidis.  A 
Planning  System Based  on  Markov  Decision  Processes  to  Guide  People  with 
Dementia Through Activities of Daily Living. Manuscript, 2005.

[4] NHS’s website
http://www.nhsdirect.nhs.uk/articles/article.aspx?articleId=124#
Reviewed on July 17th 2008.

[5] A. Hinton,  M. Kwiatkowska,  G. Norman, and D. Parker.  PRISM: A Tool for 
Automatic Verification of Probabilistic System.  In H. Hermanns and J. Palsberg 
(editors)  Proc.  12th  International  Conference  on  Tools  and  Algorithms  for  the  
Construction  and Analysis  of  Systems  (TACAS'06),  volume 3920 of  LNCS,  pages 
441-444, Springer. March 2006.

[6] PRISM Manual version 3.2. Available from PRISM’s website:
http://www.prismmodelchecker.org/

[7] M. Kwiatkowska. Quantitative Verification: Models, Techniques and Tools. In 
Proc. 6th joint meeting of the European Software Engineering Conference and the  
ACM  SIGSOFT  Symposium  on  the  Foundations  of  Software  Engineering 
(ESEC/FSE), pages 449-458, ACM Press. September 2007.

[8] J. Hoey. MDP Handwashing Model. 
http://www.cs.toronto.edu/~jhoey/papers/zmj.pdf. February 2006.

[9] J. Bates, J. Boote, and C. Beverly. Psychosocial interventions for people with a 
dementing  illness:  A  systematical  review. Journal  of  Advanced  Nursing, 
45(6):644-658, 2004.

[10] C. Boutilier, T. Dean, and S. Hanks.  Decision-Theoretic Planning: Structural 
Assumptions and Computational Leverage. J. of Artificial Intelligence Research,  
11:1-94 (1999).

[11] J. Hoey, R. St-Aubin, A. Hu, and C. Boutillier.  SPUDD: Stochastic Planning 
using Decision Diagrams. in Proceedings of the Fifteenth International Conference 

69

http://www.cs.toronto.edu/~jhoey/papers/zmj.pdf
http://www.prismmodelchecker.org/
http://www.nhsdirect.nhs.uk/articles/article.aspx?articleId=124#


on Uncertainty in Artificial Intelligence, Stockholm, 1999, pp. 279-288.

[12] M. Spaan and N. Vlassis.  Perseus: Randomized point-based value iteration 
for POMDPs. Journal of Artificial Interlligence Research, 24:195-220, 2005. 

[13]  N.  Kushmerick,  S.  Hanks,  and  D.  Weld.  An  Algorithm  for  Probabilistic 
Planning. Artificial Intelligence, 76, 239-286, 1995.

[14] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards robotic 
assistants in nursing homes: challenges and results. Rob. Auton. Syst., vol. 42, pp. 
271-281, 2003.

[15] M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model Checking. In M.  
Bernardo,  J.  Hillston,  editors,  Formal  Methods  for  the  Design  of  Computer,  
Communication and Software Systems: Performance Evaluation (SFM'07) Vol. 4486 
of LNCS (Tutorial Volume), pages 220-270. Springer, 2007. 

[16] K. Etessami, M. Kwiatkowska, M. Vardi and M. Yannakakis.  Multi-Objective 
Model Checking of Markov Decision Processes. In O. Grumberg, M. Huth, editors,  
Proc. 13th International Conference on Tools and Algorithms for the Construction  
and Analysis of Systems (TACAS'07) Vol. 4424 of LNCS, pages 50-65. Springer, 2007. 

[17]  D.  Parker.  Implementation of  Symbolic  Model  Checking for Probabilistic 
Systems. PhD thesis, University of Birmingham, 2002.

[18]  M.  Kwiatkowska,  G.  Norman  and D.  Parker.  Probobilistic  symbolic  model 
checking  with  PRISM: A hybrid  approach. Int.  Journal  on  Software  Tools  for  
Technology Transfer, 6(2):128-142, 2004.

[19]  R.  Alur  and T.A.  Henzinger.  Reactive  modules. Formal  Methods  in  System 
Design: An International Journal, 15(1):7-48, Jul. 1999.

[20]  A.  Mihailidis,  J.  Boger,  M.  Canido  and  J.  Hoey.  The use  of  an  intelligent 
prompting system for people with dementia. Designing for seniors: innovations for  
graying times, Volume 14, Issue 4. ACM  New York, 2007.

[21] M. Kwiatkowska, G. Norman and D. Parker. Modelling and Verification of
Probabilistic Systems. Lecture notes of the course on Probabilistic Model Checking 
taught  as  part  of  the  Workshop  on  Mathematical  Models  and  Techniques  for  
Analysing Systems, University of Montr´eal, September 30–October 4, 2002.

[22] H. Hoenig, D. Taylor Jr and F. Sloan. Does Assistive Technology Substitute for 
Personal  Assistance  Among  the  Disabled  Elderly?  Am.  J.  Public  Health;  
93:330-337, 2003.

70

http://www.acm.org/publications


[23]  W.  S.  Lovejoy.  A Survey  of  Algorithmic  Methods for Partially  Observed 
Markov Decision Processes. Annals of Operations Research, 28:47-66, 1991.

[24] Yi Ma, Stefano Soatto, Jana Kosecka, and S.Shankar Sastry. An Invitation to 3-
D Vision. Springer-Verlag New York, Inc., 2004.

71



Appendix I
The PRISM file of MDP model for the 
hand-washing problem

mdp

//scheduler

global phase : [0..6] init 0;

//phase 1-4: User action, sensor detect

//phase=1: if prompt has effect on hand location, update handlocation and go to phase 3, otherwise go 

to phase 2

//phase=2: update hand location for non-effective prompt or no prompt

//phase=3: if prompt has effect on water flow, update water flow and go to phase 5, otherwise go to 

phase 4

//phase=4: update water flow

//phase 5: update activity status (planstep etc.)

//phase=6: update other variables

//HandLocation: HL

//soap, tap, water, towel, sink, away

global HL : [0..5] init 5;

//waterFlow: WF

//on, off

global WF : [0..1] init 0;

//handLocationCorrectConst

const double HLCC;

//handLocationSameConst

const double HLSC;

//waterFlowCorrectConst

const double WFCC;

//handLocation Effect

//HLCC/2 < HLE < 1

const double HLE;
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const double WFE;

const int maxwait;

const int total_time;

//number of time intervals without plan step change or progress

global NW: [-1..maxwait] init 0;

module update_activity_a

//PlanStep: PS

//A B C D E G H J K

PS : [0..8] init 0;

//Regression:

Reg: [0..1] init 0;

[] phase = 5 & PS = 0 & HL= 0 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep A, handLocation soap, Waterflow off -> planstep E

       

       [] phase = 5 & PS = 0 & HL= 1 & WF = 0 -> (PS'=0) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep A, handLocation tap, Waterflow off -> planstep A

       [] phase = 5 & PS = 0 & HL= 1 & WF = 1 -> (PS'=1) & (phase'=6) &  (Reg'=0)& (NW'=0);

       //planstep A, handLocation tap, Waterflow on -> planstep B

       [] phase = 5 & PS = 0 & HL= 2 & WF = 0 -> (PS'=0) & (phase'=6) &  (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep A, handLocation water, Waterflow off -> planstep A

       [] phase = 5 & PS = 0 & HL= 3 & WF = 0 -> (PS'=0) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep A, handLocation towel, Waterflow off -> planstep A

       [] phase = 5 & PS = 0 & HL= 4 & WF = 0-> (PS'=0) & (phase'=6) &  (Reg'=0)& (NW'=0);

       //planstep A, handLocation sink, Waterflow off -> planstep A

       [] phase = 5 & PS = 0 & HL= 5 & WF = 0 -> (PS'=0) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep A, handLocation away, Waterflow off -> planstep A

       

       [] phase = 5 & PS = 1 & HL= 0 & WF = 1-> (PS'=3) & (phase'=6)&   (Reg'=0)& (NW'=0);

       //planstep B, handLocation soap, Waterflow on -> planstep D

       [] phase = 5 & PS = 1 & HL= 1 & WF = 0 -> (PS'=0) & (phase'=6) & (Reg'=1)& (NW'=0);

       //planstep B, handLocation tap, Waterflow off -> planstep A

       [] phase = 5 & PS = 1 & HL= 1 & WF = 1 -> (PS'=1) & (phase'=6) &  (Reg'=0) & 

(NW'=min(NW+1, maxwait));
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       //planstep B, handLocation tap, Waterflow on -> planstep B

       [] phase = 5 & PS = 1 & HL= 2 & WF = 1 -> (PS'=2) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep B, handLocation water, Waterflow on -> planstep C

       [] phase = 5 & PS = 1 & HL= 3 & WF = 1 -> (PS'=1) & (phase'=6) &  (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep B, handLocation towel, Waterflow on -> planstep B

       [] phase = 5 & PS = 1 & HL= 4 & WF = 1 -> (PS'=1) & (phase'=6) &  (Reg'=0)& (NW'=0);

       //planstep B, handLocation sink, Waterflow on -> planstep B

       [] phase = 5 & PS = 1 & HL= 5 & WF = 1 -> (PS'=1) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep B, handLocation away, Waterflow on -> planstep B

       [] phase = 5 & PS = 2 & HL= 0 & WF = 1-> (PS'=3) & (phase'=6)& (Reg'=0) & (NW'=0);

       //planstep C, handLocation soap, Waterflow on -> planstep D

       [] phase = 5 & PS = 2 & HL= 1 & WF = 0 -> (PS'=0) & (phase'=6) & (Reg'=1) 

&(NW'=min(NW+1, maxwait));

       //planstep C, handLocation tap, Waterflow off -> planstep A

       [] phase = 5 & PS = 2 & HL= 1 & WF = 1 -> (PS'=2) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep C, handLocation tap, Waterflow on -> planstep C

       [] phase = 5 & PS = 2 & HL= 2 & WF = 1 -> (PS'=2) & (phase'=6) & (Reg'=0) 

&(NW'=min(NW+1, maxwait));

       //planstep C, handLocation water, Waterflow on -> planstep C

       [] phase = 5 & PS = 2 & HL= 3 & WF = 1 -> (PS'=1) & (phase'=6) & (Reg'=1) 

&(NW'=min(NW+1, maxwait));

       //planstep C, handLocation towel, Waterflow on -> planstep B

       [] phase = 5 & PS = 2 & HL= 4 & WF = 1 -> (PS'=2) & (phase'=6) & (Reg'=0) 

&(NW'=min(NW+1, maxwait));

       //planstep C, handLocation sink, Waterflow on -> planstep C

       [] phase = 5 & PS = 2 & HL= 5 & WF = 1 -> (PS'=2) & (phase'=6)  & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep C, handLocation away, Waterflow on -> planstep C

       [] phase = 5 & PS = 3 & HL= 0 & WF = 1-> (PS'=3) & (phase'=6)&   (Reg'=0)& 

(NW'=min(NW+1, maxwait));

       //planstep D, handLocation soap, Waterflow on -> planstep D

       [] phase = 5 & PS = 3 & HL= 1 & WF = 0 -> (PS'=4) & (phase'=6) & 

(Reg'=0)&(NW'=min(NW+1, maxwait));

       //planstep D, handLocation tap, Waterflow off -> planstep E

       [] phase = 5 & PS = 3 & HL= 1 & WF = 1 -> (PS'=3) & (phase'=6) &  (Reg'=0)& 

(NW'=min(NW+1, maxwait));

       //planstep D, handLocation tap, Waterflow on -> planstep D

       [] phase = 5 & PS = 3 & HL= 2 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep D, handLocation water, Waterflow on -> planstep G
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       [] phase = 5 & PS = 3 & HL= 3 & WF = 1 -> (PS'=3) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep D, handLocation towel, Waterflow on -> planstep D

       [] phase = 5 & PS = 3 & HL= 4 & WF = 1 -> (PS'=3) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep D, handLocation sink, Waterflow on -> planstep D

       [] phase = 5 & PS = 3 & HL= 5 & WF = 1 -> (PS'=3) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep D, handLocation away, Waterflow on -> planstep D

       [] phase = 5 & PS = 4 & HL= 0 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep E, handLocation soap, Waterflow off -> planstep E

       [] phase = 5 & PS = 4 & HL= 1 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep E, handLocation tap, Waterflow off -> planstep E

       [] phase = 5 & PS = 4 & HL= 1 & WF = 1 -> (PS'=3) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep E, handLocation tap, Waterflow on -> planstep D

       [] phase = 5 & PS = 4 & HL= 2 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep E, handLocation water, Waterflow off -> planstep E

       [] phase = 5 & PS = 4 & HL= 3 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep E, handLocation towel, Waterflow off -> planstep E

       [] phase = 5 & PS = 4 & HL= 4 & WF = 0-> (PS'=4) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep E, handLocation sink, Waterflow off -> planstep E

       [] phase = 5 & PS = 4 & HL= 5 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep E, handLocation away, Waterflow off -> planstep E

      

[] phase = 5 & PS = 5& HL= 0 & WF = 1-> (PS'=3) & (phase'=6)&  (Reg'=1)& 

(NW'=min(NW+1, maxwait));

       //planstep G, handLocation soap, Waterflow on -> planstep D

       [] phase = 5 & PS = 5 & HL= 1 & WF = 0 -> (PS'=6) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep G, handLocation tap, Waterflow off -> planstep H

       [] phase = 5 & PS = 5 & HL= 1 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep G, handLocation tap, Waterflow on -> planstep G

       [] phase = 5 & PS = 5 & HL= 2 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep G, handLocation water, Waterflow on -> planstep G (keep washing)

      [] phase = 5 & PS = 5 & HL= 3 & WF = 1 -> (PS'=7) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep G, handLocation towel, Waterflow on -> planstep J

       [] phase = 5 & PS = 5 & HL= 4 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep G, handLocation sink, Waterflow on -> planstep G

       [] phase = 5 & PS = 5 & HL= 5 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep G, handLocation away, Waterflow on -> planstep G
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       [] phase = 5 & PS = 6 & HL= 0 & WF = 0 -> (PS'=4) & (phase'=6) & (Reg'= 1)& 

(NW'=min(NW+1, maxwait));

       //planstep H, handLocation soap, Waterflow off -> planstep E

      [] phase = 5 & PS = 6 & HL= 1 & WF = 0 -> (PS'=6) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

//planstep H, handLocation tap, Waterflow off -> planstep H

       [] phase = 5 & PS = 6 & HL= 1 & WF = 1 -> (PS'=5) & (phase'=6) & (Reg'=1) & 

(NW'=min(NW+1, maxwait));

       //planstep H, handLocation tap, Waterflow on -> planstep G

       [] phase = 5 & PS = 6 & HL= 2 & WF = 0 -> (PS'=6) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep H, handLocation water, Waterflow off -> planstep H

       [] phase = 5 & PS = 6 & HL= 3 & WF = 0 -> (PS'=8) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep H, handLocation towel, Waterflow off -> planstep K

       [] phase = 5 & PS = 6 & HL= 4 & WF = 0-> (PS'=6) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep H, handLocation sink, Waterflow off -> planstep H

       [] phase = 5 & PS = 6 & HL= 5 & WF = 0 -> (PS'=6) & (phase'=6) &  (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep H, handLocation away, Waterflow off -> planstep H

       [] phase = 5 & PS = 7 & HL= 0 & WF = 1-> (PS'=3) & (phase'=6)&  (Reg'=1)& 

(NW'=min(NW+1, maxwait));

       //planstep J, handLocation soap, Waterflow on -> planstep D

       [] phase = 5 & PS = 7 & HL= 1 & WF = 0 -> (PS'=8) & (phase'=6) &  (Reg'=0)& (NW'=0);

       //planstep J, handLocation tap, Waterflow off -> planstep K

       [] phase = 5 & PS = 7 & HL= 1 & WF = 1 -> (PS'=7) & (phase'=6) & (Reg'=0)& (NW'=0);

       //planstep J, handLocation tap, Waterflow on -> planstep J

      [] phase = 5 & PS = 7 & HL= 2 & WF = 1 -> (PS'=5) & (phase'=6)&(Reg'=1) & 

(NW'=min(NW+1, maxwait)) ;      

//planstep J, handLocation towel, Waterflow off -> planstep K

       [] phase = 5 & PS = 7 & HL= 3 & WF = 1 -> (PS'=7) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep J, handLocation towel, Waterflow on -> planstep J

      [] phase = 5 & PS = 7 & HL= 4 & WF = 1 -> (PS'=7) & (phase'=6) & (Reg'=0) & (NW'=0);

       //planstep J, handLocation sink, Waterflow on -> planstep J

      [] phase = 5 & PS = 7 & HL= 5 & WF = 1 -> (PS'=7) & (phase'=6) & (Reg'=0) & 

(NW'=min(NW+1, maxwait));

       //planstep J, handLocation water, Waterflow on -> planstep G

       //[] phase = 5 & PS = 7 & HL= 3 & WF = 0 -> (PS'=8) & (phase'=6) & (Prog'=0)& (Reg'=0)& 

(NW'=0);

       [] phase =5& PS=8-> (phase'=6);
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endmodule

module update_activity_b

//Maximum plan step: MPS

//A, BCE, D, G, HJ, K

//0, 1,   2, 3, 4,  5

MPS : [0..5] init 0;

time_step: [0..total_time] init 0;

//MPSrepeat

//1 means repeat, 0 mean it's the first time to reach this MPS

MPSrepeat : [0..1] init 1;

       [] phase = 6 & ((PS)=(1)|(PS)=(2)|(PS)=(4))& MPS = 0-> (MPS' = 1) & (phase'=0) & 

(MPSrepeat'=0) & (time_step' = min(time_step+1, total_time)) ;

       [] phase = 6 & PS = 3 & MPS = 1 -> (MPS'= 2)& (phase'=0)& (MPSrepeat'=0) &(time_step' = 

min(time_step+1, total_time));

       [] phase = 6 & PS = 5 & MPS = 2 -> (MPS'=3)& (phase'=0)& (MPSrepeat'=0) &(time_step' = 

min(time_step+1, total_time));

       [] phase = 6 & ((PS)=(6)|(PS)=(7))& MPS = 3 -> (MPS' = 4) & (phase'=0)& (MPSrepeat'=0) 

&(time_step' = min(time_step+1, total_time));

       [] phase = 6 & PS=0  -> (phase'=0) & (MPSrepeat'=1) &(time_step' = min(time_step+1, 

total_time));

       [] phase = 6 & ((PS)=(1)|(PS)=(2)|(PS)=(4))& ((MPS)=(1)|(MPS)=(2)|(MPS)=(3)|(MPS)=(4))-> 

(phase'=0) & (MPSrepeat'=1) &(time_step' = min(time_step+1, total_time));

       [] phase = 6 & PS = 3 & ((MPS)=(0)|(MPS)=(2)|(MPS)=(3)|(MPS)=(4))-> (phase'=0) & 

(MPSrepeat'=1) &(time_step' = min(time_step+1, total_time));

       [] phase = 6 & PS = 5 & ((MPS)=(0)|(MPS)=(1)|(MPS)=(3)|(MPS)=(4))-> (phase'=0) & 

(MPSrepeat'=1) &(time_step' = min(time_step+1, total_time));

       [] phase = 6 & ((PS)=(6)|(PS)=(7))& ((MPS)=(0)|(MPS)=(1)|(MPS)=(2)|(MPS)=(4))-> (phase'=0) 

& (MPSrepeat'=1) &(time_step' = min(time_step+1, total_time));

       [] phase = 6 & PS = 8 & MPS=4  -> (MPS'=5)& (MPSrepeat'=0) &(time_step' = min(time_step+1, 

total_time));

       [] phase= 6 & PS=8 & MPS=5 -> (MPSrepeat'=1);

endmodule

module user_hand_a

//nothing:

       [] phase = 1 & action = 0 -> (phase'=2);

//Water On:
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       //planstep 0 (A) | 4 (E) , handLocation 1 (tap)

       [] phase = 1 & action = 1 & PS = 0 ->

               HLE : (HL' = 1) & (phase'=3)

               + (1-HLE)*HLCC/2 :(HL'=0)&(phase'=3)

               + (1-HLE)*HLCC/2 : (HL'=4)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3: (HL'=2)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3: (HL'=3)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3:  (HL'=5)&(phase'=3);

       [] phase =1 & action = 1 & PS = 4 ->

               HLE : (HL' = 1) & (phase'=3)

               + (1-HLE)*HLCC/2:(HL'=2)&(phase'=3)

               + (1-HLE)*HLCC/2 : (HL'=4)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3:  (HL'=0)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3: (HL'=3)&(phase'=3)

               + (1-HLE)*(1-HLCC)/3: (HL'=5)&(phase'=3);

     

//water Off:

       //planstep 5 (G) | 7 (J) , handLocation 1 (tap)

       [] phase = 1 & action = 2 & PS = 5 ->

               HLE : (HL' = 1) & (phase'=3)

               + (1-HLE)*HLCC/2 : (HL' = 3) & (phase'=3)

               + (1-HLE)*HLCC/2 : (HL' = 4) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/3:  (HL'=0) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3:  (HL'=2) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3:  (HL'=5) & (phase'=3);

       [] phase = 1 & action = 2 & PS = 7 ->

               HLE : (HL' = 1) & (phase'=3)

               + (1-HLE)*HLCC : (HL' = 4) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/4: (HL'=0) & ( phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=2) & ( phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=3) & ( phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=5) & ( phase'=3);

//use soap:

       //planstep 0 (A) | 1 (B) | 2 (C), handLocation 0 (soap)

       [] phase = 1 & action = 3 & PS = 0 ->

               HLE : (HL' = 0) & (phase' = 3)

               + (1-HLE)*HLCC/2  : (HL' = 1 ) & (phase' = 3)

               + (1-HLE)*HLCC/2  : (HL' = 4) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/3 : (HL' = 2) & ( phase' = 3)
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               + (1-HLE)*(1-HLCC)/3 : (HL' = 3) & ( phase' = 3)

               + (1-HLE)*(1-HLCC)/3 : (HL' = 5) & ( phase' = 3);

       [] phase = 1 & action = 3 & PS = 1 ->

               HLE : (HL' = 0) & (phase' = 3)

               + (1-HLE)*HLCC/2 : (HL'= 2) & (phase' = 3)

               + (1-HLE)*HLCC /2 : (HL'=4) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/3 : (HL' = 1) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/3 : (HL' = 3) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/3: (HL' = 5) & (phase' = 3);

       [] phase = 1 & action = 3 & PS = 2 ->

               HLE  : (HL'=0) & (phase' = 3)

               + (1-HLE)*HLCC : (HL' = 4) & (phase' = 3)

               + (1-HLE)*(1-HLCC)/4: (HL'=1) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=2) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=3) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=5) & (phase'=3);

      

//rinse hands:

       //planstep 3 (D), handLocation 2 (water)

       [] phase = 1 & action = 4 & PS = 3->

               HLE: (HL'=2)& (phase'=3)

               + (1-HLE)*HLCC: (HL'=4) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=0) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=1) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=3) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4: (HL'=5) & (phase'=3);

      

//wet hands:

       //planstep 1 (B), handLocation 2 (water)

       [] phase = 1 & action = 5 & PS = 1->

               HLE: (HL'=2) & (phase'= 3)

               + (1-HLE)*HLCC/2: (HL'=0) & (phase'=3)

               + (1-HLE)*HLCC/2: (HL'=4) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3 : (HL'=1) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3 : (HL'=3) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3  : (HL'=5) & (phase'=3);

     

79



//dry hands:

       //planstep 5 (G) | 6 (H), handLocation 3 (towel)

       []phase = 1& action =6 & PS =5 ->

               HLE: (HL'=3) & (phase'=3)

               + (1-HLE)*HLCC/2: (HL'=1) & (phase' = 3)

               + (1-HLE)*HLCC/2: (HL'=4) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3   : (HL'=0) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3   : (HL'=2) & (phase'=3)

               + (1-HLE)*(1-HLCC)/3   : (HL'=5) & (phase'=3);

       []phase = 1& action =6 & PS =6 ->

               HLE: (HL'=3) & (phase'=3)

               +(1-HLE)*HLCC: (HL'=4) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4 : (HL'=0) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4 : (HL'=1) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4  : (HL'=2) & (phase'=3)

               + (1-HLE)*(1-HLCC)/4  : (HL'=5) & (phase'=3);

      

endmodule

module user_hand_b

//do nothing:

       //planstep 0 (correct location 0, 1, 4)

       [] phase = 2 & PS=0 & (HL = 0 | HL = 1 | HL = 4)->

               HLCC/3: (HL'=0)&(phase'=3)

               + HLCC/3 :(HL'=1)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)/3: (HL'=2)&(phase'=3)

               + (1-HLCC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=0 & HL = 2 ->

               (1-HLCC)*HLSC : (HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=0)&(phase'=3)

               + HLCC/3 :(HL'=1)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=0 & HL = 3 ->

               (1-HLCC)*HLSC : (HL'=3)&(phase'=3)

               + HLCC/3 : (HL'=0)&(phase'=3)
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               + HLCC/3 :(HL'=1)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/2: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=0 & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               + HLCC/3 : (HL'=0)&(phase'=3)

               + HLCC/3 :(HL'=1)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/2: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3);

       //planstep 1  (correct location 0, 2, 4)

       [] phase = 2 & PS=1 & ((HL) = (0) |(HL) = (2) |(HL) = (4))  ->

               HLCC/3 : (HL'=0)&(phase'=3)

               + HLCC/3 :(HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)/3: (HL'=1)&(phase'=3)

               + (1-HLCC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=1  & HL = 1 ->

               (1-HLCC)*HLSC : (HL'=1)&(phase'=3)

               + HLCC/3 :(HL'=4)&(phase'=3)

               + HLCC/3 : (HL'=2)&(phase'=3)

               + HLCC/3: (HL'=0)& (phase'=3)

               + (1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=1  & HL = 3 ->

(1- HLCC)*HLSC : (HL'=3)&(phase'=3)

+ HLCC/3: (HL'=0)& (phase'=3)

               + HLCC/3 :(HL'=4)&(phase'=3)

               + HLCC/3 : (HL'=2)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/2: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=1 & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               + HLCC/3: (HL'=0)& (phase'=3)

+ HLCC/3 :(HL'=4)&(phase'=3)

               + HLCC/3: (HL'=2)&(phase'=3)
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               + (1-HLCC)*(1-HLSC)/2: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3);

       //planstep 2 (correct location 0, 4)

       [] phase = 2  & PS=2 & (HL = 0 | HL = 4) ->

               HLCC/2 :(HL'=0)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               + (1-HLCC)/4: (HL'=1)&(phase'=3)

               + (1-HLCC)/4: (HL'=2)&(phase'=3)

               + (1-HLCC)/4: (HL'=3)&(phase'=3)

               +(1-HLCC)/4: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=2 & HL = 1 ->

               (1-HLCC)*HLSC: (HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=0)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=2 & HL = 2 ->

               (1-HLCC)*HLSC: (HL'=2)&(phase'=3)

               +HLCC/2 :(HL'=0)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=2 & HL = 3 ->

               (1-HLCC)*HLSC: (HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=0)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=2 & HL = 5 ->

               (1-HLCC)*HLSC: (HL'=5)&(phase'=3)

               +HLCC/2 :(HL'=0)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3);
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// planstep 3 (correct location 2, 4)

       [] phase = 2 & PS=3 & HL = 0 ->

               (1-HLCC)*HLSC : (HL'=0)&(phase'=3)

               + HLCC/2 :(HL'=2)&(phase'=3)

               + HLCC/2 : (HL'=4)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=3 & HL = 1 ->

               (1-HLCC)*HLSC : (HL'=1)&(phase'=3)

               + HLCC/2 :(HL'=4)&(phase'=3)

               + HLCC/2 : (HL'=2)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=0)& (phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=3 & ((HL)=(2)|(HL)=(4))->

               HLCC/2 : (HL'=2)&(phase'=3)

               + HLCC/2 :(HL'=4)&(phase'=3)

               + (1-HLCC)/4: (HL'=0)&(phase'=3)

               + (1-HLCC)/4: (HL'=1)&(phase'=3)

               + (1-HLCC)/4: (HL'=3)&(phase'=3)

               +(1-HLCC)/4: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=3 & HL = 3 ->

               (1-HLCC)*HLSC : (HL'=3)&(phase'=3)

               + HLCC/2 :(HL'=4)&(phase'=3)

               + HLCC/2 : (HL'=2)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=0)& (phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=3  & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               + HLCC/2 :(HL'=4)&(phase'=3)

               + HLCC/2 : (HL'=2)&(phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=0)& (phase'=3)

               + (1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3);

       //planstep 4 (correct location 1, 2, 4)

       [] phase = 2  & PS=4 & HL = 0 ->

               (1-HLCC)*HLSC : (HL'=0)&(phase'=3)
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               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase =2 & PS=4 & (HL = 1 | HL = 2 | HL = 4) ->

               HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               + (1-HLCC)/3: (HL'=0)&(phase'=3)

               + (1-HLCC)/3: (HL'=3)&(phase'=3)

               + (1-HLCC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=4 & HL = 3 ->

               (1-HLCC)*HLSC : (HL'=3)&(phase'=3)

               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=4 & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=2)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=0)&(phase'=3);

       //planstep 5 (correct location 1, 3, 4)

       [] phase = 2 & PS=5 & HL = 0 ->

               (1-HLCC)*HLSC : (HL'=0)&(phase'=3)

               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=3)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=5 & (HL = 1 | HL = 3 | HL = 4) ->

               HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=3)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)/3: (HL'=0)&(phase'=3)
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               +(1-HLCC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=5 & HL = 2 ->

               (1-HLCC)*HLSC : (HL'=2)&(phase'=3)

               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=3)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=5 & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               +HLCC/3 :(HL'=1)&(phase'=3)

               +HLCC/3 :(HL'=3)&(phase'=3)

               + HLCC/3 : (HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/2: (HL'=2)&(phase'=3);

       //planstep 6 (correct location 3, 4)

       [] phase = 2  & PS=6 & HL = 0 ->

               (1-HLCC)*HLSC : (HL'=0)&(phase'=3)

               +HLCC/2 :(HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=6 & HL = 1 ->

               (1-HLCC)*HLSC : (HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=6 & HL = 2 ->

               (1-HLCC)*HLSC : (HL'=2)&(phase'=3)

               +HLCC/2 :(HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);
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       [] phase = 2  & PS=6 &(HL = 3 | HL = 4) ->

               HLCC/2 :(HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               + (1-HLCC)/4: (HL'=0)&(phase'=3)

               + (1-HLCC)/4: (HL'=1)&(phase'=3)

               + (1-HLCC)/4: (HL'=2)&(phase'=3)

               + (1-HLCC)/4: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=6 & HL = 5 ->

               (1-HLCC)*HLSC : (HL'=5)&(phase'=3)

               +HLCC/2 :(HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=1)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3);

       //planstep 7 (correct location 1, 4)

       [] phase = 2 & PS=7 & HL = 0 ->

               (1-HLCC)*HLSC  : (HL'=0)&(phase'=3)

               +HLCC/2 :(HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=7 & (HL = 1 | HL = 4) ->

               HLCC/2  :(HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               + (1-HLCC)/4: (HL'=0)&(phase'=3)

               + (1-HLCC)/4: (HL'=2)&(phase'=3)

               + (1-HLCC)/4: (HL'=3)&(phase'=3)

               + (1-HLCC)/4: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=7 & HL = 2->

               (1-HLCC)*HLSC : (HL'=2)&(phase'=3)

               +HLCC/2 :(HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2 & PS=7 & HL = 3 ->

               (1-HLCC)*HLSC  : (HL'=3)&(phase'=3)

               +HLCC/2 :(HL'=1)&(phase'=3)
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               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=5)&(phase'=3);

       [] phase = 2  & PS=7 & HL = 5 ->

               (1-HLCC)*HLSC  : (HL'=5)&(phase'=3)

               +HLCC/2 :(HL'=1)&(phase'=3)

               +HLCC/2 :(HL'=4)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=0)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=2)&(phase'=3)

               +(1-HLCC)*(1-HLSC)/3: (HL'=3)&(phase'=3);

endmodule

module user_water_a

//hand not on tap, cannot change water flow:

       [] phase = 3 & (HL=0 | HL=2 | HL=3|HL=4|HL=5) -> (phase'=5);

//Water On:

       [] phase = 3 & action = 1 & HL = 1 & (PS = 0| PS = 4) ->

               WFE*WFCC : (WF'=1) & (phase' = 5)

               + (1-WFE*WFCC) : (WF'=0) & (phase' = 5);

       //[] phase = 3 & action =1 & HL=1 & (PS=1|PS=2|PS=3|PS=5|PS=6|PS=7|PS=8) ->(phase'=4);

//Water Off:

       [] phase = 3 & action = 2 & HL=1 & (PS = 5|PS=7)->

               WFE*WFCC : (WF'=0) &(phase'=5)

               +(1-WFE*WFCC) : (WF'=1) & (phase'=5);

       

//other actions:

       [] phase = 3 & HL=1 & (action = 0 | action= 3 | action = 4|action=5|action=6) ->(phase'=4);

endmodule

module updateWF_nothing

       //WF = 0 is correct for next step at plan step 6,7

       [] phase = 4 & (((PS)=(6)|(PS)=(7)))  ->

               WFCC : (WF'=0) & (phase'=5)

               +(1-WFCC) : (WF'=1) & (phase'=5);

       //WF = 1 is correct for next step at plan step 1,2,3,4

       [] phase = 4 & (((PS)=(1)|(PS)=(2)|(PS)=(3)|(PS)=(4)))->

               WFCC : (WF'=1 ) & (phase'=5)
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               +(1-WFCC): (WF'=0) & (phase'=5);

       //either WF=1 or WF=0 are correct for next step at 0,5

       [] phase = 4 & (((PS)=(0)|(PS)=(5))) ->

               0.5: (WF'=1) & (phase'=5) + 0.5: (WF'=0) & (phase'=5);

endmodule

//MDP

module Policy

//action

action: [0..6] init 0;

//0    1  2   3    4     5   6

//none on off soap rinse wet dry

       //ps 0, on, soap

[] phase = 0 & PS=0 -> (action'=1) & (phase'=1) &(NW'=0) ;

[] phase = 0 & PS=0 -> (action'=3) & (phase'=1) &(NW'=0) ;

[] phase = 0 & PS=0 -> (action'=0) & (phase'=1) ;

//ps 1, wet, soap

[] phase = 0 & PS=1 -> (action'=3) & (phase'=1) &(NW'=0) ;

[] phase = 0 & PS=1 -> (action'=5) & (phase'=1) &(NW'=0) ;

[] phase = 0 & PS=1 -> (action'=0) & (phase'=1) ;

//ps 2 use soap

       [] phase = 0 & PS=2 -> (action'=3) & (phase'=1) &(NW'=0) ;

       [] phase = 0 & PS=2 -> (action'=0) & (phase'=1);

       //ps 3, rinse

       [] phase = 0 & PS = 3->  (action'=4) & (phase'=1)&(NW'=0) ;

       [] phase = 0 & PS = 3-> (action'=0) & (phase'=1);

       //ps 4, water on

       [] phase = 0 & PS = 4 ->(action'=1) & (phase'=1)&(NW'=0) ;

       [] phase = 0 & PS = 4 ->(action'=0) & (phase'=1);

       //ps 5, use towel or water off 

[] phase = 0 & PS=5 -> (action'=6) & (phase'=1)&(NW'=0) ;

       [] phase = 0 & PS=5 -> (action'=0) & (phase'=1);

       [] phase = 0 & PS=5 -> (action'= 2) & (phase'=1)&(NW'=0) ;

       //ps 6, use towel

[] phase = 0 & PS=6-> (action'=6) & (phase'=1)&(NW'=0) ;

       [] phase = 0 & PS=6-> (action'=0) & (phase'=1);

       //ps 7, water off

       [] phase = 0 & PS=7-> (action' = 2) & (phase'=1)&(NW'=0) ;

       [] phase = 0 & PS=7-> (action'=0) & (phase'=1);

       //[] phase = 0 & PS=8 -> phase'=6;

endmodule
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const double discount;

rewards  "total_2"

       phase = 0 & MPSrepeat = 0 & PS !=8 : 3*func(pow, discount,time_step);

       PS = 8 & MPS = 4  : 300*func(pow, discount, time_step);

 phase = 1 &  action = 0 : 5*func(pow, discount, time_step);

endrewards
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Appendix II
The PRISM file of DTMC model for the 
hand-washing problem

dtmc

//scheduler

global phase : [0..6] init 0;

//HandLocation: HL

//soap, tap, water, towel, sink, away

global HL : [0..5] init 5;

//waterFlow: WF

//on, off

global WF : [0..1] init 0;

//handLocationCorrectConst

const double HLCC;

//handLocationSameConst

const double HLSC;

//waterFlowCorrectConst

const double WFCC;

//handLocation Effect

//HLCC/2 < HLE < 1

const double HLE;

const double WFE;

const int maxwait;

const int total_time;

//number of time intervals without plan step change or progress

global NW: [-1..maxwait] init 0;
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module update_activity_a

//(same as in the MDP model, Appendix I, omitted here)
endmodule

module update_activity_b

//(same as in the MDP model, Appendix I, omitted here)
endmodule

module user_hand_a

//(same as in the MDP model, Appendix I, omitted here)
endmodule

module user_hand_b

//(same as in the MDP model, Appendix I, omitted here)
endmodule

module user_water_a

//(same as in the MDP model, Appendix I, omitted here)
endmodule

module updateWF_nothing

//(same as in the MDP model, Appendix I, omitted here)
endmodule

//probability to give the correct prompts

const double p_p=1;

//wait for a certain amount of time then give correct prompts with probability p_p

module Policy_1

//action

action: [0..6] init 0;

[] phase = 0 & PS = 0 & NW = maxwait-> p_p/2: (action'=1) & (phase'=1)&(NW'=0) + 

p_p/2: (action'=3) & (phase'=1)&(NW'=0) + (1-p_p): (action'=0) & (phase'=1);

[] phase = 0 & PS = 1 & NW = maxwait-> p_p/2: (action'=3) & (phase'=1)&(NW'=0) + 

p_p/2: (action'=5) & (phase'=1)&(NW'=0) + (1-p_p): (action'=0) & (phase'=1);

[] phase = 0 & PS = 2 & NW = maxwait-> p_p: (action'=3) & (phase'=1) &(NW'=0)+ (1-p_p): 

(action'=0) & (phase'=1);

//ps 3, rinse

[] phase = 0 & PS = 3 & NW = maxwait->p_p:  (action'=4) & (phase'=1)&(NW'=0)+ (1-p_p): 
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(action'=0) & (phase'=1);

//ps 4, water on

[] phase = 0 & PS = 4& NW = maxwait -> p_p: (action'=1) & (phase'=1)&(NW'=0)+ (1-p_p): 

(action'=0) & (phase'=1);

//ps 5, use towel or water off (which one is better depends on user behavior)

[] phase = 0 & PS = 5 & NW = maxwait->p_p/2:  (action'=6) & (phase'=1)&(NW'=0)+ p_p/2:

(action' = 2) & (phase'=1)&(NW'=0)+  (1-p_p): (action'=0) & (phase'=1);

//ps 6, use towel

[] phase = 0 & PS = 6 & NW = maxwait->p_p:  (action'=6) & (phase'=1)&(NW'=0)+ (1-p_p): 

(action'=0) & (phase'=1);

//ps 7, water off

[] phase = 0 & PS = 7 & NW = maxwait -> p_p: (action' = 2) & (phase'=1)&(NW'=0)+ (1-

p_p): (action'=0) & (phase'=1);

[] phase = 0 & PS!= 8 & NW< maxwait -> (action'=0) & (phase'=1);

//[] phase = 0 & PS = 8 -> phase'=6;

endmodule

const double discount;

rewards "positive"

      phase = 0 & MPSrepeat = 0 & PS!=8 : 3*func(pow, discount,time_step);

PS=8 & MPS=4 : 200*func(pow, discount,time_step);

endrewards

rewards  "negative"

      phase = 1& action != 0 : 5*func(pow, discount,time_step);

endrewards

rewards  "total_2"

       phase = 0 & MPSrepeat = 0 & PS !=8 : 3*func(pow, discount,time_step);

       PS = 8 & MPS = 4  : 300*func(pow,discount,time_step);

       phase = 1 &  action = 0 : 5*func(pow, discount, time_step);

endrewards

rewards "time"

phase = 5 : 1;

endrewards
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Appendix III
The PRISM file of MDP model for the 
dressing problem

mdp

global phase: [0..4] init 0;

//const int maxwait;

const int total_time;

//global NW: [0..maxwait] init 0;

const int a;

const int rb;

module plan_step 

PS: [0..9] init 0;

[]phase = 2 & PS = 0 & top = 0 -> (PS'=1) &( phase'=3);

[]phase = 2 & PS = 0 & top = 1 -> (PS'=0) & (phase'=3);

[]phase = 2 & PS = 0 & top = 2 -> (PS'=3) & (phase'=3);

[]phase = 2 & PS = 0 & top = 3 -> (PS'=4) & (phase'=3);

[]phase = 2 & PS = 1 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 1 & top = 1 -> (PS'=0) & (phase'=3);

[]phase = 2 & PS = 1 & top = 2 -> (PS'=2) & (phase'=3);

[]phase = 2 & PS = 1 & top = 3 -> (PS'=5) & (phase'=3);

[]phase = 2 & PS = 2 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 2 & top = 1 -> (PS'=7) & (phase'=3);

[]phase = 2 & PS = 2 & top = 2 -> (PS'=2) & (phase'=3);

[]phase = 2 & PS = 2 & top = 3 -> (PS'=9) & (phase'=3);

[]phase = 2 & PS = 3 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 3 & top = 1 -> (PS'=0) & (phase'=3);

[]phase = 2 & PS = 3 & top = 2 -> (PS'=3) & (phase'=3);

[]phase = 2 & PS = 3 & top = 3 -> (PS'=6) & (phase'=3); 

[]phase = 2 & PS = 4 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 4 & top = 1 -> (PS'=0) & (phase'=3);

[]phase = 2 & PS = 4 & top = 3 -> (PS'=4) & (phase'=3);
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[]phase = 2 & PS = 5 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 5 & top = 3 -> (PS'=5) & (phase'=3);

[]phase = 2 & PS = 6 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 6 & top = 1 -> (PS'=0) & (phase'=3);

[]phase = 2 & PS = 6 & top = 2 -> (PS'=3) & (phase'=3);

[]phase = 2 & PS = 6 & top = 3 -> (PS'=6) & (phase'=3);

[]phase = 2 & PS = 7 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 7 & top = 1 -> (PS'=7) & (phase'=3);

[]phase = 2 & PS = 7 & top = 2 -> (PS'=2) & (phase'=3);

[]phase = 2 & PS = 7 & top = 3 -> (PS'=8) & (phase'=3);

[]phase = 2 & PS = 8 & top = 0 -> (PS'=1) & (phase'=3);

[]phase = 2 & PS = 8 & top = 1 -> (PS'=7) & (phase'=3);

[]phase = 2 & PS = 8 & top = 2 -> (PS'=2 )& (phase'=3);

[]phase = 2 & PS = 8 & top = 3 -> (PS'=8 )& (phase'=3);

endmodule

module update

MPS: [0..3] init 0; 

MPSrepeat: [0..1] init 1;

time_step: [0..total_time] init 0;

[]phase = 3 & (PS= 0 |  PS =3 | PS=4 |PS=5 | PS=6| PS=7 | PS=8) -> (phase'=0) & (time_step' = 

min(time_step +1, total_time)) & ( MPSrepeat'= 1);

[]phase = 3 & MPS=0 & PS=1 -> (MPS' = 1) & (phase'=0)& (time_step' = min(time_step +1, 

total_time)) & (MPSrepeat'= 0);

[]phase = 3 & PS=1 & (MPS =1 | MPS = 2) -> (phase'=0) & (time_step' = min(time_step + 1, 

total_time)) & (MPSrepeat'= 1) ;

[]phase = 3 & MPS=1 & PS=2 -> MPS' = 2 & (phase'=0) & (time_step' = min(time_step +1, 

total_time)) & (MPSrepeat'= 0);

[]phase = 3 & MPS = 2  & PS=2 ->  (phase'=0) & (time_step' = min(time_step +1, total_time)) & 

(MPSrepeat'= 1);

[]phase = 3 & PS=9 -> MPS' = 3;

endmodule

module user_action

//put on P, put on T, put on J, take off P, take off T, take off J, 

//user_act: [0..5] init 0;

//none, P, T, J

top: [0..3] init 1;

//PS=0

94



[]phase =1 & PS = 0 & prompt=0 -> 

a/10: (top'=0) & (phase'=2) 

+ (1-a/10)/3: (top'=1) & (phase'=2)

+ (1-a/10)/3: (top'=2) & (phase'=2)

+ (1-a/10)/3: (top'=3) & (phase'=2);

[]phase =1 & PS = 0 & prompt=3 -> 

r*a/100: (top'=0) & (phase'=2) 

+ (1-r*a/100)/3: (top'=1) & (phase'=2)

+ (1-r*a/100)/3: (top'=2) & (phase'=2)

+ (1-r*a/100)/3: (top'=3) & (phase'=2);

//PS=1

[]phase =1 & PS = 1 & prompt=0 -> 

a/10: (top'=2) & (phase'=2) 

+ (1-a/10)/3: (top'=0) & (phase'=2)

+ (1-a/10)/3: (top'=1) & (phase'=2)

+ (1-a/10)/3: (top'=3) & (phase'=2);

[]phase =1 & PS = 1 & prompt=1 -> 

r*a/100: (top'=2) & (phase'=2) 

+ (1-r*a/100)/3: (top'=0) & (phase'=2)

+ (1-r*a/100)/3: (top'=1) & (phase'=2)

+ (1-r*a/100)/3: (top'=3) & (phase'=2);

//PS=2

[]phase =1 & PS = 2 & prompt=0 -> 

a/10: (top'=3) & (phase'=2) 

+ (1-a/10)/3: (top'=0) & (phase'=2)

+ (1-a/10)/3: (top'=1) & (phase'=2)

+ (1-a/10)/3: (top'=2) & (phase'=2);

[]phase =1 & PS = 2 & prompt=2 -> 

r*a/100: (top'=3) & (phase'=2) 

+ (1-r*a/100)/3: (top'=0) & (phase'=2)

+ (1-r*a/100)/3: (top'=1) & (phase'=2)

+ (1-r*a/100)/3: (top'=2) & (phase'=2);

//PS=3

[]phase =1 & PS = 3 & prompt=0 -> 

a/20: (top'=0) & (phase'=2) 

+ a/20: (top'=1) & (phase'=2)

+ (1-a/10)/2: (top'=2) & (phase'=2)

+ (1-a/10)/2: (top'=3) & (phase'=2);

[]phase =1 & PS = 3 & prompt=4 -> 

r*a/200: (top'=1) & (phase'=2) 
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+ a/20: (top'=0) & (phase'=2)

+ (1-r*a/200-a/20)/2: (top'=1) & (phase'=2)

+ (1-r*a/200-a/20)/2: (top'=3) & (phase'=2);

//PS=4

[]phase =1 & PS = 4 & prompt=0 -> 

a/20: (top'=0) & (phase'=2) 

+ a/20: (top'=1) & (phase'=2)

+ 1-a/10: (top'=3) & (phase'=2);

[]phase =1 & PS = 4 & prompt=5 -> 

r*a/200: (top'=1) & (phase'=2) 

+ a/20: (top'=0) & (phase'=2)

+ (1-r*a/200-a/20): (top'=3) & (phase'=2);

//PS=5

[]phase =1 & PS = 5 & prompt=0 -> 

a/10: (top'=0) & (phase'=2) 

+ (1-a/10): (top'=3) & (phase'=2);

[]phase =1 & PS = 5 & prompt=5 -> 

r*a/100: (top'=0) & (phase'=2) 

+ (1-r*a/100): (top'=3) & (phase'=2);

//PS=6

[]phase =1 & PS = 6 & prompt=0 -> 

a/30: (top'=0) & (phase'=2) 

+ a/30: (top'=1) & (phase'=2)

+ a/30: (top'=2) & (phase'=2)

+ (1-a/10): (top'=3) & (phase'=2);

[]phase =1 & PS = 6 & prompt=5 -> 

r*a/300: (top'=2) & (phase'=2) 

+ a/30: (top'=0) & (phase'=2)

+ a/30: (top'=1) & (phase'=2)

+ (1-r*a/300-2*a/30): (top'=3) & (phase'=2);

//PS=7

[]phase =1 & PS = 7 & prompt=0 -> 

a/20: (top'=0) & (phase'=2) 

+ a/20: (top'=2) & (phase'=2)

+ (1-a/10)/2: (top'=1) & (phase'=2)

+ (1-a/10)/2: (top'=3) & (phase'=2);

[]phase =1 & PS = 7 & prompt=3 -> 

r*a/200: (top'=2) & (phase'=2) 
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+ a/20: (top'=0) & (phase'=2)

+ (1-r*a/200-a/20)/2: (top'=1) & (phase'=2)

+ (1-r*a/200-a/20)/2: (top'=3) & (phase'=2);

//PS=8

[]phase =1 & PS = 8 & prompt=0 -> 

a/30: (top'=0) & (phase'=2 )

+ a/30: (top'=1) & (phase'=2)

+ a/30: (top'=2) & (phase'=2)

+ (1-a/10): (top'=3) &( phase'=2);

[]phase =1 & PS = 8 & prompt=5 -> 

r*a/300: (top'=1) & (phase'=2) 

+ a/30: (top'=0) & (phase'=2)

+ a/30: (top'=1) & (phase'=2)

+ (1-r*a/300-2*a/30): (top'=3) &( phase'=2);

endmodule

module policy_mdp

r: [11..13] init 11;

// nothing, put on T, put on J, take off P, take off T, take off J

//0         1         2           3           4            5

prompt: [0..5] init 0;

[]phase = 0 & PS = 0 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=0 -> prompt'=3 & phase'=1 & r'=rb;

[]phase = 0 & PS=0 -> prompt'=3 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 1 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=1 -> prompt'=1 & phase'=1 & r'=rb;

[]phase = 0 & PS=1 -> prompt'=1 & phase'=1 & r'=rb+1;

[]phase = 0 & PS =2 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=2 -> prompt'=2 & phase'=1& r'=rb;

[]phase = 0 & PS=2 -> prompt'=2 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 3 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=3 -> prompt'=4 & phase'=1& r'=rb;

[]phase = 0 & PS=3 -> prompt'=4 & phase'=1 & r'=rb+1;
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[]phase = 0 & PS = 4 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=4 -> prompt'=5 & phase'=1& r'=rb;

[]phase = 0 & PS=4 -> prompt'=5 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 5 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=5 -> prompt'=5 & phase'=1& r'=rb;

[]phase = 0 & PS=5 -> prompt'=5 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 6 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=6 -> prompt'=5 & phase'=1& r'=rb;

[]phase = 0 & PS=6 -> prompt'=5 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 7 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=7 -> prompt'=3 & phase'=1& r'=rb;

[]phase = 0 & PS=7 -> prompt'=3 & phase'=1 & r'=rb+1;

[]phase = 0 & PS = 8 -> prompt'=0 & phase'=1;

[]phase = 0 & PS=8 -> prompt'=5 & phase'=1& r'=rb;

[]phase = 0 & PS=8 -> prompt'=5 & phase'=1 & r'=rb+1;

endmodule

const double discount=0.82;

rewards " positive"

PS=9 & MPS=2 : 300*func(pow, discount, time_step);

phase=3 & MPSrepeat = 0 & PS!=9: 3*func(pow, discount,time_step);

endrewards

rewards "negative"

phase=0 & prompt!=0: 5*func(pow, discount, time_step); 

endrewards

rewards "total"

       phase = 0 & MPSrepeat = 0& prompt=0 & PS !=9: 3*func(pow, discount, time_step);

       PS = 9 & MPS = 2  : 300*func(pow, discount,  time_step);

phase = 1 & prompt=0 : 5*func(pow, discount, time_step)

endrewards
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Appendix IV
A Java program to modify the optimal 
policy generated by PRISM 

import java.io.*;

import java.util.Hashtable;

import java.util.Enumeration;

import java.util.LinkedList;

import java.util.StringTokenizer;

public class stationary {

static Hashtable<String, tr> tra;

static LinkedList<st> sta;

private stationary(){

tra = new Hashtable<String, tr>();

sta = new LinkedList<st>();

}

public static void main(String[] args){

new stationary();

String line = read_tra();

read_sta();

System.out.println(Integer.toString(tra.size()));

for (int i=0; i<sta.size(); i++){

if (sta.get(i).time_step == 5 & tra.contains(sta.get(i).name)){

int goalstate = tra.get(sta.get(i)).st2;

for (int j=0; j<sta.size(); j++){

if  (st.same(sta.get(i),  sta.get(j))& 

tra.contains(sta.get(j).name)){

tra.get(sta.get(j).name).st2 = goalstate;

}

}

}

}

write_tra(line);

System.exit(0);

}
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public static void write_tra(String first){

try{

BufferedWriter out = new BufferedWriter(new FileWriter("test.tra"));

out.write(first);

for (Enumeration<tr> e = tra.elements() ; e.hasMoreElements() ;) {

        

out.write('\n');

tr temp = new tr();

temp = e.nextElement();

        out.write(Integer.toString(temp.st1)+' '

        +Integer.toString(temp.st2)+' '

        + Double.toString(temp.p)+'\r');

}

    out.close();

}catch (Exception e){

System.out.println(e);

}

System.out.println("writeOK");

}

public static String read_tra() {

String first = null;

try {

BufferedReader input = null;

//read file

input = new BufferedReader(

new FileReader(

"C:\\Users\\workspace\\tra.txt"));

String line = null;

//a while loop to read all lines in this file

first = input.readLine();

while ((line = input.readLine()) != null) {

//to read one line

StringTokenizer StringTokens = new StringTokenizer(line);

String name = null;

tr a = new tr();

name = StringTokens.nextToken();

a.st1=Integer.parseInt(name);

a.st2 = Integer.parseInt(StringTokens.nextToken());

a.p =  Double.parseDouble(StringTokens.nextToken());

tra.put(name,a);
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}

} catch (FileNotFoundException e) {

System.out.println(e.getMessage());

} catch (IOException e) {

System.out.println(e.getMessage());

}

System.out.println("tra ok");

return first;

}

public static void read_sta(){

try {

BufferedReader input = null;

//read file

input = new BufferedReader(

new FileReader(

"C:\\Users\\workspace\\sta.txt"));

String line = null;

//a while loop to read all lines in this file

input.readLine();

while ((line = input.readLine()) != null) {

//to read one line

//StringTokenizer StringTokens = new StringTokenizer(line);

st a = new st();

String name = "";

int i=0;

while ( line.charAt(i)!= ':'){

name = name + line.charAt(i);

i++;

}

i++;

i++;

String temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}
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//System.out.println(temp);

if (Integer.parseInt(temp) == 0){

a.name= name;

i++;

temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.a = Integer.parseInt(temp);

i++;

temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.rb = Integer.parseInt(temp);

i++;

temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.PS = Integer.parseInt(temp);

i++;

temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.MPS = Integer.parseInt(temp);

i++;

temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.MPSrepeat = Integer.parseInt(temp);

i++;
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temp = "";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.time_step = Integer.parseInt(temp);

i++;

temp ="";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.top = Integer.parseInt(temp);

i++;

temp ="";

while ( line.charAt(i)!= ','){

temp = temp + line.charAt(i);

i++;

}

a.r = Integer.parseInt(temp);

i++;

temp = "";

while ( line.charAt(i)!= ')'){

temp = temp + line.charAt(i);

i++;

}

a.prompt = Integer.parseInt(temp);

sta.add(a);

}

}

} catch (FileNotFoundException e) {

System.out.println(e.getMessage());

} catch (IOException e) {

System.out.println(e.getMessage());

}

System.out.println("read sta ok");

}

}
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